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ABSTRACT 

A new variational principle is presented which provides a lower 

bound to the eigenvalues of a general quantum Hamiltonian. Applica- 

tions are made to ground and excited states in Schrcedinger theory. 

The variational principle leads naturally to localized (classical-like) 

states that nevertheless contain effects due to quantum fluctuations in 

a variational manner. Except for possible exceptional end-point 

solutions, these “classical” or “semiquantum” configurations pro- 

vide lower bounds to the true eigenvalue. 
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1. INTRODUCTION 

In this paper a new approach to the problem of taking a classical-type limit 

of quantum theories will be presented. In contrast to the conventional approach, 

the method used here does not neglect the effects of quantum fluctuations on the 

energy but approximates them in a variational way. The resulting wave func- 

tions are localized but the method is not a direct expansion in ii. The resulting 

energy eigenvalues for ground and excited states are usually lower bounds to 

their corresponding quantum values. 

Bargmann’ has discussed an interesting set of bounds for the expectation 

value of the kinetic energy. For normalizable wave functions, he has discussed 

in detail inequalities of the form 

/ dnx lo$12 2 a(n+m)2 i(plrml@>2/< $lr 2m+21c#I> , (l-1) 

where n is the number of space dimensions and m is an arbitrary parameter. 

He applied this to the problem of binding in a coulomb potential and derived a 

simple lower limit to the ground state energy which is exact for the choice m=-1. 

In general, for a given potential, the allowed range of m that produces a non- 

trivial bound is quite restricted. For example, if m is too negative, then the 

integrals will diverge at the origin, etc. 

This type of inequality is a generalization of the familiar uncertainty 

principle arguments used to estimate the kinetic energy term.. The use of such 

inequalities forms the basis for the method resented here. 2 We shall discuss 

first its application of Schroedinger-type problems and then briefly explore the 

physical interpretation of the solutions. 
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In Section II, a generalized inequality on the kinetic energy is derived fol- 

lowing the work of Bargmann and the general variational problem for a lower 

bound on the total energy eigenvalue is derived. 

In Section III the best lower bounds are shown to come from wave functions 

which are localized at one point and yet which have effects of quantum fluctua- 

tions in the energy estimate. Lower bounds for the first few states of hx2, hx4, 

and h(x2- f3)2 potentials are worked out as examples. A perturbation method is 

developed in the Appendix which systematically improves these results. Section 

IV discusses an alternative method for obtaining lower bounds that does not 

always lead to localized wave functions. 

Some concluding remarks are the.n given, and an interpretation of the 

“classical” value of the equilibrium coordinate is discussed in terms of quantum 

mechanical expectation values O The applications of these methods to field 

theories on a lattice will be made in a subsequent paper. 3 

II. GENERALIZED INEQUALITY 

We want to find a lower bound on the energy of the one-dimensional 

Hamiltonian 

d2 Hz-- 
dz2 

+ V(z) 0 

The energy may always be expressed in terms of the exact, normalized wave 

function @ by 

E=($$ 2) +(+,v%) o 

As suggested by Bargmann, ’ the kinetic energy, may now be approximated by 

using the Schwartz inequality 

(2.1) 
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which holds for any function g(z). Because every eigenvalue has at least one 

real eigenfunction, we may assume * is real. It is then convenient to choose 

g real so that 

Now let zj~ be an arbitrary normalized function and define the functional 

EL($)- x; + (J) ,V$) l 

, 

(2.2) 

When the exact eigenfunction P is known, one has 

Note that for an arbitrary $, EL($) can be smaller or larger than E. If 

however, one varies (2.1) over all functions $, a lower bound on E is obtained 

because 

(2.3) 

Note that varying over all functions $ will only give a lower bound for the 

ground state energy. By restricting the class of admissible wave functions, for 

example by fixing the number of nodes of $, one obtains a lower bound to the 

eigenvalue of H whose eigenfunction lies within that class. These statements are 

true regardless of the choice made for g. Obviously the quality of the lower 

bound does depend on the choice of g. In making this choice it is helpful to note 

that if 

(2-J) 

then the inequality (2.1) used to bound the kinetic energy becomes an equality. 

Thus a good guess for * leads immediately to a choice for g. Note also that 

since acceptable wave functions will usually have definite parity, the g must 

have negative parity. 
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There are two different ways to actually minimize EL($). One may func- 

tionally differentiate with respect to +; this leads to the localized minima dis- 

cussed in Section III. Alternatively, one may minimize (2-2) with respect to the 

matrix elements (+, g $) etc. This approach is discussed in Section IV. 

III. LOCALIZED MINIMA 

To find a lower bound on E it is necessary to find the exact minimum of 

EL(#). (This is in contrast to the familiar Rayleigh-Ritz upper bound calcula- 

tions where just varying a few parameters in a trial function gives a bound.) 

Fortunately, it is quite easy here to find the minimum of EL(#) provided g(z) 

has been wisely chosen. (See III. C below for choices of g. ) Minimizing over 

normalizable $ gives 

I2 2 
g (z) - ---g (~1 + V(z) 4(z) = EL+(z) 

I 

This equation can only be satisfied at discrete values of z. Thus 

l#(z)12 = qz-x) , 

where the parameter x characterizes $. The eigenvalues are then 

(3.1) 

(3.2) 

2 
ELIX) = z g(x) l iL@ + V(x) 

( ) (3.3) 

for any value of x. The lowest eigenvalue is found by minimizing (3.3) with 

respect to x. The localized states described by (3.2) are classical-like (localized) 

but they include an estimate of the kinetic energy (or quantum fluctuations in 

position). This result may be considered a more powerful version of the famil- 

iar uncertainty principle estimates of ground state energies. It provides a 

lower bound to that energy provided g has been wisely chosen. This can be 

tested by varying g (or parameters in g) in any particular application. 
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A. Ground State Examples 

Let us now investigate the ground state of two simple potentials: V= hx2 

and V=U4. In both cases the ground state wave function is expected to have a 

maximum at x=0 and no nodes. Consequently g,(x) =x is suggested by (2.4). 

The resulting minimization problem is 

EL(x) = -L + V(x) 
4x2 

For a harmonic force, V=hx2, one finds EL(min) = &I, which is actually the 

exact energy. For the anharmonic force, V=U4, one finds EL(min) = ;r 3 VA, 

whereas the exact answer is about 1.08 3Jh. Although the percentage error 

here is large, it should perhaps be compared to the usual classical minimum, 

1. e. , zero, 

In order to improve the lower bound for the anharmonic force, one might 

choose g,(x) =x2* The minimization problem is then 

EL(x) = $ + V(x) 0 

For V=Jx4 one finds EL(min) = $ 3fi. This is certainly not a lower bound to 

ground state energy of 1.08 3h. The error here is not hard to find. The 

original functional to be minimized was (2.2), i. e. , 

EL($) = + + A(+, z4$) . 
w,z G) 

The minimum of this quantity is actually achieved by a $ which has definite 

parity so that the kinetic energy vanishes and which then minimizes the potential 

energy separately. For such a $, EL($) can be made arbitrarily near to zero. 

Thus g,(x) =x2 is not an acceptable choice because its minima are of a trivial 

endpoint type and the energy is no improvement over the purely classical value. 

We now investigate how to avoid such minima. 
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B. The Choice of g 

The problem of minimizing EL(g over all normalized functions \k is 

intimately connected with the choice made for g(x). If a poor choice is made 

for g then there are functions q which make the kinetic energy term in (2.4) 

arbitrarily small, The resulting minimum is then just the classical minimum 

and is trivial. Such endpoint solutions to the variational problem are of several 

types, the simplest two are 

I. Wg2~) - O” 
(3.4) 

II, W,g#J) -0 0 

Type I always results from the behavior of g(x) at x - *, (A divergence of 

g(x) at any finite point would only restrict + to vanish at that point and would 

not lead to a divergence of <g2>0) If g2(x)/V(x) is bounded as x- fm then the 

trivial extrema of type I are easily avoided. Type II can be avoided by choosing 

a g(x) with the property 

where c is some positive constant. Note that the constraint must hold for all x. 

If, for instance, g’(x) =0 at one value of x, then a fixed Ik which is concentrated 

at that value will minimize EL(*) in a trivial (i. e., classical) fashion. 

Choosing a function g that avoids such endpoint minima only guarantees 

that the lower bound on the kinetic energy will not be trivial, e.g., zero. From 

all such functions g we would like to choose one which actually gives the greatest 

lower bound. If we actually knew the exact eigenfunction *, then the best choice 

for g would be (2.4) for it makes the inequality (2.1) into an equality and it con- 

verts the variational equation (3.1) into the original Schroedinger equation. 

Obviously \k is unbown, but a reasonable guess for \k may lead to a g given by 

(2.4) that produces a useful lower bound. 



-8- 

An alternative method is to build some knowledge of @ into g by choosing 

the poles and zeros of g judiciously. This is particularly simple for a potential 

that is a polynomial in x2 with positive coefficients. The wave function for the 

n’th excited state in such a potential has n nodes (d2, d4,. . e ,d2n) and n+l, 

extrema (dl, d3,. . . , d2n+l) which alternate: 

dl <d2< e.. < d2n<d2n+l a 

This suggests choosing 

tx-dlWd2) 0 0 0 tx-d2n+l) 
gn(x) = (x-d2)(x-d4)’ 0 . (x-dzn) 

(3.5) 

(3.6) 

Note that because of the symmetry of the potential about x=0, 

dn =0 

d = 
n+l-j -d n+l+j ’ 

It is easy to check that thisg does not lead to either of the trivial endpoint solu- 

tions (3.4). Type I is avoided because g”/V is bounded as x -*w, To see that 

type II do not occur observe that (3.6) may be written 

D1 D2 g,(x) =x-c-- - - Dn - - 
x-d x-d4 0°’ 0 

2 X-d2n 

Furthermore, all the constants Dj are positive because of the alternation (3.5) 

of nodes and extrema. Consequently gv(x) > 1 for all x and can never vanish. 

C!. Further Examples 

Let us now derive lower bounds for the excited states of the hx2 and hx4 

potentials. For the first excited state both wave functions are expected to have 

a node at ~0 and extrema at x= *a. -Consequently we t&e 

x2-a2 
g,(x) =-y- 
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so that 

(3.7) 

It is necessary to minimize this quantity with respect to x and maximize with 

respect to a. For monotonically increasing potentials, there are generally two 

minima in x: 2 2 2 2 one for x < a and one for x > a e For large a the former 

approaches the ground state bound and for small a the latter approaches this 

value, Hence there is an optimum value of a and it is achieved when the values 

of EL(min) for x2 < a2 and for x2 > a2 are equal. For V= Ax2 this procedure 

can be carried out analytically and one finds a2 = l/h and E ,(mi.n) = 3 A, 

which is the exact answer. For V=Ax4 the bound must be found numerically. 

The result is a2 = 0. 75/3Jh and EL( min) =3 D 73 3Jh. The exact value for this 

level is less than 3.85 3Jh. 

The wave functions for the second excited states are expected to have nodes 

at x= *b and extrema at x=0, fc with c > b. Consequently we take 

82(X) = x(x2 -c2) 
(x2-b2) 0 

Then 

EL(x) = 

-[ 1 2x2 2x2 1 2 

4x2 l+,2_b2-.3_c2 + V(x) e (3.8) 

For V= Ax2 the optimum values are b2 =1/2fi, c2=5/2fi and FL(min)=5& 

as expected: For V=Ax4 one finds b2z .33/3Jh, ~~-1,5O/~Jh, and 

EL(min) ~7.30 3Jh. The exact energy of this level is less than 7.44 3Jh. 

Let US now try to improve the above estimates. The method to be described 

below will work for any excited state in a general potential but we shall discuss 

explicitly only the ground state in the Ax 4 
case. The original quantum hamiltonian 
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can be written as one-half the sum of two independent oscillators: 

a2 a2 2H=-- -- 
ax2 ay2 

+ Ax4 + Ay4 . 

In the x-y plane, the potential rises most rapidly along the 45’ lines. This sug- 

gests changing variables to u = (x+y)/fi and v = (x-y)/fi. The kinetic energy 

can now be bounded in the usual way in terms of these new variables and the 

effective hamiltonian is 

2HL(y) = + + 1 
4u 4v2 

+ - 2 1 4 (u + v4 + 6u2v2) . 

The minimization is easily accomplished with the result 

HL(min) = z 3m g 0.945 3Jh (3.9) 

which is substantial improvement over our previous result in Section A. 

Using the above procedure for a lower bound to E and a standard variational 

upper bound estimate with gaussian trial functions of width <x2> = y2, an amusing 

result can be derived for the ground state energy, if V is symmetric: 

+ ; W(2y2) 5 E ( 
1 

where V(x) = We 

D. Potentials with Two Minima 

We will now discuss the potential 

V(x) = A(x2-f2)2 

which will prove to be of some interest in the field theory case. If f2 is large, 

then the wave function in such a potential will be peaked at x2 N f2 and will be 

small near the origin. For this situation consider the simple trial function 
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g = x - 2na/x . 

EL(x) =a ;+ 2x + A(x 2 f2,2 - 
26a L, x2 

0 (3,lO) 

Because $, vanishes at the origin, one is not guaranteed that this always provides 

a lower bound for the ground state energy but it should be a good approximation. 

The optimum value of (2na) is clearly near f2 (actually slightly larger) in 

order to move the minimum away from x 22 - where the potential vanishes. Con- 

sider the simplest choice 2na = f2 so that 

EL(x) = -+ . 
4x 

(3.11) 

Note that this hamiltonian satisfies a scaling relation also satisfied by the exact 

quantum hamiltonian: 

EL(x;h,f2) = %A EL(x;l, 3Jh f2) , (3.12) 

a result guaranteed by choosing (2na) proportional to f2 J(ti6) where J(Af6) is an 

arbitrary function with J(m) = 1. 

If one chooses J=l, EL(min) turns out to be a lower bound to the true ground 

state energy. However, if one minimizes with respect to x in (3.11) and then 

maximizes with respect to J(hf6), the resultant value of EL is a lower bound to 

the first excited state. One already knows from our earlier discussion that this 

optimum J(z) has the limiting behavior J(W) =l and J(z) N 0.75/3& for z-0 (see 

Section III. C) 0 

The absolute minimization of Eq. (3.ll)evidently should be done numerically. 

An excellent analytic approximation to the solution exists which is never in error 
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by more than lo/C for any value of 8: 

EL(min) y 3fi k 3fi f2 + 9/16]li2 

The comparison with the exact solution to the quantum mechanical problem can 

easily be made. As was discussed before, HL(min) falls below the exact value 

by -30% at f2=0 and by ~10% at f2=1.0. For larger values of f2 this error rapidly 

approaches zero. This result seems to be a lower bound to the true ground state 

energy but this is a fortuitous result. It is guaranteed for f2 =0 and 8 - but not 

for intermediate values. What we wish to emphasize here is the choice of a g 

that arises from a reasonable wave function gives a good approximation to the 

energy level. 

IV. RIGOROUS LOWER BOUNDS 

We will now discuss a completely different method of minimizing the func- 

tional EL in (2.2). Instead of minimizing with respect to the functions .JI we will 

now minimize with respect to the matrix elements. Consider again the potentials 

u2 and hx4 (or more generally any polynomial in x2 with positive coefficients). 

Because the ground state result is the same as before we turn immediately to 

the first excited state and choose 

2 
g,(x) =y 

Consequently 

(40 1) 

EL= <l + a/x2>2 
4 <x2-2a+ a2/x2> 

+<v> D (4.2) 

Now define two variables y=<l/x2> and z=<x2>* Cf course these variables are 

not completely independent; they must satisfy yz ~1. The minimization with 

respect to parameters that are restricted to satisfy such inequalities is easily 

carried out by using the method of Lagrange inequality multipliers. 4 Introducing 
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the positive semidefinite multiplier v , the lower bound hamiltonian for the first 

excited state becomes 

1 2 -1 EL 1 ;rtl+ay) + V(z) - v(zy- 1) ) (4.3) 

where the Schwartz inequality has been used to bound the potential. By setting 

dEi/dy= 0 one can search for minima in the interior of the allowed region 

(yz > 1 and II= 0) or on the boundary (yz = 1, v > 0). For the interior region one 

finds 

y = (5a - 2z)/a2 , 

and the interior constraint 5 - m 5 4z/a 5 5 +m insures that yzl 1. If this 

is true, then 

3 EL>:- -j + V(z) . 

One must now minimize with respect to z and if the interior constraint is satis- 

fied then maximize with respect to a. 

For the (almost) harmonic potential V= z 1+e , one finds as E- 0, a- 1 and 

EL2 3, the exact answer. For the anharmonic potential one finds a minimum 

at z = 1/2a2 and a maximum at l/a3=3. Therefore z/a=3/2 which is on the 

interior and the energy is 

EL(min) = p $% s 3.245 3Jh (4.4) 

which is - 15% below the exact value. 

One may wonder from the above example how zy > 1 in the kinetic term but 

that ,x4> = a2>2 in the potential term since the latter condition seems to imply 

a localized wave function. The wave function evidently has the limiting form 

l$(x)12 = A x26(x) + B6(x2 -1/2a2) s 
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The first term only contributes to the expectation value of <1/x2> = y and not to 

any other. 

A similar exercise can be carried out for the second (and even higher if 

you wish) excited states. For the second state the energy bound is (if the minima 

lies in the interior region) 

5 - JL + V(z) EL% a2 0 

This again gives the exact result for the harmonic case and for the anharmonic 

case yields an energy which is -15% below the exact answer. We have obtained 

similar results for other simple polynomial potentials. If there are negative 

coefficients in the potential, say of the x 2N term, then this can be handled by 

choosing g(x) so that a <x 2N > term occurs explicitly in the kinetic energy 

estimate. 

V. CONCLUSION 

The interpretation of the solutions, x, to the semiquantum theory are clearly 

not to be identified as an approximation to <x> in the exact quantum treatment 

(although perhaps a more reasonable choice would be <x 2 1’2). > T o explore this 

in more detail let us study a one dimensional problem with V(x) =V(-x), and write 

H = ; a2 + V(x) + Jx , (5.1) 

hence 

<,,=?I 
J=O 

by the Feynman-Hellman theorem. 

In the semiquantum approximation, the natural choice for J=O is an even 

V(x) and even r2(x) o Thus 

12 HL = z 7~ (x) + V(x) o (5.3) 
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Assume that there are two solutions to this minimization problem at x= *x0, 

say. 

If the term Jx is now added to HL (with J small), it is clear that the optimum 

7r2(x) must also be modified to include the effect of this symmetry breaking term. 

In fact, it is clear that the change in s2(x) must be such that that the root near 

+x0 is still equal to the one near -x0 (otherwise one would be lower and hence 

not optimum). Hence let us write to first order in J, 

1 2 HL=Z-7r (x+Jb)+V(x)+Jx o (5.4) 

The problem is to find the value of x that minimizes HL and then find the 

(optimum) value of b, i.e., the one that maximizes HLe First, minimize with 

respect to x: 

aHL o=-=-- 
ax ; di (x+Jb) + F + J . 

Expanding this solution to first order in J around x0, 

x = x0 -I- Jxl + . v 0 

yields the first order solutions 

d2Htxo) 
’ 2 

kg 

and the energy becomes 

EL = HL(xO) 1 J=. + J(xo - bV$ + o(J? 
l (5.5) 

Requiring that EL be the same at *x0 then fixes the optimum b to be b =x0 /Vb, 

which is an even function of x0, as it should be. Thus for this optimum b, 

EL = H(xo) I J=O + 08) 
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and 

<x> = 0 (5.6) 

as expected. And also as might be anticipated,if one adds a term 5x2 to HL, and 

carries through a similar argument, the result is <x2> = x2 0’ 

In a later treatment of lattice field theory, we will find nonzero classical- 

like solution to the field equation $,(x). These are therefore not to be inter- 

preted as -C+(X)> = @,, which would imply symmetry breaking, but rather as 

<$(x)2> = go 

In this paper we have presented a new and simple approach to the problem 

of finding lower bounds to the eigenvalues of quantum Hamiltonians. This 

approach leads very naturally to classical-like states that are localizable. The 

bounds are variational in character, and parameters in any trial g(x) function 

may be varied to achieve the optimum bound. The problem of endpoint solutions 

in this “classical” limit is not completely resolved. The method can be applied 

to ground and excited states with little increase in difficulty. 

The method will be applied to the field theory problem of a scalar field on a 

lattice in a later paper. It will be shown to be capable of yielding the exact 

answer for the vacuum of a massive free field. When applied to a kink-type 

solution, the quantum effects are shown to be very large when the field tries to 

vanish. It might be hoped that since this approach leads naturally to classical- 

like fields, yet quantum effects are not completely neglected, it will provide a 

better zeroeth order or base problem around which the true quantum effects 

can be expanded. 
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APPENDIX: AN IMPROVED BOUND 

In this appendix we will discuss an improvement of the “almost quantum” 

approximation which still retains the character of a lower bound. Writing 

H = HO+H’, where Hv is a positive definite operator, a lower bound to H is 

obtained by replacing H’ 

function t. The ordered 

by H’ It> <t IH’ lb1 <t IH for any choice of the trial 

eigenvalues of 

1 
H -- s=Ho+HvIt><tlH’It>-‘<tlH’ 

then form lower bounds to the ordered eigenvalues of H. If It> is an exact wave 

function, then the corresponding eigenvalue is exact. For H’ it is convenient to 

take, for example, p2 - h 
( ) r2 

with 0 < h< 1. We now consider a few simple appli- 

cations of the above. 

We start by studying the anharmonic oscillator in 1 dimension and taking H’ 

to be p2 which has h=O, the worst possible choice since H’ is a maximum. The 

trial wave function is taken to be exp (-+x2). The Schroedinger equation for 

(Es-hx4) es = - -$ (x2-a) c-x2/2a , 

where J = 41Hv I$s>/~IH’lt>. 

In order that +, be normalizable, it is clear that one must choose Es=a2h, 

and hence 

?I, = &t 2 2 -1 c-x2/2a 
a +x ) 0 

S 

Using these results it is now easy to solve for Es. The eigenvalue condition can 

be simplified by resealing variables: 

~0 2 
dy e-’ (l-y2)/(l+y2) 

I[ 
/ i,“y emy2(1-y2) 

I 
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so that Es = 1,0209 A l/3 . This is now within 5% of the exact result. 

The same procedure can be carried out for the 3 dimensional oscillator 

H=hr4 with the result ES=3. 28 which is within 150/C of the exact result. Of 

course this method can be used for other levels and potentials, although it be- 

comes algebraically tedious for complicated: potentials. 


