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ABSTRACT 

A method for approximately including quantum effects on the 

solution to lattice field theories is presented. The formalism is 

an extension of the semiquantum approximation of Sachrajda, Weldon 

and Blankenbecler to obtain lower bounds for quantum Hamiltonians. 

This approach yields classical-like equations in which the effects of 

quantum fluctuations is included in a variational manner. The 

energies obtained by this method should be lower bounds to the true 

eigenvalues. Vacuum and single kink solutions are treated in detail, 

both analytically and numerically. 
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I. INTRODUCTION 

The study of methods for finding nonpertubative approximate solutions to 

quantum field theories has been of much interest in recent years, in particular 

for those theories that have classical, time independent, space dependent solu- 

tions such as kinks, etc. 

Approximate solutions to scalar A e4 field theory have been extensively 

studied by Dashen, Hasslacher and Neveu 
1 

(DHN) and Goldstone and Jackiw2 in 

the weak coupling limit, by quantizing small vibration around the classical limit. 

More recently Drell, Weinstein and Yankielowicz” have developed a variational 

method for treating one dimensional 7~4~ theories in the lattice and Scalapino and 

Stoeckly4(SS) considered a quantum mechanical solution to a truncated theory on 

a lattice comparing it to a semiclassical approximation in which they linearized 

the equations of motion about the classical minimum and then added the energy 

of each resultant normal mode. 

Similar problems, that appear in statistical mechanics, have been earlier 

treated by other method by Onsager’ and Fisher and Ferdinand’. Finally, ex- 

tensive work on the theory of classical and quantum solitons have been done by 

Christ, Lee, and coworkers. 7 

In a previous paper, 8 hereafter called SWAB, a new method for including 

quantum effects in a classical-like limit was developed. The method is based on 

approximating the effects of quantum fluctuations to the energy in a variational 

way which is not equivalent to an expansion in powers of A. The values of the 

energy thus obtained are lower bounds to the corresponding true eigenvalues. 

In a way, the SWAB method is equivalent to a generalization of well known un- 

certainty principle arguments for estimating the ground state energy of quantum 

systems. A further advantage of this approach is that the resulting equations 
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can be solved by simple methods since the problem is one of finding a purely 

classical equilibrium configuration. For reasonable choices of the trial functions, 

the resulting values for the energy of quantum Hamiltonians are lower bounds to 

the quantum energy levels, and thus the method complement the Raleigh-Ritz 

variational calculations which provide upper bounds for those eigenvalues. 

In this paper we further develop these methods by applying them to one 

dimensional field theories on a lattice. The extension to higher dimensions is 

straightforward. 

In Section II we present a general description of the application of the semi- 

quantum approximation to lattice field theories, and apply it to free field theory 

in Section III. In order to make clear the physical interpretation of our results 

we discuss in Section IV the meaning of the equilibrium semiquantum coordinates. 

Section V and VI are devoted to describing analytical and numerical methods for 

solving the classical like equations obtained. In Sections VII and VIII we study 

in detail the Dashen, Hasslacher and Neveu and the Stoeckly and Scalapino problems 

respectively. Section IX presents our conclusions and outlook. 

II. LATTICE FIELD THEORY 

Let us now consider the application of our method to field theory. This will 

not be a full discussion but merely a brief exposition of the general approach. Of 

course one hopes that the inclusion of some quantum effects in an otherwise clas- 

sical solution will be of interest in itself as well as providing a new starting point 

for an expansion of quantum effects. Since some of these important effects have 

been included in the zeroth order, one might hope that the expansion would be 

more rapidly convergent. We shall be particularly interested in the local, or 

classical-like, solutions and for purposes of illustration will work in one space 
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dimension but it is said that the extension to higher dimensions is straightforward. 

Ignoring normal ordering terms, the Hamiltonians under discussion are 

H = 7r2 (x) ++- (V $ #+ V (e(x)) 1 . (1) 

Since the conjugate momentum 7r does not commute with Cp, our object here is to 

estimate 7r2 (or better yet to bound it from below) by a function of the field variable 

4 only, as in the earlier discussion of Schroedinger theory. Since the new 

Hamiltonian then would depend only on the field variable, both H and C$ would be 

diagonal in the same coherent set of states. The quantum effects of the 1r2 term 

have not been completely neglected as they are in the usual classical limit. 

In order to implement this program, it is convenient to work on a lattice 

with spacing a and write 
N 

H=a 
I[ 

12 1 T7Ti f2 
i=l 

where any version of the gradient operator may be employed’ and where 

pi, f+J = i iSij /a . 

G-7 

It is convenient to introduce a vector notation at this stage, Cp = ($I, $,, . . . , $,), 

where qi is the field value at site i, and write 

V2 
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where D is an N x N matrix. The Hamiltonian becomes 

2 aH = -; V +i @*Dw$+a2V[#] . (4) 

The familiar interpretation of a set of oscillators coupled by the derivative matrix 

D is clear. Since the procedure worked well for single oscillators, one might 

expect that the same will be true here in this much more complicated case. 

Using the SWAB procedure, the first term can be estimated by a localized 

function of $: 

1r2- ~2 [~] = C 1r2 ( pi) ) 
.i 

where 7r2 is of the form rf(ei) = $ (gi($i)/gi($i))2 . 

For example, one may choose 

7r2(qli) = l/4$; 

or 

(5) 

(6) 

A more general choice is to consider a linear combination of field variables and 

write 

T2 [+ J = + iI (v(n). $)T2 , (7) 
n=l 

where the v(n) are a complete set of orthonormal vectors in N dimensions. The 

final approximate form of H in this l’almost quantum theory” approximation is 
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Recall that the object here is to choose g(e), and hence r2[+], so that HB is 

as large as possible. Then its minimum will be as close as possible to the exact 

energy value. Criteria to be used in the choice of the function g(e) was discussed 

in detail in reference 8. 

III. FREE FIELD THEORY 

As is customary for all approximation schemes, the method will first be 

applied to free field theory as an aid in interpreting the nature of the approxima- 

tions involved and as a guide to the choice of 7r2[+]. The potential is 

If the estimate (5 ) is used for r2[+], th en a variation of the qils yields the 

minimum condition 

1 
3 - 

40. 
a2M2ei = zDijej . 

1 j 

The solution for $ is a vector with constant components, +f = 1/2aM, and 

HB (min) =-$ c M=+MN . (9) 

This approximation has neglected completely the kinetic energy of each oscillator. 

The basic reason was that the choice for r2[$] did not prevent the solution for $ 

from being orthogonal to the eigenvectors of D with large eigenvalues (indeed Cp 

was orthogonal to all eigenvectors except the one corresponding to D = 0). 
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This defect is easily remedied. Introduce the eigenvectors of D such that 

Dv(n) = D,v(n) = a2kz v (n) 

for n= 1,. . . N and define 

r n = v(n) - 4 . 

Using the form (5) for r2[$], the Hamiltonian becomes 

HB =& 2r 2+a2M2r 2 n n n 1 , n 

a set of uncoupled eigenmodes. The minimum with respect to the rn is easily 

found: 
N 

HB(min) =-& c 2” 

n=l 
(M2+kn )2 . 

This is the elract result and the coordinates rn are just the fourier transforms 

of the $i. The exact form of this transform is, of course, defined by the choice 

made for the derivative operator D. 

Excited states of the free field are also straightforward to treat. Consider 

the case in which only the m th mode is excited to its first level. For the ri one 

obviously chooses (see reference 8) the same as the above for nf m, but for the 

excited mode 

where b” is chosen after the minimization with respect to the rn. It is chosen 

to maximize HB. Since the modes are decoupled, this is a simple problem and 



HB(min) =$ 
N 

c (M2+k;)‘+(M2+k;)+ , 
n=l 

the correct result, as expected. 

For a general potential, the optimum choice for g($) and therefore r2[$] 

depends upon which terms in the Hamiltonian are large. If the potential is large 

and has a deep minimum, then g(e) should be chosen so that @ cannot take maxi- 

mum advantage of this minimum. On the other hand, if the derivative term is 

dominant, then one must force rp to mix in the large eigenvalues of D. The former 

condition is most easily expressed in coordinate space, the latter in k-space. 

Hence their simultaneous satisfaction requires some ingenuity in the choice for g. 

IV. PHYSICAL INTERPRETATION 

In order to aid in the physical interpretation of the equilibrium solution for 

the field variables qi, or the r n’ it is instructive to add a source term 

c Ji$i = c jnrn &I the Hamiltonian and to generate expectation values of the 

field using the Feynman-Hellman theorem, <ei> = 8 E/dJi J= o. Consider a 

Hamiltonian of the form 

HB(j = 0) = 2$ (rn) + a2kzri]+aV[r] 

which is assumed invariant under the simultaneous transformation of all the - 

r --r n n’ .Now in the presence of the source term, this symmetry is lost and 

the optimum choice for the rz should reflect this fact. Therefore, we introduce 

a shift in r2 and define 

(rn + jnb,) + a2ki rz + 2 jnrn 1 + aV [r] (11) 
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The procedure now is to minimize with respect to the rnPs , and then choose 

the bn to maximize the resultant energy values. Working to first order in j, 

one finds that the new equilibrium coordinates are 

r n = ri +zR,(n) jm + W2) , 
m 

where the rifs are the solution for j = 0, and 

2 
Rm(n)=-,E d”, 

n m 

R,(n) = - 1 +bn 

tqw 

where all the variables are evaluated at rn = rno . 

The lower bound to the energy becomes 

HB= HB(j=O) + $c jn [$ - (2Dnri +aF)bn] + O(j2) (12) 
n n c 

. Now since the original Hamiltonian possessed a symmetry in r, if the set rno 

is a solution to the minimization problem, so is 
0 

-r n ’ Now the optimum value 

for bn must be such that the value of dHB does not depend upon which of these 

minima one expands around (otherwise one would be smaller) and hence 

1 -1 
. 

The odd term in j in the energy vanishes identically. Thus 

<rnP = <Gi> = 0 
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and clearly one should not identify r,” with the quantum expectation value <rn>. 

On the other hand, if a term z jnrn2 is added to the Hamiltonian, one finds 

approximately that an2 > G(r 0 
P n ’ This root mean square relation for r,” is a 

reasonable and intuitive interpretation of the equilibrium values of the fields 

and this momentum space connection should be kept in mind while interpreting 

our results. 

V. KINK SOLUTIONS - COORDINATE SPACE 

In this section, a few general remarks will be made for kink-type solutions 

although no specific examples will be discussed in detail. We shall be interested 

in the difference in behavior between the solutions using our approach and the 

purely classical ( r2= 0 ) limit. For 7r2 [$] of the form given by Equation (5), that 

treats all lattice points the same, the minimization of (24) yields the equation 

c 1 D..+. + 
j a2 11 I (13) 

where 

wt$i) =‘(~i) + 1 
2a2 

7T2 (+i) * 

This difference equation is most easily treated by passing back to the continuum 
n 

limit in which Gi = Q (x), but the explicit factor of a? is retained in the effective 

quantum potential W(e). The result is 

v2 cp(x) = +$- W(@) * 

The requirement that @ approach a constant value at infinity is that this constant 

F satisfy 

-&W(F)=0 . (14) 
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The equation for Cp(x) can be integrated once to yield 

+t9’tx))2=W~) -W(F), 

and the field $I is a solution of the familiar implicit equation 

W(e) - W(F)]-+ = 6(x-y> . 

The Hamiltonian density can be written as 

XB(x) = r2F) 1 + (4’(x) I2 , 

(15) 

(16) 

where the last term is given by Equation (15). It is easy to show that this term 

vanishes like ( + -F )2 for large x. 

For the 9acuum” state, defined by $‘= 0, the energy density is constant and 

given by the first terms. This is not the same as the classical result since F is 

to be computed by finding the minimum of the effective quantum potential W that 

includes effects of the r2 term. The asymptotic field is therefore renormalized. 

The energy, back on the lattice, is 

HB = aFig = aNW(F) + ax [+‘(xi)12 . 
1 i 

(17) 

This will now be examined for kink-type solutions. 

For such a solution, i.e., in which $(&m) =f F, the function C$ must vanish 

at some point. Since r,?~ = 0 is a symmetry point, most choices for r2 [@]blow up 

there. This has an important effect on the energy which is quite different from 

standard classical theories. To explore this point further, consider r2 of the 

form (5) or (6). Near the vanishing point of $, the equation for $1 is 



and hence 

Note that in the limit r#~ depends only on a, i. e. , the quantum effects from r2 

completely dominate the effect of the potential. The energy density for x N x0 

has the behavior 

.rPp) - (4a x-x0 1 I I -1 
. 

Therefore there is a logarithmic infinity in the energy arising from the forced 

vanishing of $ (x ) . One expects that quantum fluctuations will have their largest 

relative effects when the field $ itself is small, and indeed this is the case. This 

divergence may be due to the fact that our starting Hamiltonian was not normal 

ordered and there is still a mass renormalization to be performed. 

VI. LINEAR LATTICE 

Let us now turn to more specific example, that of K@ 
4 on the lattice, and 

perform numerical calucations in k-space in which the eigenfunction of D are used 

for the v (n). The solution for the vectors v (n) if D is chosen to be the nearest 

neighbor gradient, ( V@i)2 = ( ei - +i+lf, are given in the Appendix, case (a). We 

define 

r n=V;$i (19) 

and its inverse as 

f$i=wnr . i n 
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These vectors satisfy 

Di j v; = Dn v; 

with 

Dn = 4sin2 7r(n-1)/N . w 

The Hamiltonian of interest is then chosen to be 

1 
HL =2a r2(rn) + a2Dnri 1 + a KC (4: - f2) 2 . (21) 

i 

One can now proceed to minimize this function of the rn (or, equivalently the 4j). 

This can be done by brute force but it is helpful to have approximate solutions to 

localize the search. Two such approximate solutions will now be discussed. 

For the vacuum state, and except near the symmetry point even for the kink 

state, one expects that the e2will be roughly equal (except for end effects). This 

suggests the approximation 

The Hamiltonian is now an explicit function of the rn. The minimization is now 

quite simple: 

$& T2 (rn) + a2Dnrn+ 4a 
n 

- f2 1 rn = 0 (22) 

The classical solution to this problem is ei= f or r1 = fif, rn = 0 (n> 1) . 

Thus to force the quantum solution away from these values we chose 

2 
rl $1 = &-J”jf)-” 
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+Yf (rn) = $ b-J 
-2 Il>l 

This choice for X, does not retain the original symmetry of the Hamiltonian under 

r rn (all n simultaneously) but is closely related to the standard expansion 

pzocedure(lY7). A better choice would be Eq. (6) with A = nf2 which would retain 

the symmetry of the original Hamiltonian in rl. 

The solution for n > 1 is 

rz= -& [Dn+4X(+R2-f2)]-* , 

and rl is the solution to 

r1 (rl - fif)3 = [4a2K(&R2- f2)3-l , 

(23) 

(24) 

where R2 = xr 2 and must be determined self-consistantly, from (23) and (24). n 

A second approach, which is very similar to the expansion used by DHN, is 

to write @i = +c + 6 Gi or equivalently their transforms rn = rz + 6rn, where 

$c (and rcn ) is the classical solution to the problem. The conjugate momentum 

operator r2 is then chosen so as to keep the 6 rnls from being too small. In this 

case, the Hamiltonian becomes 

HL = Hc+H1+H2 

Hc =cA a Dn(ri)2 + aK c($p2- f2)2 , 
n 2 i 

(25) 
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where 

H,=&C[ l 
n 4@rn) 

2 + a2Dn (6rn)“]+ 2aKxk($Ff - f2](&$i)2 
i 

(26) 

H2 = 6aK C$F (CJ$i)3+aKx(6@i)4 * (27) 
i i 

If the 6 $‘s are small, then H2 can be neglected to lowest order. Also if 

4; = constant, which is exactly true for the (classical) vacuum, then the solu- 

tion for the 6 m’s is 

2 1 
= 2a .+8Kf2 -' 1 . (28) 

This should be compared with our earlier estimates, Equations (23) and (24). 

These two approximations are similar in character, but not identical, due to the 

somewhat different estimates that were used. 

VII. THE DHN PROBLEM 

In their classic papers’ on the subject, DHN gave an analytic solution to the 

(continum) problem posed by the Hamiltonian Hc + HI, In order to compare with 

their results in detail let us first consider this reduced problem. Our procedure 

is as follows: 

First, we solve for the classical solution to the lattice problem by finding 

the minimum of Hc as a function of the $F (or the ri) ( because of the lattice, 

the kink solution is somewhat different from the expected f tanh ( v%c faxi) ) . 

Then the minimum of HI as a function of the 6rn was found numerically using for 

initial (trial) values those given by Equation (28) and then letting the program find 

the true minimum. 
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The results for the vacuum and kink state energies per site are given in 

Figure 1 for the values Na =8, K =1andforarangeofvaluesoff2. 

The analytic values given by DHN are, of course, infinite due to renormaliza- 

tion effects. If their formulas are arbitrarily cut off at a k value of kmax = 2 r/a, 

in order to correspond to the effect of the lattice, one finds (N = 8) for the energies 

of the non-normal ordered Hamiltonian, 10 

where q o=kmu/!-f-2~/!!fa. A rough estimate (for K = 1) of the integral 

shows that (29) vanishes for f2 - 1.4. Our calculation also has such a crossover, 

at a value of f2 - 1.6, as is evident from Figure 1. 

While it is very difficult to include the H2 terms in an exact treatment, it is 

a straightforward matter to include them in the semi-quantum approach. The 

results for the energies are shown in Figure 2 for N = 8. The full energy values 

have risen slightly and the crossover has moved to f2 - 1.2. 

To find these minima of HL we have used a computer program based on a 

quasi-Newton method that minimizes a scalar function of N variables. The method 

is iterative and therefore requires an initial estimate of the position of the minimum. 

Since the function to be minimized must be continuous with continuous first deriva- 

tives, we have regularized the kinetic energy term by adding a small positive pa- 

rameter (~10 :I’) to the denominators. Changes of the value of that parameter 

do not change the solutions . The initial estimate of the minimum is multiplied 

by a parameter that is increased by steps from 10B5 to 1. The kinetic energy term 

is also multiplied by the same parameter and the search is started at one of the 
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classical solutions, either constant or kink. The search stops when all com- 

ponents of the gradient are smaller than 10 -7 . 

Since the $i9s are linear combinations of the ri’s, there are several local 

minima depending on the signs of the ri’s. To find the true minimum we have 

started the search with each of the aN possible combinations of signs. Because 

of end point effects, we have selected only those solutions that maintain the con- 

stant or kink character as the absolute value of f2 is decreased to well below the 

critical point. 

VIII. THE SS PROBLEM 

A quantum mechanical solution to an interesting one dimensional lattice 

model, a truncated A c$~ theory on a ring, has been discussed by B. Stoeckly 

and D. J. Scalapino. 4 In order to facilitate comparison with their work, the 

Hamiltonian will be rewritten in their notation 

H=Hc+H 
q ’ (30) 

where the classical and quantum Hamiltonian are (a = 1) 

Hc =c 
1 [ +c(v~;)2++ 7 (qq2+$ my )“I 

and 

7rz +$ (7 + CD,) (6rn)2] 
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The relation to the DHN problem is obvious. The estimate of the energy due to 

the conjugate momentum is chosen to be the familiar 

7r2 =$ (6rn)-2 . n 

It is now a somewhat simple matter to solve for the minimum energy con- 

figuration by varying the 6r,. However, the transformation between the coordi- 

nate and momentum space field variables, rn = vy $i, depends now on the boundary 

conditions. The vacuum state requires symmetric boundary conditions on the ring, 

whereas the kink state demands antisymmetric boundary conditions. The solu- 

tions for the v’s for these two situations are given in the Appendix case (b) and (c). 

Note that since the problem is posed on a ring, there are many translation and in- 

version degeneracies in the solution. 

The energies and configurations for the minimum energy vacuum and kink 

boundary conditions we obtained numerically for N = 8, c = 0.1 and a range of 

7 and are compared with the results of SS in Figure 3. The kink energy is above 

the vacuum energy for sufficiently negative T but they become equal for T r -2.6. 

This is to be compared with the calculation of SS which found this degeneracy oc- 

curring at 7 = -2.2. 

It is reassuring to see that, if as in the Stoeckley- Scalapino calculation, 

the energy of the vacuum is taken as the origin of the energy variable, then our 

calculation should give a lower bound to the energy of the kink, as is the case. 

Of course the two problems are slightly different since SS obtains a quantum 

mechanical solution to a truncated problem. However, for small values of E 

(see Reference 4) the approximation of considering only the ground state and the 

first excited state of each anharmonic oscillator should be quite good and there- 

fore the truncated problem should be a reasonable approximation to the full 

Hamiltonian. 
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In addition, Pfeuty 11 has shown that for the ground state <@ > N (TV - 7) l/8 

for 7 <Tc, corresponding to /3 = l/8 in the Onsager5calculation of the two dimen- 

sional Ising model. Since the kink energy goes as (~~-7) for r MT~, we obtain 

from our solution a value of p = l/8 which is the Onsager result. 

IX. CONCLUSIONS 

A simple semiquantum approach tc lattice theories has been developed and 

applied to several examples. This approach provides lower bounds to the true 

quantum energy (except for possible end point problems discussed in Reference 1). 

Comparison with the results of conventional treatments and solutions of the ex- 

amples shows reasonable agreement. It is hoped that the semiquantum approach 

can be used to develop insight and physical intuition into the effects of quantum 

fluctuations on purely classical solutions as well as to provide convenient lower 

bounds to test the accuracy of conventional calculations of the energies of quantum 

systems. Further applications of the method to the Sine-Gordon problem, fer- 

miens, etc., may prove very instructive. 

It may be possible to use these classical-like configurations as a, new expan- 

sion point for quantum effects that are then treated perturbatively. Such an ex- 

pansion would be expected to converge more rapidly since some quantum are 

already included in lowest order. As yet, we have not been able to carry out 

this program satisfactorily due to some formal problems. In any case, the 

method stands on its own as a useful technique to estimate and even to bound from 

below the energies of simple field theories. 
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APPENDIX 

In term of the field variables, the gradient term in the Hamiltonian was 

written as: 

) 

Where the matrix D depends on the boundary conditions imposed. 

We have considered three cases. 

a) Linear system with free end point conditions: 

c 2 6.. 11 i, j = 2, . . . . N- 1 

i, j = 1 or N 

i=j -+l 

otherwise . 

b) Closed ring with symmetric boundary conditions: 

r 2 dij i, j = 1, . . . , N 

i=j*l; i=l, j=N 
i = N, j = 1 

(A-1) 

otherwise . 

c) Closed ring with antisymmetric boundary conditions (kink solutions): 

‘i 
2 bij 

D.. = i 
11 

-1 

0 

i, j=l , . . . ,N 

i=l, j=N 
i=N, j=l 

i=jil 

otherwise . 
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The eigenvalue equations are: 

(2-Dn)v; = v:+~ +vpml 

with the followkig boundary conditions: 

Case a: v. = v1 

Case b: Vn+l= v1 

Case c: vn+ 1 = v1 

. t = V vn+l n 

. , =v vO n 

. , = -v 
vO n’ 

Writing 

n 
7 

= M, sin(j an+ 4,) , 

one obtains 
a 

Dn = 4 sin’ (+) 

and the following solutions for each case: 

Case a: 
n-l a C-r 

n N n=l,... , N 

n=l,... , N 
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Case b: 

a = 
n 

f 
2 N 

9 l **, - ; N even 2 n= / 
+n = 0 2 N+l ,***, 7; N odd 

n + 1) 

++ 2,..., N; N even 
n= 

N+3 -,..., N; Nodd 2 

n = 2, . . . . N 
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Case c: 

3n - 1 
a = 

n 

, 

/ 

aN+l = 
2 

+ N+l = 
2 

M N+l = 
2 

7r 

NT 
2 

1 - 
d- N 

l”n =& 

l 1 N ,..., - ; 
n= 2 N even 

1 N-l ,*.., - ; N odd 2 

‘N 

I 
T+ 1, . . . , N; N even 

n= 

N+3 -,..., N; Nodd 2 
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1. 

2. 

3. 

FIGURE CAPTIONS 

The difference between the energy per site of 

for the truncated problem of DHN wi$h K = 1, ; 

The energy per site of the vacuum and kink sta 

Hamiltonian of the DHN problem for K = 1, N = 

The results of the semiquantum method for the t 

are compared to the calculation of Scalapino and 

7 values. 
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