HYBRID BUBBLE CHAMBER STUDY OF NUCIEON DIFFRACTIVE DISSOCIATION IN $14 \mathrm{GeV} / \mathrm{c} \pi^{ \pm} \mathrm{p}$ COLLISIONS*
G.B. Chadwick, J.T. Carroll, V. Chaloupka J. Ballam, J. Bouchez ${ }^{\dagger}$, P. Herquet ${ }^{\dagger \dagger}$, D. Linglin ${ }^{\dagger+\dagger}$
K.C. Moffeit, R. Stevens

Stanford Linear Accelerator Center
Stanford University, Stanford, California 94305 V. Davidson, A. Firestone ${ }^{+}$, F. Nagy, C. Peck, L. Rosenfeld California Institute of Technology

Pasadena, California 91125
R. Ely, D. Grether, P. Oddone

Lawrence Berkeley Laboratory
Berkeley, California 94720

```
Work supported by the Fnergy Research and Development Administration
* On leave from C.E.N. de Saclay
+† Present address: Mons University, Mons, Belgium
\(+t+\) Present address: CFRII, Geneva, Switzerland
+ Present address: lowa State University, Ames, lowa
```

(Sub. to Phys. Rev.)

ABSなRAこT

Two experiments so study the low mass diffractive enhancement recoiling against z fast forward pior from $\pi^{+} p$ and $\pi^{-} p$ collisions at 14 Gev/c are described. photographs of the SLAC 40 inch hydrcqen buhble chamber were triqgered by a downstream spectrometer when the missina mass, calculazed or. line, was above 1.1 Gev. Evidence for a non resurant mass peak at. 1.35 GeV is presented, as well as for production of resorances at about 1.5 and 1.68 Gev. The data are preserced as distributions in mass ard momentum transfer, as well as moments and isocline plots of the decay angular distributions. Model independent features are emphasized.
T. Iñ:DDUCTION

Abstract

We have performed two experiments in which about 227,000 $\pi \mathrm{p}$ ineiañic scaztering events vere measured ia order te study the detailed ncture of the low mass erhancemert recoilig againat the fast forwayd pion in these events. This erhancemont anpears to be produced by all hadron beams over a very wide energy range with comparable cross sections and is generally supposed to be the result of diffiactive scaterirg, or Pomeron exchange. For 3-hody final states the simplest oroceases are illustrated in fig.

 1. These are: (i) direct aucleon pole contribution, (b) pion exchange with $\pi \pi$ scaztering, (c) baryon exchange with πN sca-vering and (d) nucleon resonarce excitation. Although from the earliest studies of the process it was recognized the rescnince like suructures appear in the enhancemert, no clear identification of the mass peaks has beer made. ${ }^{l}$ A-tention turned to the Drell Hìda ${ }^{2}$ or Deck ${ }^{3}$ (PHD) effect cf diagram (b), which can be made to describe the gross features of the data, especially if form factors and absorption corrections are introduced. ${ }^{4}$ pecen-iv, the possible imocrtarce of nucleon exchange has been stressed. ${ }^{1,5,6}$ It has beer shown ${ }^{5}, 6$ that conaributions from (a) and (c) Eend to calicel, which may explain the relative success found using (b) alone, but which also suqgests that wuch more detailed data will he reeded than heretofore to adertify tho indivadual contributions from the processes of Fig. 1.Ir our expezimente, the SLAC 40 inch hydrogen bubble chamber was rur at a high repetiting rate while exposed to $14 \mathrm{GeV} / \mathrm{C} \pi^{+}$and π^{-}beams. Photographs were oaly taken when a fast forward scazeered particle, corresponding to that expected from the inelastic diffraction frocess, was detected in a large acceptance magne-ic spect=ometer downstream. In the 2.3 msec hetween heam passage and full bubble growth, it was possinle to calculate the apparert missing mass recoiling agairst the detected pion and thus exclude most of the prolific elastic scattering events. Furthermore, this hybrid system allowed the fast pazticle to be measured with wuch higher precision than could be obtained with the bubble chamber alone, which resulted in our cotaining a data sample with very small consamination from multi-neutral events.

In this paper we present our observations of the followilu reactions (the diffractively froduced system is chown here in parencheses):

$$
\begin{align*}
& \pi^{+} p \rightarrow \pi^{+}\left(\mathrm{p} \pi^{0}\right) \tag{1}\\
& \pi^{-} \mathrm{p} \rightarrow \pi^{-}\left(\mathrm{p} \pi^{0}\right) \tag{2}\\
& \pi^{+} \mathrm{p} \rightarrow \pi^{+}\left(\mathrm{n} \pi^{+}\right) \tag{3}\\
& \pi^{-} \mathrm{p} \rightarrow \pi^{-}\left(\mathrm{n} \pi^{+}\right) \tag{4}\\
& \pi^{+} \mathrm{p} \rightarrow \pi^{+}\left(\Delta^{++} \pi^{-}\right) \tag{5}\\
& \pi^{-} \mathrm{p} \rightarrow \pi^{-}\left(\Delta^{++} \pi^{-}\right) \tag{6}
\end{align*}
$$

For corvenierce we thall use the nota-isa $\pm\left(p \pi^{\circ}\right)$, $\pm\left(n \pi^{+}\right)$and
$\pm(\Delta \pi)$ ta refer to these pairs of reactions.
At our energy we can attempt to interpret the
intezfererce betwecr the already important diffractive, and
not yet negliqible ion diffractive processes, using their
deperdence on the charge of the team. At this time we will
present mairiy the date itself. A mose dezailed analysis is
ir progress.
IT. EXPEEIXENMAL DETAEIS

The layout of the hybrid system used in this experiment is shown ir Fig. 2. A pion keam of 14 Gev/c nominal momentum (14.2 GeV/C for π^{-}. $13.7 \mathrm{GeV} / \mathrm{c}$ for π^{+}) craversed the SLAC 40 inch hydrogen hubble chamber which was equipped wth thin windows for particle entry ard exit and which could run at up to 12 expensions per second. the scatering of a beam pion in the horizontal plane was detected by a coircidence betweer scintillation counters $S B$, S1 and $S 2$. The latter two scintillators were divided irto left and right sections, separated so that the undeflected bear would prss betweer then undetected. A coincidence produced a spark chamuez trigger fer four "stations" of magneto-scrictive wire spark chambers ($\mathrm{HSO}_{\mathrm{S}}$), which were read
 2. 8 tesla-m bending power was used. Zach station contained
a pair of horizontal (x) and vertical (y) wite planes and in additicn stations 1 and 3 each had a peir of plases with wires at $\pm 45^{\circ}$ to the vertical to resolve mul. =i-soank ambiguities. Ir the π^{+}experimert, the wire hits in two propozrioral wire chambers (pNC) caused ty the heam particle were also road in; these chambers were not available for the π^{-}exposire. Some further details of the apparatus may be found in Ref. (7).

After the wire chamber hits were read into the compu*er, there zemained appaoximately 2 msec, while bubbles were growing in the bubrle chamber, before a decision to flash the camera lamps hed to be made. The following algorithm was used on the spark chamber data to define a computer trigger:
(i) Search the horizontal wands of the wire spark chambers 1 and 2 for segments which pass through the center of the bubble chamber within a broad tolerance. Extrapolate esch such segment to the cenzer of the dipole. Next search stations 3 and 4 for segments which have the same intercept a^{2} the dipole.
(ii) Use the dipole bend argle and the scittering argle projected on the horizontal plane fontaining the bubbie chamer fiel ${ }^{\text {fl }} \theta_{x}$ to estimate the missing mass:

$$
\begin{align*}
M M^{2}= & M_{p}^{2}+2 M_{p}\left(E_{\text {beam }}-E_{\text {fast }}\right) \tag{7}\\
& -P_{\text {beam }} P_{\text {fast }} \Theta_{x}^{2}
\end{align*}
$$

where the beam is assigned fixed values determined
periodically.
(1ii) Apply the first trigger condiさion: 1100
$<A x<3500$ yev. Since the elastic cross section is
about 5 mb and the diffractive cross sectior is
about 1 mb the experiment would be swamped with
elastics if the accuracy of in is rot sutficient to
reject them. The spread in team momortum was less
than 0.5% and the error in $P_{\text {fast }}$ was abcut the same.
Hence the on linc error in MM is about 100 vov
including the erzor due to neglecting the scat+ering
arqle normal to the buhble chamber field. The
minimum of 1100 MeV was set to reject atou= 75% of
the elastics at the sacrifice of a redicel
efficiency for masses mear 1100 MeV .
(iv) For the final trigger conditicn, requize the
track to intercept the center of the burkle chamber to
$\pm 1.5 \mathrm{~cm}$ ir the horizontal plane. The horizontal width of
the beam of 0.5 cm , the length of the fiducial area of 75
cm ard the maximum horizontal acceptance of $\pm 60 \mathrm{mr}$
guarantee that legitimate interactions satisfy this
criteria. This is not sufficiently tight to reject many
1nこeractions in the windows rut it was necessiry $=0$
reduce triggers by the muon halo from decays upstream.
3世Cause the wire afark charbers aere gersitive to
particles over most of the $1.5 \mu \mathrm{sec}$ beam spill, these wires
in the region of the unacaitered bean li.e., between the halves of the z=igger cour eas $S 1$ and $S 2 l$ we=e desensitized. For this reason the useful limit of $1+1$ uns $0.01 \mathrm{Gev}^{2}$. The upper limit, set by aper=ures, was $0.6 \mathrm{GeV}^{2}$.

The system couid accommodate up to 10 particles per
expansiore At this rate there was an average of 2 sparks in the last plane and the computer firished soanning in an average of 0.8 ms . In early runs, 10% of the spark chamber triggers required more than 2 ms to analyze and these were rejected outrighz. Later improvements reduced -his loss to only a few perceist.

Approximately 0.8% of beam particles trigqeref the flashes, ard of the resulting film, 30% of frames contained god events within the fiducial volume. For the first π^{-} exposure in 1972, the bubble chamber expansion rate was 2/sec. Through the efforts of the slac Bubble Chamber Operations Group. this rate was increased to $12 /$ sec by 1974.

III. DATA AHALYSIS

To obtein the data sample to be discussed, the film was scanned for two and four prorg events in the fiducial volume. Both normal and "directed scan" techniques were used. In the directed mode, the spa=k chamber data was used to predict the position on the projected views of the . aggering track rear ite oubhle chamher exitwirdow. with -his informatior, the scanners could refect events occurring
accidentally along with a triggering event (real or spurious) and fird real events with improved efficiency. Events were measured on the LRI ESD and "Cobweb" system, the shac spiral Reader and convcntional systems, and on the Cit "Polly". Measurements were accepted for events With a track matching ore fonnd ir the downstream spectrometer. The matching procedure consisted of the following steps: (i) Locate all possitle track projections ir hoth horizontal and vertical planes, and associate these using the 45° wize plane sparks at stations 1 and 3 . (ii) project all candidate trajectories and their errors to the position of the event vertex as measured on the film, through the krowi bubble chanber frisqe field. (iii) Reject "spark chamber tracks" which fail to match the coordiantes of the vertex and test the remainder for compatibility of azgles and momentum, selecring the hest match x^{2}. (iv) Form a "hybrid track" with production angles, momentum and error matrix taken as the weighted average between bubble chamber ard projected spazk chamber weasurements. The "hybrid" track resulting from this procedure generally had a momentum error of $\pm 80 \mathrm{MeV} / \mathrm{c}$ and angle errors of the order $\pm 0.5 \mathrm{mr}$. In the π^{+}experiment the beam track was also matched to the upstream proportional chamber hits,

the beam track was compatible with the mean beam parameters,

```
the measurement was averaged with those mean values. This
resulted in comparable errors on beam and outgoing fast
par:icle.
```

Each event was processed through SQUAW where 4C, 1C and OC fits were made. For those events giving an acceptable 4-constraint (4C) fit, the 1C and 0C fits were ignored. Reactions 1-4 studied here are 1C fits. Only 1C fits with probability greater than five percent were accepted; cross sections were corrected to account for this rejection. For ambiguous events between a proton and pion hypothesis we selected the "correct" fit by the following criteria:
i) backward tracks in the laboratory and tracks identified by δ-rays were called pions. Stopping tracks were called protons.
ii) if the questiomable track was greater than 15 cm the film root mean squared deviation (FRMS) was used to select the appropriate hypothesis when the \triangle (FRMS) >4 microns and $\frac{\Delta \text { (FRMS) }}{\Sigma(\text { FRMS })}>0.25$
iii) fits with tracks having $\mathrm{p}>1.2 \mathrm{GeV} / \mathrm{c}$ or dip $>40^{\circ}$ were selected by using the fit with the highest confidence level probability. After these selections, events remaining with ambiguous interpretations were checked for compatibility with the predicted ionization, as obtained automatically in the measuring process or as estimated visually.

Each event was assiqned zeight proportional to the irverse of i-s geomerrical acceptance, calculated as the fraction of trigger particle orbits traversing active areas of the wSC's whe the azimuth for that particular track was rotated about the reall direction. The average behavior of the acceptarce is shown in fig. 3 as a function of missing mass and +. In addition, a correction for the on-line rejection of low missing azss everts as elastics was applled. The weight was finally divided by the total exposure sersitivity, ir events/ub.

In order to determine the effective beam flux in both experiments in a consistent way, we made use of published elastic scattering cross sections, which are well determined at our energies?, 8 periodically, throughont the runs, the missing mass requirement was changed to allow all elastic events to trigger. The resulting "elastic rolls" of film were scanned and measured using the same criteria as for production film. The elastic events found were used to check that the event weights obtained from the acceptance calculation produced a t-distribution compatible with that from counter measuremenzs, and the beam flux for elastic rolls was determined by normalizing the cross section for $0.05<|t|<0.3 \mathrm{GeV}$ to the published values. ${ }^{8}$ The flux for the ertire experiment yas determined by multiplying the "olastic rcils" flux by the ratic of the fimbor of all 2 .
ard 4 piong everts with missirg mass above 1.4 gev, to that for elastic rolls only. By usiag this procedure we estimate that the relative normalization between π^{+}and π^{-}exposures is uncertain to about $\pm 8 \%$ (3% statistical error). In principle, all inefficiencies in the electronic detectors and on-line event selection, as well as in the scanning and measuring procedures, should be the same in both experiments.

The fit selection process can also contribute to the uncertainty in the cross sections. The contamination from other reactions is larger at higher nucleon-pion masses and for decays with the charged particle forward. In addition, the π^{-}and the π^{+}experiments were processed by different groups. We estimate the uncertainty in cross sections between the π^{+}and π^{-}data at $\pm 5 \%$ due to the fit selection procedures. In addition, within each experiment the contamination and loss of fits is estimated to be less than 20% in any different mass or angular region.

The resulting sensitivities for the π^{+}and π^{-}exposures resoectively were 95 and 79 weiqhted eveats/ μ b. (In both experimerts the weight averaged over all everts was about 1.8). As discussed below, we estimate that an uncertainty of $\pm 15 \%$ should be assigred to the absoluce cross sections.

V. EVENT SEIECT-OA

The selection of $\pi^{ \pm} p \rightarrow \pi^{ \pm} p \pi^{+} \pi^{-}$events by
4 constraint (4C) kincantic fits presented no problems. In coritrast, the $\{C$ fit chanicls could be contamirated by olastic events failing the $4 C$ fit because elasaic scazters produced 15 times more spark chamber traggers than the $\pm\left(p \pi^{\circ}\right)$ reaction. 75% of these were rejected by the computer trigger: the remainde: had t? be excluded using the measurements on film. Four constraint fits were tried on all 2 prong everts, first usirg the hybrid measuremerts, and ther using only the buttle chamber velues. About 5% of elastics producing spark chamber triggers failed the hybrid fit. This fraction can be explained by the trigqer track interacting in the bubble chamber windows or spectrometer. Therefore "bubble chanber only" fits were used to exclude elastics. Finally, 0.4% of all elastics failed all $4 C$ fits. These were excluded by a coplanarity test.

1 C fit events were selected on the basis of the best x^{2}, after elastic events were excluded and ionization selection applied. The quality of the resulting samples can best be illustrated by the missing neutral mass (squared) found for all candidates for reactions $\pi^{+}{ }_{0} \rightarrow \pi^{+}{ }_{p M M}$ and
 obtained for the π^{-}induced samples. We estimate that about

10\% of events selected as pood 10 fits will in foct have more that one neutral, while a simjiar mumer of single neutrals will fail the fit. From the study of elastic fits discussed abve, we expect 5 界 of inelastic events also to have a bad measurement on either the beam or outgoing track. Most of these will still fit the 1 C hypothesis. All these considerations lead us to assign a $\pm 15 \%$ error to the absolute cross secticns, while the parallel treataent of π^{+}and π^{-} data allows a smiller error to be placed on the zelative normalization.
VI. DETAIIED PEOEESTIES OF THE $\pm\left(\mathrm{p} \pi^{\circ}\right)$ AND $\pm\left(\mathrm{n} \pi^{+}\right)$SHANNELS A. Mass Spectra

Ir. Fig. 5a we show the nucleon π mass spectra for the $\pm\left(p \pi^{\circ}\right)$ chaniels for $0.01<1+1<0.5 \operatorname{GeV}^{2}$. Events in this ard subsequert plots are weighted as descrihed in section IV. Error birs are statistical only. There is close agreenent in both cross section and mass structure in these reactions when ittegrated over all the angles. In fig. 5b we show similar plots for the $\pm\left(n \pi^{+}\right)$chanrels. Here we observe an excess of π^{-}over π^{+}induced reaction cross sections.

In Fig. 6 we show the dipion mass spectra for the same dota for $M_{N \pi}<2 G e v$. The $M_{\pi \pi}$ spectra for $\pm(\Delta \pi)$ channels are also plutted for later reference. Here we see that

```
production of \rho, f, and g resonamoos are importaret
cun:mbutions tu those chantels allowed ty isospin.
```

However, there is only minor overlap of dipion resonances with the $N \pi$ diffractive enhancement. This is shown in Fig. 5, where the general level of (N_{π}) cross sections with $M_{\pi \pi}<1.5 \mathrm{GeV}$ are shown by broken and solid lines for the $+(N \pi)$ and $-(N \pi)$ channels respectively.The ρ signal in the $+\left(p \pi^{\circ}\right)$ chancel is more clearlydefined thar in the $-\left(p \pi^{\circ}\right)$ channel. This is because the ρin these channel; $1 s$ produced opposize z slow. wide angleproton whach makes the mass resolution particularlysensitive to the angular measurementa of the fast tracks.In the π^{+}experiment the use of wire chambers to define theincident beam made a substantial improvement in resolutionat low $\pi \pi$ mass. For higher dipion mass, the error fallslike M_{π}^{-1} and soon becomes less than the resonance widths.Ir addizion the kinemavic overlap of ρ production with the(NT) low mass region is small and so the posecr resolutionin the π^{-}data should not affect that analvsis.
The agreement between $\pm\left(p \pi^{\circ}\right)$ mass spectra (Fig. 5a) in magnitude and shape is not surprising. Feferring to Fig. 1 (a) and (d), with the pomeron reclaced by all possible exchanges, difference should arise fron the interference between $I=0$ and 1 exchange, ard previous experiments have shown these terms (averaged over de ay angles) to be small. ${ }^{9}$ For the processes of fig. 1 (b) and (c), $\pi^{ \pm} \pi^{\circ}$ scatterirg cross sections are 戶denticel, and $\pi^{ \pm} N$ crnss sections are similai in the mass reqion imposed by our cuts. In the $\left(n \pi^{+}\right)$channels, by the same token,
differencer can be nost reasorably attributed th the isequality of $\pi^{+} \pi^{+}$and $\pi^{+} \pi^{-}$scattering.

We now form the average $d^{2} \sigma / d_{N \pi} d t$ for positive and neg. $i v e$ beams. This procedure has two virtues: (1) interference between $I=0$ and $I=1$ exchange pacesses will cencel before sveraging over decay angles and (2) statistical flučuatiors decrease. In Fig. 7 we olot the averaged cross sections (open circles) for ($n \pi^{+}$) and ($p \pi^{\circ}$) reacticns against $M_{N \pi}$ in four intervals of t. The data show a very strong = dependence, especially at very low nucleor pior. masses.

In all these spectra we see clear evidence of $\Delta^{+}(1232)$ production, which canrot be diffractive. We therefore subract it out, using deta from a high stacistics experinent which studied the reaction

$$
\begin{equation*}
\pi^{+} p \rightarrow \pi^{\circ} \Delta^{++} \rightarrow \pi^{0}\left(p \pi^{+}\right) \tag{8}
\end{equation*}
$$

at $13.1 \mathrm{GeV} / \mathrm{c}^{10}$ and found $\sigma_{\Delta++}=45 \pm 7 \mu \mathrm{~b}$. Isospin invariance indicares that in reactions (1) ard (2) the cross section for

$$
\begin{equation*}
\pi^{ \pm} p \rightarrow \pi^{ \pm} \Delta^{+} \rightarrow \pi^{ \pm}\left(p \pi^{0}\right) \tag{9}
\end{equation*}
$$

Shouid be $4 / 0$ that of reaction (8), while for $\Delta^{+} \rightarrow n \pi^{+}$we shouid fird a factor $2 / y$ toplies. Uning the data of fef. (10) ard a Ereit Wigner shape for the Δ^{+}. we show the result
of the subtraction by closed circles on each section of fig. 7.

This procedure results ir the appearance of a "shoulder" under the posirion of the Δ^{+}, followed by a clear peaking at mass 1.35 Gev. ${ }^{11}$ This peak ranidly diminishes as $1+1$ is increased, and vanishes for $1+1>0.12 \operatorname{cev}^{2}$.

The rext most salient feature of the data show in fig. 7 is the preserce of a peak at 1.65 gev mass, followed by a sharp drop a* abou- 1.7 Gev. In this case, the effect shows a comparatively weak t dependence.

Pitally we note that no clear mass structure between the 1.35 and 1.65 GeV peaks is visible in any of the kinematic reqions showr.

3. Conparison with ISA Results

A comparison of our mass spectra zt $\sqrt{s}=5.2$ GeV with a closely related reaction at very high energy proves to be verv irteresing. The process

$$
\begin{equation*}
\mathrm{pp} \rightarrow \mathrm{p}\left(\mathrm{n} \pi^{+}\right) \tag{10}
\end{equation*}
$$

has been studied ${ }^{12,} 13$ us. aq the CEEN Split field Magnet facility of the ISk. We have already feported on the stifkatg sitilitity of the iow mass ($n \pi^{+}$) erbatoment in reaction (10) at $\sqrt{s}=53 \mathrm{GeV}$ and in our data. 14 yere we wish
to repeat the comparison using the nower IS品 data at $\sqrt{s}=$ $45 \mathrm{GeV} .{ }^{13}$ Ir. Fig. 3 we show onr mass spectra, do/dm, averaged between $+\left(\mathrm{n}^{+}\right)$and $-\left(\mathrm{n}^{+}{ }^{+}\right)$charnels. Eof $0.05<1$ に <0.5 Gev${ }^{2}$, superimposed upon the spectra of reaction (10) (upper histograms) $0.05<|t|<0.8 \mathrm{GeV}^{2}$. In both cases the data is divided into forward $(\cos \theta>0, F i g .8 b)$ and backward $(\cos 0 \leqslant 0$, Fig. 8a) decay angles in the Gottfried Jackson system defined in the next section.

It is remarkable that these mass spectra are so similar, despite the factor 10 difference in cas energy and the different projectiles involved. For cos $\theta>0$ the smooth rise of do/dM with M. followed by a sharp drop at 1.7 Gev, is almost identical. For $\cos \theta<0$ both data show enhanced mase structure: the effect at 1.55 gev is particularly striking in similarity. In the ISa data a peak a* 1.5 Gev is evideat: ir our data it is much less compelling. However wo will see in a later section that our data also indicate the presence of a resonance at this mass. Contiruing the comparison, we note from Fig. 8 that the high energy dara show a strong forward asymmetry in the decay argular distribution at all masses. The mp data show a similar but less strong forward asvmetry. Since in both data sets the mass peak structure is so similar, this suggests the th ig the beckgrourd utder the reaks which produces the increased angular asymetry at high energy.

Finally, u calculate the "factorization normalized" cross section foz the pp dita, as defined in fef. 14:

$$
\begin{align*}
\frac{\mathrm{d} \sigma_{N}(\mathrm{~s})}{\mathrm{d}_{\mathrm{M}}}= & \frac{\sigma(\pi \mathrm{pelastic}, \quad \sqrt{ }=5.2 \mathrm{GeV})}{2 \sigma(\mathrm{ppelastic}, \sqrt{ })} \tag{11}\\
& \times \frac{\mathrm{d} \sigma}{\mathrm{dM}}(\mathrm{pp} \text { inelastic, } \sqrt{ })
\end{align*}
$$

Thisformula uses the elastic cross sections to account for
the difference between pion Pomeron and proton pomeron coupling, á weil is the s dependence of the pogeron propagator, in the spirit of factorization of fegge amplitudes. The facror 2 in the denominator accourts for the fact that there are two vertices from which a low mass $n \pi^{+}$may be produced in pp collisions and only one in πp collisions. The , ormalized pp cross section is shown in Fig. 8 (lower histogram). The comparison shows that the overall cross section of the diffraction enhancement does not follow the elastic cross section so that this form of factorization is not exact.
C. Angular Distributions

To describe the argulaz distribution of the ($n \pi$)
system, we define unnormalized moments as follows:

$$
\begin{equation*}
Y_{\ell}^{m}=\frac{1}{\mathcal{f} \Delta M_{N \pi}} \sum_{\text {events }} \quad w_{i} \operatorname{ReY} Y_{\ell}^{m}\left(\theta_{i}, \phi_{i}\right) \tag{12}
\end{equation*}
$$

is the mass bin width, w_{i} is the weight of the $i^{\text {th }}$ event and
θ_{i}, ϕ_{i} are the polar ard azimuthal angles of the nucleon in the certer cf mass of the nucleon slow π svotem. The angles are defined in the Goctfried Jackson systeml where the z axis is taken along the dinection of the incident nucleon, y is \exists long the normal to the production plane,

$$
\hat{y} \sim \vec{\pi}_{\text {inc }} \times \vec{\pi}_{\text {fast }}
$$

and

$$
\hat{\mathbf{x}} \sim \hat{\mathrm{y}} \times \hat{z}
$$

The mose significart moments obwined using Eq. (12)
are showr in Fig. 9. Here we have divided the data into two
tbins. i.e. $0.01<1 \pm 1<0.12 \mathrm{GeV} 2$ and $0.12<1+1<0.5$ Gev 2, so that the 1.35 GeV peak will be dominant in the first bir ard relatively iasignificart in the secnnd. Λ production divides equally between the two bins. Finally. We have superimposed the π^{+}ard π^{-}induced zesults to accertuete isospan interference effects.

These data show a very complex behavior. In onder to simplify the discussion we now qive a qualitative description of thase features which appear consistently through all the channels.
t) Δ itterfererco ofeget - In the zegior , f the $\Delta(1232)$ we observe that the $Y_{1}^{0} Y_{1}^{l}$ and Y_{2}^{l} moments change
wh the charge $n f$ the team. In the $+\left(p \pi^{\circ}\right)$ chanel they peak to posirive values roughly at the tanss, and to negative values in the $-\left(p \pi^{\circ}\right)$ channel. The effect also changes sigr in going from protor to neutron channel, while the nagnitude is foughly coratant. Finally, y_{2}^{0} also irdicates that interference is present. while the Y_{2}^{2} difference is consistert with zero.

An amalysis of these Δ interference effects has already been published ${ }^{16}$ based on preliminary data from this experiment. There it was showr that the data is best explained fy a model in which the Δ mplitude $(\mathrm{I}=1$ exchange) interferes with an $I=0$ exchange \mathfrak{a} and p wave background.
b) High mass region -- For $M_{N \pi}>2$ Gev loff scale in Fig. 9), the momerts tend to show a swooth rehavior. Por lower l, this plateau is reached earlier. Por $m \neq 0$ the values here are compatible with zero, while for m $=0$ they tend to be pusitive. This behavior results from the strong peaking of the anguiar distribution at $\theta=0$ in the t. channel heliciry system, which contritates on all m = 0 momerts. The most likely explanation of such peaking is the DHD effect diagram of Fig. ib which implies a small 4 momentum transfer between target and recoil proton. This Leflects into the $N \pi$ cemer ve mase system as a geaking neit $\cos \theta=1$, becoming sharper as $M_{N \pi}$ increases.
c) The $-\left(\mathrm{n}^{+}\right)$chanael et Icut-- There is a general agreemert in magatoude and shope of the moment distributions in the $\pm\left(p \pi^{\circ}\right)$ channels for $M_{p \pi^{\circ}}>1.4$ Gev. There is also good agreement betweer the $\pm\left(n \pi^{+}\right)$chanrels in the higher t irterval. The $-\left(\mathrm{n}^{+}\right)$channel for $0.01<1+1<0.12 \mathrm{GeV}^{2}$ therefore apyears anomalous in having moment values considerably ir excess of their counterfarts in the $+\left(n \pi^{+}\right)$ channel. This effectis probably atzributible to the π exchenge DHV effect, sirce the $\pi^{+} \pi^{-}$scattering cross section is larger than for $\pi^{+} \pi^{+}$.
d) Forward backward asymmetry - The $\ell=1$ moments give a good indication of the behavior cf the forwardbackward asymmetry in the decay arguiar dietribution referred to in section VI"B. There we noted that the general forward asyminetry, observed in both data sets, was considerably stronger in the ISE pn dzta (see Pig. 8). Here we wish to point out that the forward asymmetry is replaced, in our datá, by a s.rong backward asymetyy for $M_{N \pi}<1.5$ GeV and $|t|<0.12 \mathrm{GeV}^{2}$. This is obsorved in the $\mathrm{Y}_{\mathrm{l}}^{0}$ moment of fiq. 9 in the $\pm\left(p \pi^{\circ}\right)$ and $+\left(n \pi^{+}\right)$channels as a smoth dip to negative values $i n$ the region of the 1.35 Gev mass peak. In the $-\left(n \pi^{+}\right)$chanmel, Y_{1}^{0} does not actually go nequtive here, but appears to have a neqataive dif superimnosed upon a irger pos-tive backgromat hat fanai in the other channels.
e）Irterfearnce patterns $*$ We now point out what we feel to be the most siquificant evidence for 5 esonance interference patterns ir piq．9．We direct a－tention to the rapid rise in $Y_{1}^{0} a^{t} A=1.5$ Gev in the $\pm\left(n \pi^{+}\right)$chenrels．It is unlikelvthar anything but a phase passing through＝esonance could produce such a shazp effect． This＝ise is less shazp in the $\pm\left(p \pi^{\circ}\right)$ channels．Nex ，we note that Y_{2}^{0} shows two peaks，at about 1.5 and 1.65 Gev，but shows ro structure at 1.35 Gev．Finally，what appears to be 3 Eesonance $二 厶 力$ revference $p a \approx z e r n$ in Y_{4}^{0} and Y_{5}^{0} appears at ahout 1.7 GeV while another occurs in Y_{4}^{0} at 1.5 GeV．Y_{4}^{0} shows an irdistinct rise at 1.65 Gev，tut it is not clear whether this should be associated with the peak at that． mass．or considered part of the pattorn centered at 1.5 Gev．

In the moments with $m \neq 0$ we find some evidence for irterferexce patteras，which suggesta that at least some componerts of the production amolitudes do not conserve t channel heliciry．These terms appear $=0$ be rather 3 mall compared to the $m=0$ sigrals．When the moments were plotted in the s－channel helicity frame，the m $\neq 0$ monents generally became vezy large．since the helicity structure is relatively more simple in the t－chanrel frame，we shall continue to use it for analvsis．

D. =deceridercies

Fiaure 10 shows the t Aependence of the cooss section for all four channels ard for six mass tins. The mass bins were choser so that each contains one of the features of the moment distribution mentiored in section VI c. The well known mass-slove correlation is evident here. The solit lines are the result of fits asouming a cure exponcatial dependerice $e^{B t}$. In the lowest mass bin the Δ^{+}was subtracted before fittirg, as explainod kelow.

At Low $N \pi$ mass, the $d^{2} \sigma / d M d t$ is well described by the exponervial \therefore t: for higher masses it fatening of the distribution $e t$ low t is observed. We also note that the dip at $|t| \sim 0.2$ Gev 2. renorted at higher energies ${ }^{13,17}$, is weaker here, cr absent. More quantitative results will be given an section Viric.

In The interval $1.15<M_{p \pi}<1.3$ Gev we have subtracted the Δ^{+}contribution. This is illustrated by Fig. 11, where the average do/dMat for reaction (1) and (2) is showr together with the Δ distribution expected in the interval, based on the तata of Scharenguivel et al. 10 The suhtracted distribution shows an exporential shape with slope parameter ${ }^{11} \mathrm{~B}=12 \pm 0.5 \mathrm{GeV}^{-2}$. The fi-sed non- Δ exponential distributior for this mass bin is also Ehowiti Eig. 10 by a beoker lise.

We now consider the t-derendence of the interforence moments Y_{1}^{0}, Y_{l}^{l} and Y_{2}^{1} of the Δ with he background. These are obtaned by nlotting one half the difference between $+\left(p \pi^{\circ}\right)$ and $-\left(p \pi^{\circ}\right) m o m e n t s i n$ the Δ iaterval 1.15 $<M_{p_{\pi}}$ < 1.3 GeV . Figure 12 shows <Y ${ }_{\ell}^{\mathrm{m}}>\mathrm{d} \sigma / \mathrm{dMdt}$ Eor there momerts plozed aqainst t. The histogram shows the expected Δ ampitude (square root of $d \sigma_{\Delta} / d t$ obtaired from Ref. 10) With arbitrary normalization. If we assumed that the Δ^{+}is produced via the stodolsky sakarai (SS) mechanism ${ }^{18}$, we would conclude that the strong t dependence in the $\ell=1$ moment reflected that of the backyround amplitude. However, ati alcernative interpreration is that the Δ^{+}develops a strong helicity non flip colaponent at small t, as has been suggested by kramper and yora. 19 ye will tera this the k m mechanism. The Y_{l}^{0} and Y_{l}^{l} moments show very similar behavior and do not turn over at samall this conf:rms the observation of scharenguivel et al. ${ }^{10}$ that the Δ amplitude has no forward dip. It also suggests that the swave background is finite at small t. The Y_{2}^{l} distribution, on the other hand, does dip in the forwazd direction. Jrder the assumption of the SS mecharisa, this suggeste that the p wave background has a forvard dip; in the $k M$ viey, the dip would be caused by the X felicity idip appitude fillirg to zoro-a the forward direction.

E. The 1.35 Gav Rass Deqk

- The peak ir rucleor-slow pion mass at 1.35 gev, shown in Fig. 7, has been ohserved ir previous experiments, but, becanse of $2 t \in \operatorname{strong} t$ deperdence, has not been clearly resolved. A peak wizh similar t-dependence has been orserved recently in $n=p$ collisions at 50-300 Gev/c. 7 No evidence ds dailable or its persistence at ISR energies in pp collisions because of cuts in that data due to acceptance. ${ }^{3}$

From fig. 9 we have obsesved from the $\mathrm{Y}_{\mathrm{l}}^{0}$ moment that the decay distribution ir this reqion has a strong backward asymmetry in the channel frame. We now explore the t dependence of the asymmetry. In Fig. 13 we show the Y_{1}^{0}. Y_{1}^{l}, and Y_{2}^{l} moments against t for the region $1.3<M_{N \pi}<1.45 \mathrm{GeV}$, a) for the average of $+\left(\mathrm{p} \pi^{\circ}\right)$ and
 for $-\left(n \pi^{+}\right)$(crosses). Here we ncte a marken similazity between $\pm\left(p \pi^{\circ}\right)$ and $+\left(n \pi^{+}\right)$distaibutions, especially in the neqative excursior in Y_{1}^{0} at small t. The $-\left(n \pi^{+}\right)$channel also shows a shanp drop in $\mathrm{Y}_{\mathrm{l}}^{0}$ at small t, superimoosed on a 1arger background which prosumably peaks at $t=0$.

The interpretation of the 1.35 Gev mass peak as a
Iesonance is lighly improbable. we attempt to show this by the following reajoring:

1. The absence of a signal near 1.35 gev in momeats with $\ell \geqslant 2$ suquests that the resonance there can be only s or n wave. The Y_{1}^{0} signal would then be iaterpered as interference between s and p waves, une fron the resonance. the other from the background, as in the case of the Δ irterfesence pat-crns.
2. The tackgrounds, zs analysed $k y$ interference, show ar $I=1 / 2$ chanacteristic, i.c. are twice as strong in the $\left(n \pi^{+}\right)$as in the ($p \pi^{\circ}$) channel. The supoosed interfertrice $\left(Y_{1}^{0}\right.$ of Fig. 9) gives equal signalsin $+\left(p \pi^{\circ}\right)$ ard $-\left(p \pi^{\circ}\right)$ chanrels, so that both resonance qnd background wold have to have $T=1 / 2$ if excited diffractively.
3. We therefore would expect tidice the Y_{1}^{0} signal to be found in the Y_{l}^{0} moment in the $\left(n \pi^{+}\right)$channels. In contrast to this, we rote from Fig. 13 and Eig. 9 that the signals aze approxipately equal, assuming a smooth behavior of the background at small \pm

The geveral forward asymmetry found in the data is well explained by the π-exctiange $L H D$ effect diagram of Fig. $1 b$. The reversel of this trend at the 1.35 gev mass peak is then most reasonably attributed to the baryon exchange DHD effect diagram of Fig. 1c. which is expected to produce a backuard peaking ${ }^{1}$, once resonance excitation (Fiq. 1d) is excluded.
 which produced the required sharpness of the peak, the slow
fise ficm the auclennotor threshold, the t dependence, and the steepness of the backwa:d pedking.

We will describe mere of the characteristics of this mass regior in section VIII-a.
P. Discussion of the Irterference Patterns above 1.45 gev

As acted in jection $V=G(e)$, there eze stang
indicatiors in the moments for $M_{N \pi}>1.45 \mathrm{GeV}$ that
resonances are being excited diffractively. There are two mass vaiues (at least) where the phase of paroicular waves are changing rapidly: i.e. ${ }^{M_{N \pi}}=1.5 \mathrm{GeV}$ and $M_{N \pi}=1.68$ Gev.

The best candidates for the two major resonarces are the $\mathrm{D}_{\frac{3}{2}}$ and $\mathrm{F}_{\frac{5}{2}} \mathrm{~N} \pi$ resonances. These are allowed by the Morrison Gribov (x (i) rule ${ }^{20}$ that in diffractive production, spin and parity should be =elated ry $P=(-1)^{J}-\frac{1}{2}$. We wish to zest the rule by looking for evidence of waves with the opposite relatior.

The angular dis+ributions, in =erms of partial wave aralysis, to be expected in cur reactions have been calculated by silver. ${ }^{2 l}$ The reader is also referred to applica=icrs of explicit formulae in the literature. ${ }^{22,2 ?}$? For out purposes we have fand it convenient : o define production amplitudes $\mathcal{L}_{T}\left(M_{N \pi}, t\right)$ for the intermediate states which decay into ar $N \pi s p s t e m$ with angular momentum $\ell \mathcal{L}=$ s,r, ... ir the asum spoctescopy it tation Ere ℓ, and the
subscript $\ddagger=N$ for the ": G allowed" states with J = \& 1/2, $T=A$ for the "anti =rule" states with $J=\ell+1 / 2$. We also assume t chanel helicity conservation (TCHO). The result: is

$$
\begin{aligned}
& \mathrm{d} \sigma / \mathrm{dM}_{\mathrm{N} \pi} \mathrm{dtd} \Omega=(4 \pi)^{-\frac{1}{2}} \sum_{\mathrm{L}=0}^{\infty} \mathrm{Y}_{\mathrm{L}}^{0}(\theta, \phi) \sum_{\text {all } \mathcal{L}_{\mathrm{T}}, \mathcal{L}_{\mathrm{L}^{\prime}}^{\prime}} \mathrm{B}_{\mathrm{L}}\left(\mathcal{L}_{\mathrm{T}}, \mathcal{L}_{\mathrm{T}}^{\prime \prime}\right) \mathcal{L}_{\mathrm{T}}^{*} \mathcal{L}_{\mathrm{T}^{\prime}}^{\prime}
\end{aligned}
$$

$$
\begin{align*}
& \left.+\sum_{\mathcal{L}_{T^{\prime}}^{\prime}>\mathcal{L}_{\mathrm{T}}} A_{\mathrm{L}}\left(\mathcal{L}_{\mathrm{T}}, \mathcal{L}_{\mathrm{T}}^{\prime \prime}\right) 2 \operatorname{Re} \mathcal{L}_{\mathrm{T}}^{*} \mathcal{L}_{\mathrm{T}}^{\prime},\right\} \tag{14}
\end{align*}
$$

where the ordering is $S_{A}, P_{M}, P_{A}, D_{M}$ etc. The coefficients A are given in Table I.

The fact that only Y_{L}^{M} : with M - 0 appear in Eq. (14) is a result of assuming exact che. However, as was pointed out by kushbrooke et al 233, if we assume non-mcha amplitudes are present wish magnitude $\mathfrak{f r a c t i o n ~} \varepsilon$ of the dominant TCH © wave, they will induce a Y_{L}^{M} signal $(M \neq 0)$ of $O(E)$ of the Y_{L}^{0} signal, and modify the $\mathrm{Y}_{\mathrm{L}}^{0}$ signal by a term $0\left(\varepsilon^{2}\right)$. Judging by the relatively small $M \neq 0$ signals apparent: in our data (see fig. 9) we expect Fp. (14) to he a gond approximation if we look for resonance signals above background.

In Eq. (14) we have explicitly separated interference signals $\propto 2 \operatorname{Re}\left(\mathscr{L}_{\mathrm{T}}^{*} \mathcal{L}_{\mathrm{T}}{ }^{\prime}\right)$ from those $\left.\propto \mathcal{L}_{\mathrm{T}}\right|^{2}$. This was done because the $M_{N \pi}$ dependence of interference near a resonant value will te especially farotac (it greaser at all) while the direct $\left.\mathscr{L}_{\mathrm{T}}\right|^{2}$ dependence may show only a broad peak. We
also note that, if all terms ir. Eq. (14), proportional to ode pair of interfering amplitudes, e. a. 2 Re($\mathrm{P}_{\mathrm{A}}^{\mathrm{D}} \mathrm{M}_{\mathrm{M}}$) , are collected, the signals in different L^{\prime} 's bear a fixed relationship given by Table.

If we wish :assign F_{M} to the 1.58 GeV resonance, we find the absence of a positive Y_{4}^{0} peak of $4 / \sqrt{5}$ the y_{2}^{0} value disconcerting. The Y_{3}^{0} signal might arise from an $D_{M} F_{M}$ interference, but this requires a parallel yo signal of opposite sig. to that observed. We also note that the presence of a Y_{6}^{0} interference signal indicates that even higher waves than shown in the table may contribute strongly. Finally, Y_{3}^{0} shows an anomalous behavior in the $-\left(p \pi^{\circ}\right)$ channel at 1.68 Gev, suggesting that $I=1$ exchange also) contributes here.

We may see from Table I that the assignment of D_{M} (ie. 3^{-}state at 1.5 gev gives the Y_{2}^{0} peak, and allows the 2 presence of P_{M} to explain the Y_{1}^{0} interference signal. The Y_{4}^{0} interference signal requires D_{A} or G_{M} (the latter however requires ar even langer Y_{2} interference terai. The same "asule comes if P_{A} is substituted for $D_{M}{ }^{\prime} S_{A}$ For P_{M} and F_{M} $\because \because D_{A}$. ir all such configurations some $x-G$ violating asplitudes are required.
VII. EEACIIONS $\pi^{ \pm}{ }^{ \pm} \rightarrow \pi^{ \pm} \mathrm{pH}^{+} \mathrm{HE}^{-}$
we now consider the reacticns

$$
\begin{equation*}
\pi^{ \pm} \mathrm{p} \rightarrow \pi^{ \pm}\left(\mathrm{p} \pi^{+} \pi^{-}\right) \tag{15}
\end{equation*}
$$

In Fig. 14 a and b we show the mass $M_{p \pi^{+}} \pi^{-}$, recoiling aqairst the fast fcrward $\pi \pm$ trigqering particle ty cpen and closed circles. The distributiors are dominated $k y$ a kroad feak at abcut 1.7 GeV which has been reported by fary frevjous authors in these and other reactions. ${ }^{24}$ In particular, the $p \pi^{+} \pi^{-}$spectrum has been chserved in pp collisiors at Isf erergies ${ }^{5}$ to have substantially the same shape as shown here. In Fig. 14 c and d the $\mathrm{p} \pi^{+}$rass distritution is shown by cpen and closed circles. These indicate a strong $\Delta^{++}(1232)$ component is present. The crosses show the $\mathrm{N}_{\mathrm{p} \mathrm{\pi}}$ - distributions, irdicating that the Δ peak is not a kinematic effect. We define the $\Delta \mathrm{by}$ a cit, $y_{p \pi}+<$ 1. 34 GeV , and estimate that akout 25 g ncn- Δ backgrcund Will be included by the cut. Firally, the $\mathrm{r}_{\Delta \pi}$ distribution is shown ir Fig. 14 a and t by cresses.

VIII. CONFAFISOI OFP. r and \triangle FINAL SIATES

A. Mass-sicpe corrolation

We now investigate the rass-slope corfelation of the diffractive erhancerent for the $\pm(N \pi)$ ard $\pm(\Delta \pi)$ channels. For this study we have fitted the $d \sigma / d M d t$ distriruticn for mass intervals of 20 Yev to an exponertial form $e^{B t}$, selecting the troadest t-range which car te descrited by this form. In Fig. 15 we show the results for the ($N \pi$) and ($\Delta \pi$) chanrels separately.

From this data we make two observations. First, the systematic increase in slope as mass decreases breaks off at about 1.35 GeV in the ($N \pi$) channels, reatins censtant, and resumes rising belcw the $\Delta(1232)$ mass. While muct of this is related to the preserce of the nondiffactively produced Δ, the widh of the flateau is too oreat and the anount of Δ production is too sall tc explain it ertirelv.

Secordly, we observe that, at a given mass, the slope in the $(\Delta \pi)$ channels is sys:ematically higher thar the slope in the ($N \pi$) channels ty about 4 units $\left(\mathrm{GeV}^{-2}\right)$ in the π^{+} induced reactions and about 2.5 units in the π - induced reactions. This indicates that at least part of the orserved diffracticn bump must be froduced ty a mechanism in
which the "decay" is not independent of "production". We note that previous authors ${ }^{26}$ investigating inelastic meson diffraction have found that "the slope of the do/dt distribution is determined by the invariant mass produced, irrespective of the kind of particies carrying such masses".

B. Representation of necay Distributions by lsociine plots

The previous discussions of the properties of
diffractively produced systems has suggested that, although resonances are present, they do not explain the dominant features of the data. In that case the moment distributions presented may not give the most useful description of the data.

Furthermore, there has recently been renewed interest in double-peripheral calculations, stimulated by the (relative) success of Ascoli et al. 27 in explaining the reaction $\pi p \rightarrow(3 \pi) p$ by the Reggeized Orell-Hiida-Deck model, and by experimental data on nucleon diffraction 17,26 . Miettinen ${ }^{1}$ has suggested the use of "isocline plots", where the (θ, ϕ) distributions are replaced by contours of equal event densities, to locate contributions from these processes.

The technique we have used to produce such plots is to evaluate the moments defined by Eq. (12) up to $\ell=4$ and $m=2$ and use the resulting mathematical representation to find
the isoclines ${ }^{28}$ in the interval $0.01<|t|<0.5 \mathrm{GeV}^{2}$:
Here we shall show only the π^{+}beam results, since the π^{-} data is qualitatively the same, and because no significant azimuthal asymmetry was observed, we have folded the data about $\phi=0$. Owing to the use of $\ell \leq 4$, the results are smoothed in a manner appropriate to the analysis of Miettinen. ${ }^{1}$

Figure 16 shows the plots for the two lower mass intervals, $1.08<\mathrm{M}_{\mathrm{N} \pi}<1.3 \mathrm{GeV}$ and $1.3<\mathrm{M}_{\mathrm{N} \pi}<1.45 \mathrm{GeV}$. The isoclines are labelled by the event density $8 \pi \mathrm{~d} \sigma / \mathrm{dMd} \Omega$ in $\mathrm{mb}-\mathrm{GeV}^{-1}$.

The peaking seen near $\cos \theta=1, \phi=0$ can be attributed to the π-exchange $D H D$ process of Fig. 1 b . Since $\cos \theta$ is linearly related to the 4 -momentum transfer squared from target to nucleon Δ^{2}, the $\cos \theta$ distribution directly reflects the Δ^{2} distribution in π exchange. $\phi=0$ corresponds to the largest $M_{\pi \pi}$ which can be achieved at fixed θ. High $M_{\pi \pi}$ values are enhanced by the π exchange process and are concentrated into the low $\mathrm{M}_{\mathrm{N} \pi}$ region, resulting in low ϕ values being favored. ${ }^{1}$

The backward peaking in θ can be seen best in Fig. 16 c and d . It shows a comparatively weak ϕ dependence. These distributions compare well with the patterns expected for baryon exchange, when nuclear spin is taken into account. ${ }^{56}$ This is strong, though not conclusive, evidence that the mass peak at 1.35 GeV is due to a baryon exchange mechanism.

The effects of the Δ production process can be seen in Fig. 16a and b, where the Stodolsky-Sakurai distribution, $1+3 \sin ^{2} \theta \sin ^{2} \phi$, fills in the center of the plot, and the interference term mentioned previously change the forwardbackward peaking considerably.

In Fig. 17 we present the isoclines for the higher mass intervals shown, and include the $+\left(\Delta^{++}{ }_{\pi}{ }^{-}\right)$channels for comparison. Compared to the previous figure, we see that the π exchange peaking is much sharper now, as the range of Δ^{2} in the plot is greater, but the integrated effect is much less. The backward peak continues to fall with increasing mass in the $N \pi$ channels. However, we note that no very strong backward peak appears in the $\Delta \pi$ channel until we reach the interval containing the 1700 MeV peak.

C. Correlation of Mass with Decay Angle

A complementary method to study the double-peripheral mechanism and presence of more than one exchange is to study the correlation of the production slope with the decay angular distribution (Ref. 29). The authors of Ref. 17 claim an observation of a cross-over effectin do/dt with the sign depending on whether the pion- or the baryon-exchange was enhanced.

In order to study these questions in detail, we present in Fig. 18 the "reaction-mass-slope-decay correlations": the mass-spectra and the mass dependence of the production slopes are plotted for different reactions and four regions of the t-channel polar angle θ.

The amount and complexity of information on Fig. 18 precludes any simple discussion; much further work will be needed to explain the observed correlations. Here we shall limit ourselves to several remarks:

1) Any difference between the plots from reactions differing only by the charge of the beam particle must be due to the interference between the $I=0$ and $I=1$ exchanges (ignoring the $I=2$ exchange, and the production of the meson resonances, which however could be described in terms of exchanges as well). We observe such effects in the $\Delta(1236)$ region [mainly in the final state $\pi^{ \pm}\left(p \pi^{\circ}\right)$], in the 1500 MeV region [mainly in the final state $\left.\pi^{ \pm}\left(\Delta^{++} \pi^{-}\right)\right]$, and in the $N^{*}(1700)$ region [mainly in the final state $\pi^{ \pm}\left(n \pi^{+}\right)$]; see Fig. 18.
2) In the final states $\pi^{ \pm}\left(p \pi^{\circ}\right)$ and $\pi^{ \pm}\left(n_{\pi}^{+}\right)$, we observe, at a given mass, a strong dependence of the production slopes on $\cos \theta$, especially in the mass-region of $1.2-1.5 \mathrm{GeV}$. A similar, even stronger effect has been observed in the reaction $p p \rightarrow p\left(n_{\pi}{ }^{+}\right)$at the ISR (Ref. 13), and is qualitatively predicted by the double-peripheral model.
3) In general, the slope-mass correlation is much stronger in the backward than in the forward region of $\cos ^{\theta}$; the two extreme cases being the decrease of the slope by $N 18$ units over a mass range of $N 500 \mathrm{MeV}$ in the backward region of the reaction $\pi^{-} p \rightarrow \pi^{-}\left(n \pi^{+}\right)$and the nearly mass-independent slope in the forward region of the reaction $\pi^{-} p \rightarrow \pi^{-}\left(p \pi^{\circ}\right)$. It is also interesting to note that the slope for the reaction $\pi^{+}{ }_{p} \rightarrow \pi^{+}\left(\Delta^{++} \pi^{-}\right)$levels off at a relatively large value of ~ 9.0 at large $m(\Delta \pi)$.
4) We do not observe a simple change of the sign of the crossover in the reactions $\pi^{ \pm} p \rightarrow \pi^{ \pm}\left(\Delta^{++} \pi^{-}\right)$, when the pion-exchange $(\cos \theta>0 \cdot$) or the baryon exchange $(\cos \theta<0$) is enhanced. Attempts to enhance the different exchanges by selecting regions of the azimuthal s-channel angle (the method used by the authors of Ref. 26) also failed to reproduce the reported effect.
5) Besides the $\Delta^{+}(1236)$, the other substructures observed in the data are in the $1600-1700 \mathrm{MeV}$ region, and there is a poorly defined structure around. 1500 MeV . The 1700 MeV region is especially interesting: it seems to contain contributions from several states, including a narrow peak at $\sim 1700 \mathrm{MeV}$ (see e.g. the backward part of the reaction $\pi^{+} p \rightarrow \pi^{+}\left(\Delta^{++} \pi^{-}\right)$on Fig. 18). There are 6 established baryon resonances in the $1650-1700 \mathrm{MeV}$ region, but the width of the narrowest of them is greater than observed here.

Evidence for a narrow object at 1700 MeV was already observed at 3.9
$\mathrm{GeV} / \mathrm{c}$ in the backward produced $(\mathrm{p} \pi)$ system in the reaction $\pi^{-} \mathrm{p} \rightarrow\left(\mathrm{p} \pi^{-}\right) \omega$, and in the reaction $\pi^{-} p \rightarrow \pi^{-}\left(p \pi^{+} \pi^{-} \pi^{\circ}\right)$.

IX CDNCLUSTENS
We have presented the data from our high statistics Hybrid Lubble Chamber expe=iments at 14 gev/c. These data reveal a very complex behavion which cannot be explained by one dominart mechznism. We hzve therefore presented the data itself and limited our discussions to its qualitative aspects.

We have observed a broad mass peak in the $\pm(n \pi)$ channels at 1.35 GeV. Its isospin ard decav characteristics make it unlikely $=0$ be due to rosonance production.

Sharp changes with $M_{N \pi}$ observed in the moments of the decay angulam dis=ribution at hiaher masses indicate the production of resonances. However, these canrot be explained by introduction of amplifudes oheying only the Gribov Morrisoc ruie. 20

We find thet the mass slope correlation in oar data depends on the particular final state, in contrast to the resul:s obtained $2 n$ diffractive boson production.

1. Por recert reviews cf the subjec see: H. Miertiner, froc. E.E.S. Conference on High Energy physics, palermo (1975): N. Dezulck, "Diffraction processes", Farticles and Fields 1975, ed. H.J. Lubatti and p. M. Yockett. Univ. of Washiagton, D. 33.
2. S.D. Drell and K. Hi三da, Phys. Rov. Le:t. I. 199(1961).
3. R. Deck, Fhys. Rev. Lett. 13. 1969 (1954).
4. V.A. Tsarev, Phys. Rev. D11, 1864 (1975).
5. A. Minaka et al. preprint kyusho 76 He 6 (1976).
6. K. Cutler and E. Berger. Phys. Rev. D15, 1903 (1977).
7. A.R. Dzierba et al., Phys. Fev. D7. 725 (1973). L. Rosenfeld, Ph.D. Thesis, California Institute of Technology (1977).
8. K.J. Foley et 71. Phys. Fev. 131. 1775 (1969).
9. J.V. Reaupre et al.. Nucl. Phys. P6f. 9? (1973)
10. J.H. Schareaquivel et al.. \#ucl. Phys. B36. 363 (1972).
11. The Δ^{+}cross section used here may be to 00 low, based upon interpolation of other data to our energy, and upor ar independent fit to cur $\pm\left(p \pi^{\circ}\right)$ charnels. Using a higher cross section would result in a more enhanced 1. 35 Gev peak and a steeper t-slope for events under the \wedge.
12. 2. Nagy et 11. Contribution wo. 489 to the XVIIth Interrational Conference on High Erergy Physics, London (1974).
1. H. de ker:e et al.. 2hys. Lett. 632, 477 (1976): loc. cit., 48 P (1976): C. Desll. orsay No. 1580 (doctoral thesis. 1976).
2. G.B. Chidwick, "Particles and Fields 1975". Proceedings of the Seartle APS Moctirg, ed. \quad. Lubat*i ard P. M. Mockett, Seattle, D. 197.
3. J. D. Jackeor, Rev. Uod. phys. 37, 494 (1045).
4. W. Jchset a1.. Nucl. Dhys. E86. 253 (1975).
5. J. Eiel et al. Phys. Lett. 65R, 291 (1976): Phys. Rev. Lett. 36. 594 (1976) : ibid., 507 (1976).
6. L. Stodolsky and J. Sakurai, Phys. Fev. Lett. 11. 90 (1963).
7. Y. Krammer and U. Maכr, Nucl. Dhys. E13. 651 (1969).
8. V. F . Gribov, Yad. Fiz (USSR) 5. 197 (1967): D.P.ว.

Morrison, Dhys. Eev. 165. 1699 (1968).
21. E.N. Silver, Califcraia Institute of Pechnology thesis (1971, unpublished).
22. D. Lissiuer et al.. Phys. Rev. DG. 1852 (1972).
23. J.G. Rushbrooke \underline{e}^{+}11.. Phys. Pev. [13. 1835 (1976).
24. Many results are tabulated by k. Boesebeck et al..

Nucl. Phys. p33. 445 (1971). More recent observations above $10 \mathrm{GeV} / \mathrm{c}$ are (a) π nucleon: B . Morse et al.. Hys. Iev. 24, 133 (177): Y. ah at al., Dhys. Lott.
 University of washingror preprint; (b) nucleon nucleon:
J. Allaby et al., Nucl. Phys. e52, 316 (1973); D.

Hochmen et al.. Nucl. Thys. g82. 45 (1974).
25. i. Webt et 11., phys. Lett. 558, 331 (1975).

2f. P. Eosetti et 2l., Nucl. Phys. 3101, 304 (1975).
27. G. Asccli et al. Ehys. Rev. D8. 3894 (1973): ibid. D9. 1963 (1974).
28. The subroutine used, "Covprg", was written by a, Seebe of the SLAC Compuration Group.
25. E.L. Eerger, Phys. Eev. D11, 32:4 (1975), and proc. Daresbuay 3 tudy Weekend No. 3. Feb. 1975, ed. J.B. Dezmton and A.J.G. Huy; H. Heittinea, Ref. 1.
30. D. W. Duke, preprint proymbid pub $76 / 96$ THY (1976).
31. V. Davidson et a1., PRL. 32, 855(1974); V. Chaloupka, Ph.D. Thesis (1975).


```
imterfering intermediate states, assuming helicity
conservation in production.
```


Eigure captions

1. Diagrams of the exchange frocesses expectod ec
cortribute to the diffractive low wass entancement in F-oton dissociation:
(a) baryon exchange direct aucleon pole
(b) pion exchange DHD effect
(c) baryon excharge DHD effect
(d) nucleor resonance production
2. Layout of the hybrid buttle chamber system.
3. Average geometrical acceptance of the system as a function of missing mass and t.
4. Missing mass squared calculated for inelastic two orong events compatible with the reactions (a) $\pi^{+}{ }_{p} \rightarrow \pi^{+}{ }_{p M M}$ (b) $\pi^{+}{ }_{p} \rightarrow \pi^{+} \pi^{+}{ }^{\prime} M$, \exists fter ionization selection. single neutral mass and multineutral thresholds are shown ty arrows.
5. Nucleon-pion invariant mass spectra, weightel for acceptance, found in the π^{+}(oper circles) and π^{-}(closed $c:$ rclos) exporimen*atar tho reactions la) $\pi^{ \pm} p \rightarrow \pi^{ \pm}\left(p \pi^{\circ}\right)$ a ad
(b) $\pi^{ \pm} p \rightarrow \pi^{ \pm}\left(n \pi^{+}\right)$. Solid and broken lines show the $\pi-$ and $\pi+$ data respectively for $M_{\pi \pi}<1.5 \mathrm{GeV}$.
6. Dipion $\begin{aligned} & \text { ass spectra for the six reactions consitered. }\end{aligned}$ The t cut is the sade as for fiq. 5. and $M_{N \pi}<2$ gev.
7. Average $d \sigma / d M_{N} d t$ for $\pi^{ \pm} p \rightarrow \pi^{ \pm}\left(p \pi^{\circ}\right)$ and $\pi^{ \pm} p \rightarrow \pi^{ \pm}\left(n \pi^{+}\right)$ in four t-intervals (open circles). Clcsed circles show the resule cf subtracting the krown Δ^{+}cortrirutica in efch case.
8. (a) Average $d \sigma / d_{N} \pi^{+}$for $\pi^{ \pm} p \rightarrow \pi^{ \pm}\left(n \pi^{+}\right)$(closed circles). With $0.05<|t|<0.6 \mathrm{Gev}^{2}$, ortained in this experiment, compared to that for $p p \rightarrow p\left(n \pi^{+}\right) z^{ \pm} \sqrt{ }=45 \mathrm{GeV}$. $0.05<|\tau|<0.8 \mathrm{GeV}, \cos \theta_{J}>-0.9$, ortained it the ISR (nef. 13. higher histogram), for tackward neatron decay angle in the t channel frame. Broken line indicates a mass cut-off imposed on the ISF data by acceftance. the lower histogram shows the "factorization normalized" cress section defined by Eq. 11. (b) Same comparison for forward decay neutrons.
9. Uniormalized moments of the rucleon deczy angle, in the t chancel frame, for the reactions and intervals shown. π^{+}beam results are shown by open circles, π^{-}by closed circles.
10. t distributions for varicus M regions indicated at right, for the reactich channels showr atove. solid lines indicite the $e^{B t}$ deperderce, troker lires show the sine after Δ^{+}has beer subtracted.
11. Illustration of the composition of the lowest mass bin, $1.15<M_{p \pi}<1.3 \mathrm{GeV}$, for the average $\mathrm{d} \sigma / \mathrm{dMdt}$ for $\pi^{ \pm} p \rightarrow \pi^{ \pm}\left(p \pi^{\circ}\right)$. Crosses show the data of Ref. 10 multiplied by the isospin factor 4/9, and the open circles show the result of subtracting this from our average data (closed circles). Note that the slope of the solid line fitted to the open circles will be strongly dependent on the relative normalization of the two experiments.
12. Interference moments of the Δ with its "background" as function of t, obtained by subtracting moments for $\pi^{-} p \rightarrow \pi^{-}\left(p \pi^{\circ}\right)$ from $\pi^{+} p \rightarrow \pi^{+}\left(p \pi^{\circ}\right)$ moments in the interval $1.15<M_{p \pi} \circ<1.3 \mathrm{GeV}$. Histogram shows $\left(d \sigma_{\Delta} / d t\right)^{1 / 2}$ from Ref. 10 .
13. Moments $\underset{1}{0}, \underset{1}{1}$ and $\underset{2}{Y l}$ as functions of t in the mass interval $1.3<M_{N \pi}<1.45 \mathrm{GeV}$, i.e. the 1.35 GeV peak. Open circles show the average of $\pi^{ \pm} p \rightarrow \pi^{ \pm}\left(p \pi^{\circ}\right)$, closed circles, $\pi^{+} p \rightarrow \pi^{+}\left(n \pi^{+}\right)$, and crosses, $\pi^{-} p \rightarrow \pi^{-}\left(n \pi^{+}\right)$.
14. (a) Invariant mass $M_{p \pi}{ }_{\pi}$ - for the reaction $\pi^{+} p \rightarrow \pi_{f}^{+}\left(p \pi^{+} \pi^{-}\right)$before the Δ defining cut (circles) and after the cut (crosses), (b) same for π^{-}beam, (c) $M_{p \pi^{+}}$ for the data of part (a) with $M_{p \pi^{+}}<2 \mathrm{GeV}$ (circles), showing the strong Δ^{++}signal. Vertical line shows the cut position used. Cr sses show $M_{p \pi^{-}}$, which shows the peak is not kinematic in origin, (d) same for π^{-}beam.
15. "Mass-slope correlation", showing the slope parameter b, assuming $d \sigma / d M d t \sim e^{B t}$ as a function of recoil mass, for the average of $\left(p \pi^{\circ}\right)$ and $\left(n \pi^{+}\right)$channels, and the $(\Delta \pi)$ channel, (a) for the π^{+}experiment, (b) for π^{-}.
16. Isocline plots, i.e. contours of equal event densities against $\cos \theta$ and ϕ in the t-channel frame, for the two lower recoil mass intervals and reaction channels shown, obtained as described in the text. Contours are labelled by the density in $\mathrm{mb} / \mathrm{GeV}$, as obtained in the interval $0.01<|\mathrm{t}|<0.5 \mathrm{GeV}^{2}$.
17. Isocline plots for the two higher mass intervals shown and including the $(\Delta \pi)$ channels, labelled as in Fig. 17.
18. Mass-slope correlation. Cross section (left scale) and slope of the exponential t-distribution (right scale) as a function of invariant mass, given separately for π^{+} and π^{-}incident beams and for different regions of the $t-$ channel polar angle θ. a) $p \pi^{\circ}$ channel; b) $n \pi{ }^{+}$channel and c) $\Delta^{++^{-}}$channel.

Contributions to moment distributions for various interfering resonant states, assuming helicity conservation in production. For notation, see text.

Interfering States	Y_{0}^{0}	Y_{1}^{0}	Y_{2}^{0}	Y_{3}^{0}	Y_{4}^{0}	Y_{5}^{0}
$S_{A S A}$ or $P_{M} P_{M}$	1					
$S_{A} \mathrm{P}_{\mathrm{M}}$		$-\sqrt{\frac{1}{3}}$				
$S_{A} P_{A}$ or $P_{M} D_{M}$		$\sqrt{\frac{2}{3}}$				
$\mathrm{P}_{A} \mathrm{P}_{A}$ or $\mathrm{D}_{\mathrm{M}} \mathrm{D}_{\mathrm{M}}$	1		$\sqrt{\frac{1}{5}}$			
$S_{A} D_{M}$ or $P_{A} P_{M}$			$-\sqrt{\frac{2}{5}}$			
$S_{A} D_{A}$ or $\mathrm{P}_{\mathrm{M}} \mathrm{F}_{\mathrm{M}}$			$\sqrt{3} \frac{3}{5}$			
$S_{A} F_{A}$ or $\mathrm{P}_{M} \mathrm{G}_{\mathrm{M}}$		0		$\sqrt{4}$		
$S_{A} F_{M}$ or $\mathrm{P}_{\mathrm{M}} \mathrm{D}_{\mathrm{A}}$		0		$-1 \frac{3}{7}$		
$\mathrm{P}_{A} \mathrm{DA}_{\mathrm{A}}$ or $\mathrm{D}_{\mathrm{M}} \mathrm{F}_{\mathrm{M}}$		$\frac{3}{5} \sqrt{2}$		$\frac{2}{5} \times \frac{6}{7}$		
$\mathrm{P}_{\text {A }} \mathrm{D}_{\mathrm{M}}$		$-\frac{1}{5} \sqrt{ } \frac{1}{3}$		$-\frac{9}{5} \sqrt{\frac{1}{7}}$		
$\mathrm{D}_{\mathrm{A}} \mathrm{D}_{\mathrm{A}}$ or $\mathrm{F}_{\mathrm{M}} \mathrm{F}_{\mathrm{M}}$	1		$\frac{8}{7} \sqrt{5}$		$\frac{2}{7}$	
$\mathrm{P}_{\mathrm{A}} \mathrm{F}_{\mathrm{M}}$ or $\mathrm{D}_{\mathrm{A}} \mathrm{D}_{\mathrm{M}}$			$-\frac{1}{7} \sqrt{5}$		$-\frac{2}{7} \sqrt{6}$	
$P_{M} F_{A}$ or $S_{A} G_{M}$			0		$-\frac{2}{3}$	
$P_{A} F_{A}$ or $D_{M} G_{M}$			$\frac{9}{7} \sqrt{2}$		$\frac{5}{21} \sqrt{2}$	
$\mathrm{D}_{\mathrm{A}} \mathrm{F} \mathrm{M}$		$-\frac{1}{35} \sqrt{3}$		$3 \sqrt{\frac{1}{7}}$		$\frac{50}{21} \checkmark \frac{1}{11}$
$\mathrm{D}_{\mathrm{M}} \mathrm{F}_{\mathrm{A}}$ or $\mathrm{P}_{\mathrm{A}} \mathrm{G}_{\mathrm{M}}$		0		$\frac{11}{3} \sqrt{7} \frac{2}{7}$		$-\frac{5}{3} \sqrt{2} 11$
$D_{A} F_{A}$ or $F_{M} G_{M}$		$\frac{6}{7}$		$\frac{2}{3} \sqrt{3} \frac{3}{7}$		$\frac{10}{21} \cdot \frac{3}{11}$

Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

Fig. 6

Fig. 7

Fig. 8

Fig. 9

Fig. 10

Fig. 11

Fig. 12

Fig. 13

Fig. 14

Fig. 15

Fig. 16

Fig. 17

$$
\pi^{-} \rho-\pi^{-}\left(\rho \pi^{\circ}\right)
$$

Fig. 18a

Fig. 18b

Fig. 180

