
SLAC-PUB-2003 
August 1977 
(T/E) 

FINITE ISOSPIN GROUPS AND THEIR EXPERIMENTAL CONSEQUENCES I* 

K. Yamada 

Stanford Linear Accelerator Center 
Stanford University, Stanford, California 94305 

Abstract 

Under the assumption that the observed isospin symmetry is the manifes- 

tation of the group structures of hadrons and their interactions, it is 

attempted to determine the order of the symmetry group, if finite, and to 

clarify the physical meanings of each group element. Our scheme is based on 

the observations that (1) the classifications of particles according to the 

irreducible representations of both the finite and the continuous groups are 

possible under certain restrictions, (2) the transformation laws of the 

particles under the continuous rotations in the isospin space cannot be 

established directly by experiments. 

In particular, we will consider the polyhedral kaleidoscope groups. The 

consistent formulation by finite groups need a selection rule to exclude the 

unobserved exotic states, which turns out to be the requirement of the charge 

conservation. Several experiments are suggested to test our assumptions in 

the strong-interaction processes. 

(Submitted to Phys. Rev.) 
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1. INTRODUCTION 

ThPapproximate isospin symmetry is one of the most important concepts 

of the particle physics. This symmetry or the charge independence, which 

originated in the study of the nuclear forces, is usually formulated as a 

continuous, rotational symmetry in a hypothetical isospin space. The particles 

are classified into the irreducible representations of the group SU(2) in 

analogy with the ordinary angular momentum. Then one asks the consequences of 

the assumption that the scattering processes due to the strong interactions 

conserve the total isospin and that the scattering amplitudes depend, as for 

the isospin quantum numbers, only on the total isospin. This procedure is 

applied for most of the actual analyses. This symmetry has been successfully 

extended to the SU(3) symmetry by including the strangeness. The predictions 

and the subsequent discovery of R-, in particular, seem to indicate that the 

group principle is really working in nature. (We remember that the J/G was 

not predicted although the SU(4) symmetry had been known.) The experiments 

have revealed, however, a remarkable property of hadrons that their isospins 

seem to have upper limits, I = 1 for the mesons, and I = 3/Z for the baryons. 1 

Now it is well known that the finite groups have only the finite- 

dimensional irreducible representations. So the question naturally arises: 

Is the isospin group finite or infinite? 

The continuous group is a special case of the latter. This question 

should be answered before forming the Clebsch-Gordan series for the products 

of two irreducible representations. A similar problem has also occurred for 

the SU(3) symmetry, in which the mesons are classified into 1 and g, while M 

the baryons are classified into A, 2, and 10. @MM The reason why higher 
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dimensional multiplets do not appear in nature has never been explained in a 

satisfactory way. An interesting fact in this case is that these represen- 
4r 

tations are constructed in the way2: 3 x 3* =l+c,and3x3x3=1+8+ nMIv\n rM nm nw & nn. - 

8 + 10. However, NV& MNI) the group SU(3) itself does not contain any inherent rule 

to exclude the higher dimensional representations. One of the motivations of 

our work presented here may be considered as an attempt to find such a frame- 

work. In order to answer the question raised above in connection with the 

isopsin symmetry, it will be necessary to examine the way in which the group 

SU(2) has been used. For the ordinary spin, the relative angles between the 

polarization vectors are measurable in principle to any degree of accuracy. 

This is the key point in establishing that the electrons behave as spinors 

in the ordinary space. Similarly, in order to establish the transformation 

laws under the continuous group, it is necessary to find some ways to observe 

the pions, the nucleons, and other particles at every angle ei (i = 1,2, and 

3) with respect to some fixed coordinate system in the isospin space, if such 

ever exists. 

The customary reason to believe in the SU(2) symmetry comes from the 

entirely different, indirect observations. The charge independence of the 

systems with relatively small isospins can be conveniently described by adopt- 

ing this symmetry. 3 Thus the far weaker symmetry than the SU(2) symmetry may 

be sufficient to classify the particles. In this work we will try to formu- 

late the isospin symmetry by using the finite subgroups of SU(2). If this 

method can explain all the evidence of the charge independence, then we will 

lose the argument for the isospin symmetry under the continuous group. On 

the other hand, if such an attempt turns out to be impossible, we must perhaps 

go to the stronger symmetry. Thus we find the formal similarity with the 
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questions asked many years ago by Case et a14, and Fairbairn et al. 5 
-- -- 

In the formulation we shall encounter with the basic problem: What is 

the phyzical meaning of each group element? This problem is not peculiar to 

the formulation by finite groups and arises because we may think the observed 

isospin symmetry to be just like the bilateral- and the rotational- symmetries 

of the various objects and the dynamical laws in the real world. 

One suggestion to this problem comes from the original formulation by 

Heisenberg. 6 
Three Pauli matrices were introduced there to a hypothetical 

space to describe the different states of the nucleons and the transitions 

between them. According to our interpretation, three matrices and the group 

generated by them are related to the dicyclic group of order 8. The group 

elements, or more rigorously three Pauli matrices, have the physical inter- 

pretations in this example. The finite group appeared here is also generated 

by three quaternions i, j, and k (i2 = j2 = 2 k = ijk = -l).and is denoted by 

<2, 2, 2>. 

The finite groups considered in our work are the slight generalizations 

of it. They are the binary tetrahedral, the binary octahedral, and the binary 

icosahedral groups. These groups are often denoted by ~3, 3, 2>, ~4, 3, 2>, 

and ~5, 3, 2>, respectively. 

Now it is not difficult to make the unitary representations of these 

groups. We can identify one generator with the rotation around the Z-axis 

and diagonalize it. Then what are the possible correspondences between the 

basis of the irreducible representations and the electric charges? 

In Sec. II we will consider one natural choice of the correspondence. 

The other choices will be mentioned. 



We then assign the mesons and the baryons to the irreducible representa- 

tions of the binary tetrahedral group and the binary octahedral group, respect- 
4 

ively. This is based on the possible dimensions of the irreducible represen- 

tations of these groups. 

The observed isospins and the several arguments suggest that the hadrons 

actually belong to the representations of these groups. However, it should 

be stressed that we have no conclusive evidence for it at present. In the 

course of the analyses, we shall find that the decomposition of the product 

of the two irreducible representations into the Clebsch-Gordan series contains 

in general the components that are not the eigenstates of the electric 

charge. If such components are realized as particles, then they will lead 

to the violation of the charge-conservation law through the scattering process. 

A possible interpretation is suggested. In particular, we shall assume that 

. only the states with the definite electric-charges can be realized as particles. 

This assumption still allows the appearance of the incomplete isospin multi- 

plets such as the doublets with the charges +1 and -1. These multiplets, if 

realized as particles, will lead to the violation of the charge independence, 

yet will conserve the electric charges through the scattering processes. We 

will suggest the experiments to test such a possibility. If the incomplete 

multiplets are suppressed or forbidden as a whole, then our result is essen- 

tially the same, with respect to the classifications of the particles, as the 

conventional result with all the exotic-contributions omitted. In this case, 

the test of our hypotheses will need a far more advanced framework and will 

be postponed. Our work presented here should be considered to be of prelim- 

inary nature in this sense. 

In Sec. III, the scattering processes are considered and several experi- 

ments are suggested as possible tests of our hypotheses. 
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Sec. IV. contains the concluding remarks. 

II. - CLASSIFICATION OF PARTICLES BY FINITE GROUPS 

The conventional isospin group SU(2) or O(3) can classify the particles 

with any values of the isospin (I = 0, %, 1, . ..). The observed mesons and 

the baryons, however, seem to have only the limited values of the isospin. 

The satisfactory explanation of this remarkable fact is hitherto unknown. We 

are therefore tempted to classify the particles by taking this restriction 

into account. In order to formulate it mathematically, the use of the finite 

groups seems to be the most attractive way for this purpose. The many-body 

systems such as the heavy nuclei and the neutron stars will be assumed to 

belong to the reducible representations of these symmetry groups. 

Now let us begin our discussions with the finite subgroups of O(3). The 

possible finite subgroups are the cyclical, the dihedral, the tetrahedral, 

? - the octahedral, and the icosahedral groups. 

We know that the quantum-mechanical states are represented by rays, 

rather than by vectors. So let us consider the ray representations of these 

groups. They are the same as the ordinary representations of the correspond- 

ing finite subgroups of SU(2).7 The character tables for them are given in 

Tables I to III. 8 

The familiar form for the generator of the cyclic group is given by 

A = exp (HIT i/n) = cos -2$ + i sin s , (1) 

where n is a positive integer. The group elements are 1, A, 
n-l . . . . A. In a 

similar way, the finite subgroups of SU(2) are generated by three quaternions: 

A = exp (Pn/p), B = exp (Qr/q), C = exp (RT/r) (2) 
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They are the cyclic, the dicyclic, the binary tetrahedral, the binary octahe- 

dral, and the binary icosahedral groups. These groups are exactly related to 

the subg^roups of O(3) as in the same way SD(2) is related to O(3). In (2), 

P, Q, and R are pure unit quaternions and p, q, and r are positive integers. 

Geometrically P expresses a point on the unit sphere in the three dimensional 

space which is spanned by three unit-quaternions i, j, and k. Thus P, Q, and 

R can express a spherical triangle with angles r/p at P, T/q at Q, and x/r at 

R. All possible reflections on the sphere of this triangle, which is often 

called a "fundamental region", generate the desired finite group. 

This notion is known to be quite general. 9 In another way, these groups 

are completely specified by the defining relations: 

Ap = Bq (3) 

The resultant group is denoted by <p, q, r>. 

Let us turn to the representations of the finite groups. It is easy to 

read off the character tables the possible dimensions of the irreducible 

representations. They are 1, 2, 3 for ~3, 3, 2>, 1, 2, 3, 4 for <4, 3, 2> 

and 1, 2, 3, 4, 5, 6 for ~5, 3, 2>. The group mentioned in Sec. I, <2, 2, 2>, 

has only the one- and the two-dimensional irreducible representations. 

We may identify one generator of the finite groups with the rotation 

around the Z-axis of the three-dimensional Euclidean space and diagonalize it. 

Such a generator is conveniently expressed by using a discrete angle 0 = 2n/n 

(n = 2, 3, 4, and 5) and the usual infinitesimal generator I . Then it is Z 

exp (i 0 Iz). 

Next, in order to apply to the physical problems, we need to assume some 

correspondence between the basis of the irreducible representations and the 
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electric charges. The most natural way is clearly to retain the Gell-Mann- 

Nishijima relation in the integrated form. We may require the equation: 

exp (ie1,) = exp {iEl (Q - Y/2)) (4) 

to hold for all possible discrete values of 8 corresponding to a given finite 

group. In this equation, Q is the electric charge and Y is the hypercharge 

of a particle. Another possibility is realized if the charge states are 

permuted among themselves in an arbitrary way. We note that the quantum 

numbers Q, Y, and others, if needed, specify the eigenvalues of the matrices 

exp (i 8 Iz), but that they are not the group elements. 

It is clear that the finite groups considered as the subgroups of SU(2) 

contain the finite number of the discrete rotation angles. 10 However, it may 

be too early to conclude that such angles have the direct physical meanings 

unless the metric is introduced into the underlying space in a physically 

meaningful way. The generators A, B, and C in (2) are the fundamental 

ingredients of the finite groups. Therefore in any physical applications, 

their meanings should be clarified. 

We simply note that the generating relations (3) can be realized by 

isodoublet fermion-fields in the following way: 

A $ = A-l op $Aop ' 
(5) 

A = 
oP 

exp [sd3x" vJ+e4 p (r/p) $(x)1 

and similar relations for B and C. In (5), P should be identified with i o 
1' 

which is a two-dimensional realization of the pure unit quaternion P in terms 

of 'the Pauli matrix, and ~'2. 
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111. SCATTERING AMPLITUDES 

ThFisospin coordinate was introduced to describe the protons and the 

neutrons as the different states of the same particles. The group SU(2) is 

usually employed for the classification of the particles. But the hypothesis 

of the charge independence is a more complicated matter. 

The experimental analyses have shown that the isospin symmetry of the 

scattering amplitudes can be understood if we assume that the same symmetry 

holds for the vertices of the diagram corresponding to the scattering and that 

the propagators (which are either resonances or Reggeons) constitute the 

complete isospin multiplets. 11 

This situation seems to be very general. In this scheme, the scattering 

amplitudes can be constructed diagramatically by combining the vertices and 

the propagators with no loop. One can even imagine that the vertices are 

actually 3 - vertices (Fig. 1). 

We know that the apparent absence of the exotic states of the mesons and 

baryons has been confirmed by analyses based on such diagrams. The basic 

observation is that, to a good approximation, such 3-vertices are actually 

allowed only when three lines correspond to the non-exotic particles. 

So let us try to formulate the above rule as a basic law of the scatter- 

ing processes. We may require that the allowed vertices in the above sense 

should also occur in the Clebsch-Gordan decomposition of the product of two 

irreducible representations corresponding to a and b in Fig. 1. In the ITT 

scattering, the usual decomposition contains I = 0, 1, and 2 states. Then,is 

it,possible to suppress the unobserved direct-channel resonances with I = 2 

by a composition rule for the initial two-pion state? 
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In order to answer this question, we now propose the following set of 

assumptions: 

(a) The% is no exotic stable or resonance state, 

(b) The mesons (the baryons) belong to the irreducible representations of the 

binary tetrahedral (binary octahedral) group, 

(c) The assignment of the electric charges to each member of the multiplet 

is done in the conventional way, 

(d) Only the eigenstates of the electric charges are realized as particles. 

Before assigning the particles to the basis of each representation, Q 

and Y must be known beforehand for each particle. This is clear for any 

experimental situation. The converse problem, i.e., to define Q or Y from (4), 

does not arise. 

Let us turn to Clebsch-Gordan series for the two-pion system. It will 

++ 
contain the doubly charged components, e.g., n ?r and 7c-rVt If these compo- 

-. 
nents are realized as particles, it will contradict with our assumption (a). 

Evidently this process can lead to the states with any values of the electric 

charges for sufficiently many pions if they are allowed. So, some way to 

exclude such exotic states is essential for the success of our procedure. It 

may be accomplished by a selection rule. We will find such a rule in the 

following. 

Next we assign the mesons to To, i?+, and rl of ~3, 3, 2>, and baryons to 

TO' ry rl' and '3/2 of <4, 3, 2>. These representations are-the same as the 

corresponding representations Do, D4, D1 and D3/2 of the group SU(2). Of 

these representations, To, I'+, and rl belong to both <3, 3, 2> and <4, 3, 2>. 

Our assumption (b) implies that the system with the baryon number 0 is to 4 

be decomposed into the irreducible representations of <3, 3, 2>, while the 
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system with the baryon number rtl is always an irreducible representation of 

<4, 3, 2>. In particular, the baryon-antibaryon systems should be first 

'decom:osed into the irreducible representations of ~4, 3, 2>, and the latter 

representations should be further decomposed, if reducible under <3, 3, 2>, 

into the irreducible representations of <3, 3, 2>. For the TN state, the 

decomposition is the same as the conventional case. This is seen from 

q, x rl 2 = r% + r3/2 (6) 

In (6), N belongs to I? 
% 

of <4, 3, 2>, while 7~ belongs to r 1 of <3, 3, 2'. 

Thus rb and I'1 are apparently two irreducible representations of the different 
2 

groups. Now we know that 

SU(2) 3 <4, 3, 2> 3 <3, 3, 2> . (7) 

So we may use the decomposition-rule of SU(2), followed by subduction (i.e., 

restriction to the subgroup), to reach (6). The total baryon number determines 

whether the representations should be subduced to those of ~4, 3, 2> or ~3, 3, 2>. 

The baryon states TC, EA, and nA h ave the unconventional components in the 

decompositions. 

For IT C state we obtain 

rl x rl = r. + rl + r l*+r , X 

-+ 
I.- x IC> = -L (lr c -pE” +v+c-), 

v5 

/ 
L (7r% O - noI+) 

fi 

‘ 1 (,+z- - a-C+) 
Jz 

- L (Tr-co - TOT) , 
\ fi 

(8) 
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+’ .L (IT-Z O + iTor) 
a 

( 1 c?T+c+ - Tr-c-) 
Jz 

1 (,+I” + aOC+) 
,a 

, 

-J- cll+z+ -t T-c-) 
fii 

1 (a-C+ + 27T"co + n+f-) . 
dz 

The assignments of T C state to T'l x Tl* 
* 

and r' x r 1 l* lead to the same 

decompositions. 

The xA state is decomposed as 

* 
r+ x r3,2 = rl + rl + rx , 

Ii&x IA> = $ 

/ 

(A+ ii0 - GA* K-) 

.&m ( A 'ii0 - A +K-) 
v?i 

+ (d?i i-ii' - AoK-) , (9) 



-13- 

+/ 
+ ( Li-k" + J?; AoK-) 

I (A*K' -A-K-) 
VT 

-- ; (6 A+k" + A*K-, , 

\ 

--!L (Au~o + KK-) 
fii 

L (a"g" +A+K-> . 
fi 

The assignment of the EA state to rl 
* 

x r3/2 
leads to the same decomposition. 

-5. * 
The EA state is decomposed to r 312 x % = '312 x % = r3/2 + r& + r3/2 + 

r * I 
.s ’ 

TT>X !A>= 

g A"i- -E A-IT' , 

\ 
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.L p-r- - L A+TO+- An 1 oJ+ 
.- 

Jz J5 G 

1 $T- 1 -+ 

6 
-L AOn'+- AIT , 

J? fi 

In (7), r0 and rl are the same as the conventional I = 0 and I = 1 states. 
* 

rl contains a component which does not correspond to a definite charge. If 

such a component is realized as a particle, it has no definite charge and the 

+ + 
conservation law of the charges will be violated through the process: ?r + C 

+ (l/&) (IT%+ - ?T-c-> + 7T- +c-. This is the motivation for our assumption 

(d) . It is interesting to note that all the exotic components appear in 

combination with ones of different charges. (This is also the case for the 

mesons). 
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So, if we can select only the states with definite charges from the 

representations, the exotic states are completely excluded. Then the result- 

ing inc%plete isospin-multiplet may be realized as a particle multiplet. 

This is one possibility. The basis of the incomplete multiplet no longer 

constitute the irreducible representations of the group. If the incomplete 

multiplet is forbidden as a whole, then it is equivalent to omit all the 

exotic multiplets in the conventional way (I = 2 for the TUT state). This is 

another possibility. One should ask whether such an incomplete multiplet, if 

realized as a particle multiplet, violate the well-established principles of 

physics. As noted before, the charge independence will be violated in the 

scattering processes if such particles are exchanged. We found no further 

difficulty. For the v C and the KA scatterings, the gapped-charge states 
* 

will be observed if r 1 is dominant. These states simulate the I = 1 states 

but are different from the latter in that the neutral counterparts are absent 

in the particle spectrum. 12 

This is not a so strange possibility. We know one such example in the 

case of the ordinary spin, i.e., the polarization states of the real photon. 

One difficulty in identifying such resonances in the existing data lies in 

that the usual analyses are always done by assuming the conventional isospin 

symmetry. 13 A more definite conclusion may be obtained from the ratio: 

~(A"K- -f AOK-): o( AoK- -f A%'>: -+I- o(K A -f A+i?O): --I+ o(K A -t K-A*) 

= 1: 3: 3: 9 for rl, 

= 9: 3: 3: 1 for Fl*. (11) 
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If the A" -exchange contribution is sufficiently well separated from the 

N-exchange in the K-p backward scattering, then this ratio will give us an 

in"tereZing test of our assumptions. 
14 We have yet no conclusive evidence on 

these points. 

It is interesting to see what should happen if the assumption (c) is 

relaxed. Clearly, a quite general way of the assignment of the charges is 
-+ 

obtained by a replacement: 71 -f Mz, for pions for example, by using a unitary 

3 x 3 matrix M. The permutations between the definitely-charged components 

will be the special case of it. However, we have no experimental evidence for 

such a generalization at present. 

Finally we study the decompositions for the two-meson states. 

The TR state is decomposed 

rl x rl = r. + rl + rl + ro’ + ro” , 

= L (7rr-Tr+ - TroTTo + s+s-) , 
fi 

+/ 
1 (v+n” - 

ET 

( 1 (r+y - 
fi 

lL (IT--7T” 
-ii 

*OTT+) 

IT-IT+) 

- TrOlT-) ) (12) 
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IA’) 

+ *OlT+) , 

+ [ 1 (Gr + 
.vG 

- 21T"lTo + .+Tf-) + L (Ti+s+ + lT-?l-)] c2 , 
fi 

where C and C are normalization constants. 15 
1 2 

Another interesting example is TK state. It is given.by 

IIT> x IK> = 

f 

I 

1 -+ --TK - 
4% 

.lr+K+ + L IT-K' , 
fi 

(13) 
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In (W, r+, Q,’ and rl " are equivalent ray-representations. If the 
2 , 5 

incomplete multiplets can be neglected, we get only a conventional I = Q state 

UlJ - This decomposition is particularly interesting.when we note that in the 

customary theory the effective Hamiltonian for the nonleptonic weak inter- 

actions is assumed to have the same isospin-structure as the KX system. More 

specifically, Hwk = const. x I d3; Ju(x) (AS=O,AI=l) xJu(x)(AS=~,AI=O). Thus, 

under the assumption that the incomplete multiplets (I',* and I?1 ") do not 
2 5 

occur, we are naturally led to the A I = % rule. Experimentally A I = 3/2 

part certainly exists and this fact may indicate either that the incomplete 

multiplets has the contributions or that the assumed form of the Hamiltonian 

is not appropriate. 16 The most attractive way will be to relate the current 

operators with the generators of the finite groups in the way of (5) and to 

write the Hamiltonian in terms of them in the usual way. However, we must 

wait the much more detailed, quantitative analyses on this subject before 

reaching the definite conclusions. 

IV. CONCLUDING REMARKS 

If we accept the group concept seriously in any physical applications, 

we should find some physical method to determine the precise structure of the 

my-v. The symmetry under the continuous groups can be established and 

meaningful only when some experimental procedure is actually given to prove 
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the symmetry at every value of the continuous parameters. 

The precise group structure responsible for the isospin symmetry is not 

yet kno^wn in this sense, even if the group concept is actually relevant in 

this symmetry. We note, however, that this is essential in forming the Clebsch- 

Gordan series. 

In this work we made a preliminary attempt to clarify the isospin symmetry. 

We classified the particles into the irreducible ray representations of the 

finite subgroups of o(3). If the exotic mesons and baryons are established 

by experiments, then we may still classify them by the icosahedral group as 

far as the isospins are sufficiently small. 

In atomic physics, the discrete energy levels of the hydrogen atoms were 

explained by the standing-wave condition for the de Broglie wave. Our assign- 

ment of the mesons and baryons into the ray representations of the finite 

subgroups of O(3) is therefore in close similarity to it. . It is quite a 

remarkable fact that these finite groups are generated by reflections. They 

are analogous to the familiar C, P, T transformations. 

Finally we stress again that we have not yet any conclusive evidence for 

our scheme. If the incomplete multiplets are not confirmed, then a far more 

elaborate framework is certainly necessary to test our assumptions. The 

detailed knowledge from the electromagnetic- and the weak-interaction processes 

will be indispensable in that case. 
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II. 

Table captions 

Character table of the binary tetrahedral group ~3, 3, 2>, of order 24. 

w = exp(2ri/3). ro, r+, and rl are the representations D o, D+, and Dl 

of the group SU(2). 

Character table of the binary octahedral group ~4, 3, 2> of order 48. 

r 09 r+9 r19 and r3/2 are the representations D 0' Dy J+ and D3,2 of the 

group SU(2). 

III. Character table of the binary icosahedral group ~5, 3, 2> of the order 120. 

~1 = (1 + Js>/2; B = (1 - &j/2. ro, r+, rl, r 312' r2' and r5,2 are the 

representations D D,, D 0' /2 1' D3/2' D2 and D5/2 of the group SU(2). 
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Table I 

rO 

rO’ 

rO 
,c 

rl 

r 4 
r ’ 4 
r ,. 
% 

111 1 1 1 1 

111 w w 'fJJ2 to2 

111 lb2 ,2 w w 

3 3 -1 0 0 0 0 

2 -2 0 1 -1 1 -1 

2 -2 0 w --w l.02 -u2 

2 -2 0 02 4 w --w 
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rO 

r0* 

rX 

rl 
* 

rl 

r % * r % 

r3/2 

Table II 

E R 6C2 6C4’ 6C4 12~~~ 8C3 8c3- 

1 

1 

2 

3 

3 

-2 

-2 

-4 

1 1 1 

1 -1 -1 

2 0 0 

-1 1 1 

-1 -1 -1 

0 fi -47 

0 -fi fi 

0 0 0 

.l 

-1 

0 

-1 

1 

0 

0 

0 

1 1 

1 1 

-1 -1 

0 0 

0 0 

1 -1 

1 -1 

-1 1 
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Table III 

I 

rO 

5 
* 

rl 

r 
Y 

r2 

r 
% 

r* 
% 

r3/2 

r5/2 

E R 12c5 12c5' 12cga 12Cga' 2oc3 2oc3 ’ 3oc2 

1 1 1 

3 a a 

3 B B 

4 -1 -1 

5 0 0 

-2 a --c1 

-2 8 -6 

-4 1 -1 

-6 -1 1 

1 

B 

a 

-1 

0 

-B 

-a 

-1 

1 

1' 

6 

01 

-1 

0 

B 

a 

1 

-1 

1 1 

0 0 

0 0 

1 1 

-1 -1 

1 -1 

'1 -1 

-1 1 

0 0 

1 

-1 

-1 

0 

1 

0 

0 

0 

0 
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Figure caption 

l.'The ifasic diagram for the scattering process. Three lines a, b, and c 

represent the non-exotic particles. 
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