
SIAC-PUB-2010 
September 1977 

REIATMSTIC INTERACTIONS BETWEEN NUCLEI, 

COHERENCE EFFECTS AND NONSCALING* 
r 

R. Blankenbecler and I. A. Schmidt 
Stanford Linear Accelerator Center 

Stanford University, Stanford, California 94305 

At this moment, the most successful set of models for describing the scattering 

of hadrons are the relativistic hard-collision models, 1 based on a form of the impulse 

approximation. In this picture the colliding hadrons emit virtual subsystems, which 

are in the end the ones responsible for the scattering process to occur. The main 

theoretical points at issue are what are the dominant subsystems (quarks, gluons, 

hadrons , . . . ) and how do they interact and scatter. There is one type of reaction in 

which all of the above facets are known and which should allow one to test the applica- 

tion and interpretation of the hard scattering formalism. These semi-gedanken 

experiments (they can actually be carried out!) involve relativistic interactions between 

nuclei, or in other words, heavy-ion reactions at high energies. 2 

In the original parton model, a hadron was considered to be a collection of ele- 

mentary (pointlike) constituents called partons. This idea was based on the analogue 

situation in which a nucleus is composed of nucleons. We want to apply this model to 

the nuclear case, where it had its origins in the first place. The important point is 

that we can incorporate in a natural way the key elements of special relativity and 

nonconservation of number of particles. In addition, there is a lot known about the 

nuclear wave function and this can be incorporated in the treatment. 

We expect this generalization to work, because in the nuclear case the character- 

istics of the constituents (nucleons) are well known. Thus it. must work with sufficiently 

complicated and general wavefunctions and interactions. Our purpose is to see if a 

reasonably simple description of these processes can be given. 

*Work supported by the Energy Research and Development Administration. 
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One important restriction that we face is that our model must have a correct 

nonrelativistic limit. It must join in this limit with the usual nuclear physics descrip- 

tion based on Schr&linger’wavefunctions and interactions. This connection will provide 

us with useful information on the parameters of our relativistic model. It is important 

to stress the fact that the model contains the usual nonrelativistic results, provided 

appropriate wavefunctions with correct limits are incorporated. However, since we 

will concentrate for the most part on the kinematic regime that explores the short dis- 

tance behavior of the nuclear wavefunction, we will obtain new information that is not 

accessible from the nonrelativistic description. 

On the other hand, we can also learn how to put into the model the detailed infor- 

mation known about the nonrelativistic limit. These techniques may prove useful in the 

hadron-parton context. We will also be able to check the general features of the hard 

scattering model, especially the effects of coherence, and the consistency of our inter- 

pretation of the functions that enter the model. However, since the model is based on 

the impulse approximation, in which the effects of rescattering and shadowing are 

neglected, our analysis should be most applicable to light nuclei. This also means that 

we will not try to explain the anomalous dependence on nucleon number observed in 

large transverse events, 3 which is presumably connected to these effects. 

One of the important lessons that we will be able to learn from the analysis of 

nuclear scattering is that there are terms which dominate in certain regions of phase 

space that correspond to the scattering of coherent subsystems emitted by the nucleus 

(deuterons , o-particles, etc. ) . It is interesting to note that in the CIlM model for the 

scattering of hadrons, 4 this same coherence idea5 appears, and it is quite successful 

in interpreting the experimental data, especially at high transverse momentum, or 

near the edge of phase space. We shall also apply these coherence ideas to explain (or 

at least to fit) the nonscaling behavior of the proton and neutron structure functions 

later in this talk. 
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Our discussion will be based in the diagram shown in Fig. 1, which represents 

the inclusive process A + B - C+X. Here the interaction takes place through the emis- 

sion of virtual subsystems @ and bJ, which are the ones that scatter in an internal 

basic process a+b -. C+X, where C is the detected particle. MO is the amplitude for 

this basic interaction, and the amplitudes for the emission of the 2 and k subsystems 

will be contained in distribution functions G(x,q), to be defined shortly. As was 

mentioned in the introduction, 2 and b may be (off-shell) nucleons or composite states 

that are virtually present in the nucleus, such as deuterons, alpha particles, etc. . . 

The internal amplitude MO will be taken from experiment, where it is given only on- 

shell, and extrapolated as indicated below. 

The inclusive cross section is clearly of the form 

where 

(a+b-C+d;s’,t’,u’) 1 (1) 

r = h(s’,k2,12) 

xyMs,A2,B2) 

and where the x and y integrals run only from zero to one. The variables s’, V, u’ are 

those that describe the internal basic process and defined in terms of a, b, and C. The 

G functions will be defined below. -The ratio r of the A factors is the ratio of the cor- 

responding phase space factors in the cross sections, and A is the usual quadratic form. 

One finds that throughout the range of variables we are interested in, r=l. 

The interpretation of the various factors in Eq. (1) is clear. The factor G a/A(X ‘%I? 

is the probability of finding a constituent of type a in nucleus A with fractional 

nmomentuml’ x and transverse momenta -i$, . A similar interpretation holds for G 
b/B’ 

The basic cross section factor that actually produces the detected particle C also has a 

clear probabilistic meaning. We have neglected final state decay to C for simplicity. 
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Fig. 1. The basic hard scattering model 
diagram with the notation used in 
the text. 
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The probability functions are defined as (see Ref. 4 for details) 

where @ is the bound state Bethe-Salpeter wavefunction with one leg (cy) on-shell. 

Warningz The validity of the hard scattering expansion requires that the sum over 

a and b in the above formula be incoherent. This places restrictions on the probability 

functions and the intermediate states included in the sum. These are ignored by many 

authors, so one should be wary. It is especially easy to make a mistake in this regard 

when photons are treated since g-auge invariance forces coherence requirements that 

must not be ignored (but quite often are). 

One can also derive an equation for the electromagnetic form factor of the state A 

in terms of z/ and the result is4 

FA (4) = c Fatq2) 1 
dxd2kT x 

a 
- $*(x,x,) $(x,G - t1-x,?&) 

2(27r)3 Wx) 

where the integral multiplying Fa is the body form factor of the nucleus. 

We will see in our analysis that the distribution functions are explicitly measured 

in the experiments we are considering. For this reason it is important to have a rea- 

sonably good prediction or description of their properties. We will analyze these func- 

tions in detail, trying to get information about them from limiting cases, like the non- 

relativistic and the short distance behaviors. 

We will demand that when the energies and momenta are small, our description 

joins smoothly onto the familiar nonrelativistic treatments. In particular, the G func- 

tion must be closely related in this limit with the square of the nonrelativistic wave- 

function. This requirement will allow us to achieve a clearer understanding of these 

functions and their expected behavior, and also to explore the way masses should enter 

into our formalism. 
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First we want to see the meaning of the x-variable in a nonrelativistic limit. For 

momenta small with respect to the masses, and in the rest frame of the nucleus, we 

expect that x is directly related to the longitudinal momentum, measuring deviations 

with respect to a central value. In other words, each nucleon carries the same fraction 

of the total momentum of the nucleus. A very reasonable result in the weak binding 

limit.. 

Remember also that G is the probability of finding a constituent of A with longitu- 

dinal momentum x and transverse momentum % . This means that G must have a 

maximumatx-i, the average nucleon longitudinal momentum, and at ‘;cT= 0. Consider 

the definition of G, and using the Bethe-Salpeter equation we see that 

where we have defined @ as the vertex function and 

M2(x) E (1-x)(a2-k2) -kc = 2 (1-x)a2+xa! -x(1-x)A 2 . 

This form implies that G has a maximum at rT= 0 and at x=x0, where M2(x) is a mini- 

mum. We find 

A2+a2-o2 
xo= 2A2 

g- 
A” ’ 

and as expected, the constituents prefer to share the momentum according to their 

mass. 

In the limit of small momenta one then finds with x= (a+kz)/A, that G becomes 

2 - 

G = I$,(@ 12- 
9NR(k) 

[ae+k212 ’ 

where 

2 
%R - XO(l-x0)~2 . 
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In order to have a better understanding of the function Q,, consider the 

Schrtldinger equation in momentum space 

#,(I?) = (aE+T;2)-lj d3p V(i?-s) I/,@’ = (ae+r2)-l $N,F) , 

so that the vertex function expresses more or less directly the behavior of the poten- 

tial V. The falloff of C#I is related to the softness (or hardness) of the potential. As a 

simple example consider a general Hulthen model of the nuclear wavefunction: 

J’NR = (a6 +r2)-l (a cl +r2)’ ,‘ 

where for the familiar Hulthen deuteron case, one usually chooses g=3, el -36 E . The 

second factor is then much flatter inr2 than the first. 

A relativistic version of this wavefunction can be achieved by writing 

+ = NW 4 2 2 -1 (kTva2[(g-l)‘2 , -a ) 

where N(x) is slowly varying for x near 1, and by choosing 

since M;(x) must have a minimum in the same place as M2(x) (namely at x=x6). 

The form factor for this type of wavefunction is easily seen to fall as 

F2 (q;) N (<)-g-1 

for large q$. Thus the falloff of the form factor and the behavior of G for large k$ are 

closely related and also we see that the behavior of G for x -1 is closely related to the 

form factor falloff. This latter relation is the Drell-Yan-West relation. 6 

For general x, the relativistic G function can then be written as7 

G(x&) = N2(x) x(1-x)~ 

2(27r)3 
[M2(x)+k;]-2[Mf(x)+k$]1% 
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For x-x0, the denominator factors are rapidly varying and as has been discussed, 

this reduces to a familiar nonrelativistic Hulthen form. For x >> x0, the numerator 

factors control the behavior of G, and 

while its large g behavior is kc) 
2 -g-l . 

*In our analysis, the behavior of G for x “x0 will be especially important. Note 

that this is new information not directly contained in the nonrelativistic wavefunction. 

We shall also discuss quasielastic scattering which explores the G function for xwxO 

as well. Let us now turn to a discussion of the calculation of the power g in selected 

theories of the nucleon-nucleon interaction. 

In this paragraph, the choice of appropriate wavefunctions will be discussed. A 

helpful tool for expressing the predictions of specific theories is in terms of “counting 

rules”. These allow one to characterize the asymptotic behavior of G in terms of the 

number of constituents and the basic interactions of the theory. 

Our procedure here is to extract the leading behavior from the lowest order dia- 

gram in perturbation theory. For “sofP theories, one can show that the higher orders 

either are small compared to the leading term or have the same behavior. (Scalar 

particles are assumed here for simplicity. ) I shall skip details at this point; the results 

are physically reasonable and are no surprise. For the general structure functions 

G a/A’ where the state a is a bound state of a nucleons, the analysis can be carried 

through. One finds in this case 

g = 2T(A-a) - 1 

where T is a parameter depending upon the theory. We have assumed full breakup of 

the nucleus after a is extracted. If this is not the case, one expects thy: power g to be 

reduced (perhaps A should be the “effective number of fragments” of the residual 

nucleus. 
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The parameter T is 1 if the basic nucleon-nucleon interaction is renormalizable8 

(i.e. , vector exchange with no form factors). If the vector mesons couple to the 

nucleons with monopole form factors (as vector dominance theories would require), 

then T=3. Thus T can take on any value in the above range. Note that T=3 is the 

same as quark counting in a renormalizable theory. 9 

Now that it is clear that one can differentiate between theories of the nucleon 

force by extracting values of g from the data, let us turn to a more detailed discus- 

sion of the probability functions. The G’s that will be considered here are all of the 

form 

’ 
G a,A(x”T) = L 

N2(x) x( 1,~)~ 

2&r) 3 [ 2 2 %+M 64 ]“[<+M;(x~]~-~ 

where N(x) is a slowly varying function of x, and 

M2(x) = (1-x)a2+xlu2 - x(1-x)A2 

M;(x) = M2(x) + 62 . 

This general form for G has several properties that are work noting: 

G is peaked at kT=O and the transverse momentum distribution falls 

more and more rapidly as A increases. 

G is peaked at x - a/A. The most likely momentum configuration is 

that one in which the nucleons share equally the total momentum of 

the nucleus. 

The power g which controls both x - 1 and large kT is very simple 

to characterize in terms of the basic binding interaction and the 

number of constituents. 

The shape of G in the nonrelativistic limit does not restrict the 

behavior for x - 1 for general models (although they are strongly 

correlated in our simple models). A measurement of G for x - 1 
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is new information that is not accessible lo conventional nuclear 

theory. 

In order to get simple predictions that can easily be compared with experiment 

without extensive numerical calculation, we will first analyze the situation in which 

the energy per nucleon is large compared to the nucleon mass. The kinematics for 

this regime is quite simple: 

s’=xys 

t’ = yt 

.u’=xu 

d2 =xys+yt+xu 

and 

The condition d2 > 0 restricts the range of x and y that contribute for fixed values of s, 

t, u. 

Note that the internal reaction can be inclusive (d2 > 0) or exclusive (d2=O). This 

last situation is the case in quasielastic scattering, for example. 

All inclusive basic processes of interest to us here will be parametrized as 

and exclusive processes as 

kc gy = E(s’) 6[(k+MJ)2-dil,(k+) , 

where kJf, = CT-kT-IT and E(s’) is assumed rather slowly varying. H will be assumed 

to be constant. 
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Now we will discuss the model in selected regions of phase space in which the 

predictions are easy to extract. First define 

where m is the full missing mass of the reaction, and 

cL t-u XL=GsS 

and for the most part we will concentrate in the region where E is smaller than the 

quasielastic peak (that is , xR larger than the most likely value -a/A). 

For an inclusive basic process, one finds in the target fragmentation region 

(t small, xF >O) that 

R N (1-xF) 
gB+H+l 

A more accurate treatment is possible but the above will suffice for our purposes. 

However in the target fragmentation region, where us is fixed and s, t large, the 

result is that 

R - (1+x,+ 
gA+H+l 

The elastic basic process results follow by setting H=-1, but more accurately, one 

finds’ 

RarGC/B “F ( -A,K2)(gj , 
where A is a small kinematic shift that depends on the masses involved. For this 

case, the structure function G is directly measurable. 

In general, a simple formula also holds throughout the Peyrou plot. By repeating 

the arguments given above with more care at general scattering angles, one finds 



- 12 - 

RC = I(E) E F+l+H (l-x~~)-~- (l+x~z)-~+ J (C;) , 

where z=cos Oc m , F =l+g . . -v a, F+= l+gb, F = l+ga+gb, and I(E) is a slowly varying 

function of E. This result is valid for an inclusive internal process parametrized in 

the form 

Rb - (l-xR)H J($) - 

Although this form was derived assuming lzl not near one (outside the forward 

and backward cones), we see that it also has the correct limit inside those regions. 

This expression can then be used to characterize the inclusive nuclear reaction at all 

angles. Furthermore, since we expect a smooth transition from the regions of 

validity of this form to other regions of the Peyrou plot (i. e. , the central region), 

this equation can be used to fit the data everywhere (with effective powers). 

Pion Production 

As the first application of the model, we shall consider r- production in the pro- 

jectile fragmentation region for several different reactions. The small angle data in 

Fig. 2, taken from J. Papp et al., 2 -- clearly supports the value H=3. The value of T 

now can be determined by looking at deuteron beam data. The fit for T=3 is compared 

with the data2 in Fig. 3. Now all parameters are fixed and the prediction for alpha 

beams is compared with the data2 in Fig. 4. 

The proton yield in the forward and backward direction is fully determined since 

it depends only on T (H=-1). For these reactions the data is not as extensive in the 

variable xF as in the pion data so the tests are not as severe. The reaction 

d+C --) p+X is predicted to go as c5. The data is in reasonable agreement with this 

behavior but it does not fall quite this fast for the largest xF values. The prediction 

for the proton yield from carbon-carbon collisions is compared with the data2 in 

Fig. 5. 
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Fig. 2. The xF spectrum compared to the carbon data illustrating 
scaling and the value of H. 
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Fig. 5. Two inclusive processes for a carbon beam illustrating the 
counting rules and the positions of the quasielastic peaks. 
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Also shown is the alpha particle yield. It is clear that in this case, an important 

contribution is due to the incident ion splitting into a! plus residue and the CL! scatter- 

ing into the forward direction. This term yields the prediction shown in the graph. 

Clearly, such coherent intermediate states are important even though they are lightly 

bound (compared to the incident energy). 

We must point out that in order to compare our simple power law predictions with 

experimental data, this has to be done for xF away from quasielastic peaks (one can 

always use our more accurate parametrizations of G and numerically compute the 

yield for all x~ values), and at-high energies per nucleon. This last point is worth 

commenting on a little more. The energy has to be high for two reasons, first so 

that masses can be neglected, and second so that we are sure that the nuclei in the 

reaction have broken apart, without leaving any nuclear bound states. A generaliza- 

tion that includes this last situation should not be difficult, however it will tend to 

reduce the predicted E powers. 

The effects of absorption were completely neglected in the above treatment, and 

this is a very important omission that must be remedied if one wishes to compute the 

absolute normalization of the reactions discussed here. 

In conclusion, we feel that the general approach used here to describe the high 

energy scattering of heavy ions has many advantages over the conventional approach 

using Schrbdinger wavefunctions and standard scattering theory but with no increase 

in complexity. . 

Let us now turn to neutrons, deuterons , and form factors. A very plausible 

wavefunction #, which we saw before gives a G function with several correct proper- 

ties, is 

#t&q) = N(x) (l-x) L 

[k;+M2(x;l[++M2(x)+ 62-j+ 
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where for the case of the deuteron g=5 for the theory with T=3 (exchange of vector 

mesons with monopole form factors at each vertex). We have shown that this theory 

gave good results for inclusive reactions, and that this form for $ is quite successful 

in reproducing quasielastic scattering data involving the deuteron. The deuteron 

form factor can now be computed from JI(x, kT). A fit that can be achieved for our 

spinless model is given in Fig. 6 for the value 62= 200 ME, where M is the nucleon 

mass and E is the binding energy of the deuteron. Here the isoscalar form factor 

was taken to be equal to the proton form factor. The results are compared to selected 

data points 10 in Fig. 6. Now that we have some confidence in the deuteron wavefunc- 

tion, it can be used to predict the deuteron structure function and used to extract the 

neutron structure function from the experimental data. 

Our nuclear scattering analysis has shown that there are coherence effects that 

dominate in certain regions of phase space, and which correspond to virtual emission 

of nuclear bound states by the interacting nuclei. It is interesting to note that in the 

CIM model of hadron collisions the picture is very similar, and the interacting par- 

ticles emit coherent subsystems (diquarks, mesons, baryons, . . .) which are the ones 

that give rise to the internal basic interaction. This means that there are several 

different terms whose relative importance will depend on the region of phase space 

that we are considering. In this section we will analyze deep inelastic scattering 

from protons and neutrons, using the same general ideas. 

For deep inelastic events, that is, large energy (Y) and momentum (q2) transfer, 

Bjorken predicted that the structure functions would remain finite and would depend 

only on a single variable x= -q2/2MV. The approximate validity of this prediction 11 

has had a considerable influence on the theory of hadrons, which most people consider 

today as being composite states of (almost) point-like objects, or perhaps asymptotically 

free objects . 
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Let us turn first to a discussion of nonscaling terms in the parton model. Our 

purpose here is quite modest in comparison to the total program of the asymptotic 

freedom riders, for example. We only wish to point out that there are certain scale 

breaking effects that are very simple from a physical point of view and which would 

seem to be present in any theory susceptible to a parton interpretation. These terms 

are a priori expected to be important for large x, the Bjorken scaling variable. At 

small x, they do not necessarily dominate from general arguments and there are 

many additional effects that could become important. Indeed, the data indicates that 

the terms under consideration are certainly not dominant there (but simple wave- 

function effects may be). 

These contributions show up first in the twist-6 terms in the language of the oper- 

ator product expansion and would thereby be normally neglected. However they would 

be expected to be large from physical arguments. While they fall rapidly in q2, their 

coefficient is expected to be large. They do not correspond to interference terms 

between various final state configurations that prefer to populate different regions of 

the final phase space. If such “trivial” scale breaking terms are present in the data 

with its necessarily finite q2 range, it is certainly important to recognize their effect 

before asking more fundamental and specific questions of such data since these terms 

should be present in almost any theory. The inclusion of such terms in the asymptotic 

freedom fits should allow one to slow down the expected nonscaling (log) effects, and 

perhaps affect the fit to the neutrino data. 

In order to separate the terms that contribute, we will follow the same classifi- 

cation scheme as in the deuteron case, which is based on the idea that as q2 increases 

more and more substructure is revealed in the hadronic bound state. The different 

contributions to the structure function are most easily described in the parton-quark 

language. The structure functions will be written as a sum over final states in which 

all the quarks have low transverse momenta except for (a) one quark which recoils 
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with momentum zq, (b) two quarks that recoil with a total of wq but each has a finite 

fraction of q, (c) three quarks that recoil with a total of mq, etc. The above classi- 

fication neglects the coherence between such states and should be applicable for 

sufficiently large q values where the final configurations become incoherent. The 

importance of type (b) terms, for example, will be shown to be the fact that while 

they fall in q2 at fixed x, they vanish less rapidly than type (a) terms for fixed q2 as 

x-1. 

Using the dimensional counting rules, 8 the proton structure function is written 

as 

F2P 
= Fop + F& q2) + F;;(x, q2) , 

where the valence quark, diquark, and sea contributions are 

Frp = +(x) (l-~)~ 

where L+(X) will be fit to the data, and 

d 2 22 2 
F2ptX’ q ) = AdF@ ) x (1-x) , 

where Fd is predicted to be 

Fd(q2) = d2(d2-q2)-l 

The sea contribution is written as 

Fr(x, q2) = e(0.6 - .J;r)(l-~)~(o. 6 - &)(1- 2F;(q2)) . 

This latter form was fit to a calculation of the rise (as q2 increases) found in F2 in a 

detailed model of the nucleon wavefunction. These wavefunction effects are important 

at all x, however at large x, the diquark term dominates and leads to a net decrease 

with q2. The resultant fit to proton data 12 yields the structure function 13 shown in 

Fig. 7. 

Since the distribution function G a/D( ) k x is nown with some accuracy, it will be 

used to extract the neutron structure function F 2n(x, q2) from the large q2 deuteron 
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Fig. 7. Scaling part of the proton structure function (F2p(~, q2 = -a)), and 
coefficient AV(x) of the valence contribution. 
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data. In order to carry out the fit in a convenient form, we define 

F2J% s2) = F;n(x) + F&(x, s2) + F;;(x, q2) , 

where 

F;$w2) = B2W F;p@,q2) , 

F;r(x, q2) = Fr(x,q2) . 

The resultant fit to the data is again excellent and the neutron--proton comparison 

is given in Fig. 8. The various contribution to the structure function are given in 

Fig. 9. In Fig. 10 a prediction for the changes as a function of q2 are given. These, 

of course, neglect any asymptotic freedom effects. A comparison with the new muon 

data from FNAL will be very interesting and crucial in separating the effects due to 

asymptotic freedom and quark coherence. 

There are several points worth mentioning. The function Bl(x) is slowly varying 

over the range of x considered, x > 0.1. The average value of B1(x) around the valence 

peak (x=1/3) is roughly consistent with 2/3 which is the ratio of the sum of the squares 

of the valence quark charges, neutron/proton = (2/3)/l. The ratio of the asymptotic 

neutron to proton structure functions decreases for large x, and the extrapolation 

seems to give the value of fi: l/4 at x=1, which is the lower bound that holds in the 

valence quark model. At x=0, on the other hand, this ratio goes to 1, which reflects 

the i&oscalar character of the parton sea. 

The value of l/3 found for B2(x) is the ratio of the sum of the squares of the 

valence diquark charges, neutron/proton = (2/3)/3. These features of the fit are 

evidence of the consistency of our interpretation and fit (but certainly not its 

uniqueness). 

To conclude, we have shown that a simple extension of the parton model, together 

with dimensional counting, provides a reasonable fit to the nonscaling behavior of the 
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proton and neutron structure functions which is particularly simple for x larger than 

the valence quark peak at l/3. The model can be tested by looking at the proton yield 

in the photon fragmentation region. 13 We therefore conclude that if one wants to 

differentiate between basic theories of hadrons by studying only the structure functions, 

it must be done at small x where the above nonscaling terms are probably unimportant. 

Even in this region of x, however, one is faced with the problem of demonstrating 

that such effects are indeed small, especially if one is making a quantitative compari- 

son with a particular basic theory. 15 

Finally, in answer to the persistent questioning of Dave Morrison, I will show 

the value of ‘V/V ratio that follows from the above model of the structure functions. 

The calculation by Fernandez-Pacheco, Grifols and Schmidt are given in Fig. 11 for 

the kinematic cuts (as we understand them) used in the HPWF data analysis. 
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