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ABSTRACT 

A simple variation-iteration principle for the wave function is 

given that is stationary at every value of the coordinate r. Both analyt- 

ical and numerical applications are discussed using a popular charmo- 

nium potential as an example. 
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1. INTRODUGTION 

It has been pointed out by Gerjuoy, Rau, and Spruch’ that variational prin- 

ciples can be derived for a large class of physically interesting functionals 

“with little exercise in ingerm@+. Their work was based on a *general observa- 

tion by Borowitz and Gerjuoy. 2 The constraints on trial functions are included 

in this scheme by means of Lagrange multipliers. Stationary functionals of this 

general form had been derived earlier for application to the Schrcedinger equa- 

tion3,%5,6,7 t and to relativistic Bethe-Salpeter equations8 but the generality of 

the approach had not been realized. 

In this short note, we would like to call attention to this general method by 

considering a specific problem-the construction of a variational principle for 

the SchroAinger wave function that is stationary at each value of the coordinate, 

r. Once this problem has been solved, it is then possible to use the resultant 

wave functions in variational estimates of arbitrary operators; two important such 

operators are the Hamiltonian and transition (decay) operators. We shall derive 

a variation-iteration scheme for the wave function and energy which is very 

suitable for both analytical and numerical evaluation and shall give examples of 

both. Our primary example is the combination of coulomb and linear potential 

that has been used to describe the spectrum of charmonium. 9 

First, a variational treatment of a general, first order, nonlinear differ- 

ential equation will be derived and then applied to the Schrcedinger equation. 

Both bound states and scattering states5 will be discussed. Finally, a very brief 

description of a numerical treatment of ground and excited states for the char- 

monium potential will be given as an illustration of the simplicity and convergence 

of the method. 10 
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II. GENERAL VARIATIONAL PRINCIPLE 

We wish to write down a variational solution 11 to the first order nonlinear 

equation 

F+ H(f,r) = 0 (1) 

for 0 < r < R, with the boundary condition that f(R) is fixed. We also define 

h(f, r) = &-W, r) (2) 

for later use. 

Since we wish to write down an expression for f(r) which is stationary at 

each value of r, the simplest way to proceed is to enforce Eq. (1) by means of a 

Lagrange multiplier for all points between r and R. Thus consider the functional 

of a trial function fI(r): 

[f] = fI(r) + JR dz LI(z, r) [y + H(fl,z)l . 
r 

(3) 

Clearly if fI is the exact solution, then [fl=f(r). The conditions that the first 

order error in fI=f+6f vanish in Eq. (3) are 

LI(Z,Z) = 1 (4) 

and 

$L+z, r) = Wl(z), z) L&z, r) = h+z) J+z,r) . 

Thus 

/ 

Z 

In Ll(z, r) = dw h&w) . 
r 

(5) 

Equation (3) can be written in several equivalent forms. Since it involves 

the derivative of the trial function fI(z), an operation that is not convenient to 

perform in a numerical analysis, an integration by parts yields the alternative 



-4- 

expression 

[f] = fl@) Ll(RJ) +lR dz Ll(z,r) [HI-fIhI] . 
r 

(6) 

Since these expressions for [f] are stationary at each value of r, they can 

be directly iterated. Defining the sequence (a similar procedure can be used 

with Eq. (6)) 

fn++r) = f,(r) + dz Ln(z,r) [y+ H.1 , (7) 

in which Ln is to be computed from Eq. (5) using f,(w), it is straightforward 

see that 

and hence 

d$&r) 
dr = -HJr) - h,(r) (f,,,(r) -f,(r)) , 

dfn+l(r)+ H 
dr n+ltr) = Hn+ltr) - HnW -h,(r) (f,+,(r) -f&9) 

= O(fn+I-frJ2 . 

to 

This illustrates clearly the variational property of Eq. (3) and allows the next 

iteration of Eq. (7) to be written in the form 

fn+2(r) = fn+l@) + /” r 
~Ln+ltw+n+l-Hn-hntfn+l-fn$ (8) 

which again does not involve derivatives of the-functions f n. It is therefore con- 

venient for numerical analysis. 

An important property of Eq. (8) is that after (fn+l - fn) becomes sufficiently 

small, depending on the concavity of H(f), the iteration sequence becomes mono- 

tonic; the sign of the approach depends upon the second derivative of H with 
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with respect to f. 11 For example, if H is quadratic in f, H=Af2+g(r), then 

which has a definite sign, as does the integral L,+,(z, r). Thus the sequence is 

monotonic at every stage. 

III. SCHRCEDINGER EQUATION-BOUND STATES 

It is convenient to apply the previous treatment to the second order bound 

state equation by writing the wave function as 

, (9) 

and hence 

?‘I$ = P’/P - f(r) . 

The polynomial P(r) contains the zeroes of the wave function at finite r and its 

Q+l behavior at the origin, r O The Schrcedinger equation takes the form 

$--f2+2f g+ (V(r)-%) -E=O , (10) 

where V(r) is the effective potential, including the centripetal term. Now 

h(f, r) = -2 f(r) + 2PT/P 

and hence 

J 
Z 

L(z,r) = hem2 r dwftw) E h Q(z,r) 

P2 tr) p2w 

. 

The variational expression for f is (using Eq. (6)) 

[f] =f(R)L(R,r) +IRd.z L(z,r) [f2(z)+V(z)-F-E] . 
r 

(12) 

It is convenient to choose R=co for formal arguments (but not for numerical 

analysis since the upper limit must of necessity be finite). The iteration procedure 
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discussed earlier then becomes 

-F-E 1 . (13) 

Since fn+l(r) is finite, in particular at the zeroes of P,(r), their values are 

determined by the requirement that the integral over z vanishes at these points. 

Since the integrand also vanishes automatically because of the explicit factor of 

P,(z), these zeroes are of second order, as required. The value of the eigen- 

energy E is determined by the requirement that the integral be zero at the 

origin. 

There are several ways to proceed at this point. One can fix E, iterate 

until f(r) converges and then repeat with different E values until the integral 

vanishes at r=O and f(0) is finite. A more efficient procedure is to choose E at 

each stage to satisfy the boundary condition at the origin: 

/mh QJz, 0) k;(z) (vW+f;tz)) -P,(z) P;(“,l 
En= ’ . 00 (14) 

/ 0 
k QJz, 0) P;(z) 

This is, of course, just the Rayleigh-Ritz stationary estimate of E using the 

trial function Gn(r) given in terms of P,(r) and f,(r). Thus, if fl is in error 

of order E , then f, is in error of order E to the power 2 n-l , and the error in 

En is of order E to the power 2n; clearly if E is small, the convergence can be 

quite rapid. Explicit numerical examples of this procedure will be given in a 

later section. 

Finally note that if V(r) grows as r--c 00, f(r)- ,// for large r and this 

can be used in Eq. (12) as the boundary condition on f(R). This boundary con- 

dition can be used to improve the accuracy of numerical treatments of the 
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equation (with a finite upper limit R) since one does not require the wave func- 

tion to vanish at this finite point. 

IV. CHARMONIUM EXAMPLE 

We will now give an analytical treatment of the ground state in the coulomb 

plus linear potential used to describe the bound states of charmonium’: 

v= -:+a. . (15) 

For a trial function fl, we will choose a constant fl = (rL/2, and P(r)=r. This 

corresponds to an simple exponential trial wave function and is the exact solu- 

tion to the potential VI= -“L/r. 

The stationary principle for f then treats the difference V-V1 as a pertur- 

bation and corrects f(r) to first order in this difference. Using Eqs. (13) and 

(14)) one finds 

f2(r) =+r +g 
9 

(16) 

and 

EL = $ orl(‘yl-2~) + 3a . 
9 

(17) 

Any value of a1 can be used in the above formula, but to make the perturba- 

tion (V-V,) as small as possible, it may be convenient to choose the optimum ‘Y~ 

in the Rayleigh-Ritz sense, i. e. , dE/dol = 0. In this case, Q, is the solution to 

the equation 
2 cvl(al-a) = 6a . (18) 

Now f2(r) is completely determined and 

q2(r) = rN2 exp $or - & r2 
1 1 (19) 

is the first order corrected wave function. This wave function can now be used 

to compute matrix elements involving the ground state. These will have the 
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same accuracy as the Rayleigh-Ritz value of the energy EI given by Eq. (17). 

For example, in the estimation of certain decay rates, the value of the wave 

function at the origin is of interest. One easily finds to first order 

where IN91 = o~T/2. A similar analysis can be carried out for excited states of 

interest. A numerical test of this approach for interesting values of Q! and a 

will be given later. 

Finally, note that the improvement in f is directly related to the F(r) func- 

tion introduced by Dalgarno and Lewis3 and Schwartz4: 

f2(r) - fI(r) = y . 

The function F(r) is the ratio of the first order correction to the wave function 

to its zero order value. 

V. PHASE SHIFTS - 

In this section we shall apply the Lagrange multiplier method to derive a 

variational principle for the phase shift given first by Calogero. 5 The wave 

function is written as 

e(r) = A(r) sin B(r) , (20) 

where B(0) = 0 and the phase shift 6 is then given by 

B(r) -kr+6 

as r--t*. If the relation between A and B is fixed by demanding that #‘= k4 cos B, 

then the Schroedinger equation is equivalent to the first order equations 

9 = k - y sin2 B(r) (21) 

and 

g/A(r) = -$ sin 2B(r) . (22) 
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The variational expression for B(r) is written in the canonical form (3) with 

f=B and 

H(B,r) =-k+Fsin2B 

h(B,r) = F sm2B 

The equation satisfied by L(z, r) is then 

L!!p=y sin 2B(z) . L(z, r) 

which can be directly integrated. A comparison with Eq. (22) shows that 

L(z, r) = A2(z)/A2(r) . 

The variational principle is completely determined and is equal to that given by 

Calogero. 

VI. NUMERICAL EXAMPLES 

A. There are two exactly solvable examples that can be used as illustrations 

for this variational analysis, the coulomb potential and the simple harmonic 

oscillator. In the former case, one has V=-c~/r, and f(r) =a/2=constant. 

Since V vanishes at large r, E = -f2(m) = -a2/4. Choosing cy = 2 and the initial 

trial function to be f l(r) = r, a rather poor choice, we find that after 3 iterations, 

the energy and the function f(r) have converged to within 0.1% of the exact 

values. 

The second solvable example is the harmonic oscillator with V = c2r2, 

f(r) = cr, and C=3c. Choosing c= .312 and the initial.trial function to be fl(r)=l, 

again a poor choice, the energy and the function f(r) converged to better than 

0.01% of the exact values after 3 iterations. 

g. A more interesting case is that of the charmonium potential, Eq. (15), with 

a! = 0.32 and a= 0.363 that are typical of the values that have been used in 
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physical applications. ’ The final ground state energy for these values is 0.989. 

Starting with the choice discussed in Section IV, fI(r) = c~I/2, where CYI = 1.412 

as determined from Eq. (18), the iterations converge to 0.1% for E and f(r) in 

four iterations. If one starts with the harmonic oscillator choice fI(r)=cr, with 

the Rayleigh-Ritz choice c= 0.312, the sequence converges to the same accuracy 

in three iterations. 

The energy given by Eq. (17) is -5% high, and thus the trial wave function 

given by fI is in error by roughly fl= 23%. The error in the function f2(r) 

given by (19) is then estimated to be -5% both from the above energy estimate 

and our direct numerical iterations. One also finds that the value of the wave 

function at the origin is changed by Ni/Nf z 0.88, which is consistent with the 

above estimates. As one would expect, the simple harmonic oscillator choice 

is more accurate, the simple gaussian choice being in error by only ~10%. 

2. The excited states for the charmonium potential are also easy to discuss. 

The lowest P-state has no radial nodes and can be treated by choosing P=r2. 

We have tested two choices for the trial function, fl(r)=cr with c=O. 312 as before, 

and also the choice fI(r)=c$r. The final energy turns out to be 1.59 f . 01 after 

3 iterations for both choices. 

The first excited S-state has one radial node, at d say, so some discussion 

on the procedure for determining its position is in order. Rewriting Eq. (13) 

in the form 

Pf)3 fn+ltr) = I& 4 Qp, r) , 

and 

I,(r, d) = irn dz $(z, 0) Pi(z) E:(z) + V(z) - y- Ed] 
r 

2 2 . 
E c di Ji(r) - 

0 
En F d’ Kitr) - 
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The Ji and Ki are simple integrals over mn(z, 0) that do not involve the unknown 

parameter d. The energy En is, of course, given by 

En = cdi Ji(0)/zdiKi(O) . 

It is a simple matter to form the function I,(r, r) and to search for its (double) 

zero. This zero is defined to be at r=d. Now that d is known, the function 

I,(r, d) can be formed and finally, fn+I(r) can be computed. 

For the charmonium example, we found that for fl(r) = c&, c=O. 312, the 

sequence converged after three iterations and the values achieved were d=2.29, 

and E=l. 94. 

VII. CONCLUSION 

A simple variational principle for the wave function is given that is station- 

ary for each value of the coordinate r. It is suitable to both analytic and numer- 

ical evaluation and improvement of approximate wave functions, energies, and 

arbitrary matrix elements. 
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