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I. INTRODUCTION 

In the current climate of superunified and quark confining theories, there 

is a renewed feeling that some generalization of our idea of space-time1 and/or 

extension of quantum mechanics2 may be needed to reach a .conceptually unified 

scheme for all interactions. If one chooses to proceed from Dirac’s Hamiltonian 

method3 as a first step to a quantum theory, then extensions of classical 

mechanics should be made. It is in this spirit that not long ago, with Liouville 

theorem as his guiding principle, Nambu4 wrote down a new analytic mechanics 

and discussed its quantization. This mechanics is remarkable in several 

respects. First, it treats all conserved quantities of a mechanical system on 

the same footing. This is clearly a most attractive feature from a quantum 

perspective. Second it allows for a phase space of odd as well as even dimen- 

sionality, a property shared by another new mechanics, pseudomechanics, 

whose phase space is partly spanned by anticommuting Grassmann variables. 5 

The latter permit a consistent inclusion of spin and other internal degrees of 

freedom into classical mechanics. It has been shown that at the classical level, 

this new mechanics is connected to a singular Hamiltonian mechanics. ’ As 

regards quantization, Nambu showed that the usual Heisenberg equations are 

recovered in several examples. This lends further support to the idea of the 

uniqueness of quantum mechanics. Notably, he found that both Jordan’s non- 

associative algebra, be they special or exceptional, can be readily incorporated 

in his new mechanicsi. Thus it was later demonstrated that most of all the irre- 

ducible Fock representations of Green”s trilinear algebra are consistent with 

Nambu f s quantiz ation. 7 This invites the conjecture that quarks may well find 

their natural dynamical description within the new mechanics. Our work 

advances a small step in fulfilling such an expectation: We show that beyond the 
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asymmetric top Nambu mechanics find its simplest physical realizations in 

I non-Abelian dyons. The latter have provided many models for strong interac- 

tion dynamics. * 

Before stating our results, it is helpful to recall the essential elements of 

the new mechanics. 4 

In a general Nambu mechanics, the phase space is spanned by a n-tuple of 

dynamical variables x., i = 1,2, . . . n. 1 There are (n-l) Hamiltonians 

Hl’ “‘J& which are constants of motion and which define the dynamics via 

the generalized Hamiltonian equations 

$ = 
‘(xi, H1’ ‘2’ . . . , Hn-1) 

w,, 3’ * ’ * , xn, 

= ‘ijk . ..Q ‘jH1 ‘** ‘lHn-l ’ (1-l) 

where E.. ilk.. .B is the Levi-Civita symbol and aj I a/ax j o The -Fi = Fi(xl, . . . , xn) is 

an arbitrary differentiable function of the variables x i. The totally antisym- 

metric n-linear bracket 

i F1’ . . ..F. 
I 

EZ 6.. q... Q $F1 ajF2.. . aQFn (1*-v 

takes the place of the usual Poisson bracket. Like the latter, it stands as the 

fundamental algebraic object of the theory. Instead of the canonical Poisson 

brackets qi,pj = 6ij, 
I I 

one has the Nambu bracket 

1 
x1,x2,...,xn 

I 
= 1 (1.3) 

and in place of q q [ j, i~={Pi,Pj] = 0, one has for instance 

{ 
y1,x3 ,..., xn I = 0 , U-4) 

etc. The corresponding Nambu bracket preserving canonical transformations 

are defined as 

x -x’ 
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such that 

c, 1 xi9 . . . . x; 
I t 

=x 1, xn=l. . . . , 
I (1.5) 
. 

From Eq. (1.1) it ensues that the velocity field 2 is divergenceless or equiva- 

lently Liouville theorem is fulfilled in the phase -space. This fact opens the door 

to the corresponding new statistical mechanics yet to be investigated. As the 

simplest generalization of the usual canonical doublets (p,, qn), Nambu considers 

the interesting situation of N canonical triplets (P,, Q,, Rn) n= 1,2, . , . , N. Then 

one has from Eq. (1.2) the trilinear bracket 

[A,B,c]= f B(AsBJ) 
n=l atp,, Q,, Rn) (1.6) 

and 

* = ~,Hl,H2] , (l-7) 

where F = F(P, Q, R), Hl(P, Q, R) and H2(P, Q, R) are two Hamiltonian functions. 

To make a case for the physical relevance of his new formalism, Nambu pointed 

out a specific realization for the n=3, one triplet case; namely the asymmetric 

top. Here the triplet r;’ is naturally identified with the angular momentum t in 

the body fixed frame. There are two guaranteed conserved quantities: 

Hl = l/2 ELF/Ii is the total kinetic energy (Li=Iiwi) and H2 = l/2 x2 the Casimir 

invariant. The Nambu equations Eq. (1.7) are given by 

IlGl= (I3-I2) W2O3 t 

I,&, = $-I,) 9w3 9 (1.8) 

13b3 = (I2 -I11 W102 , 

which are just the Euler force-free rigid body equations. We observe that they 

correspond to a special case of the Lie equation’ when the algebra is SO(3,R) of 

the rotation group. 
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This example is important on two scores. From the structural viewpoint 

it illt@rates one essential advantage of the new mechanics which reveal 

prima facie the key structures of constrained systems, i.e. , their Lie algebra 

at the level of the equations of motion. This situation contrasts with Dirac’s 

mechanics where the constraints appear as subsidiary conditions. We recall 

that the essential structure shared by classical and quantum mechanics lies in 

their partaking in the same Lie algebra. While the usual bilinear bracket 

structure is connected to some Lie or Jordan algebra, the n-linear bracket can 

in principle accommodate other algebra as well. It is this algebraic naturalness 

and flexibility of Nambu mechanics which make it most attractive in one’s 

search for generalized dynamics encompassing both classical and quantum 

mechanics. 

From the physics viewpoint, top-like systems are plentiful in nature. It 

suffices to mention the Bohr-Mottelson nuclear model and the dynamics of 

colored, electric strings in the non-Abelian lattice gauge theory. 10 Since its 

inception, Nambu’s mechanics has been the object of a few investigations all 

focused solely on its formal aspects. 6,11,12 What is clearly more desirable to 

the model building physicist are further realizations of the new mechanics, 

possibly ones which bear directly on our current ideas about the basic constituents 

of matter. In this work we depart minimally from Nambu’s simple example of 

the top and yet we do exhibit realizations which obey the mentioned criterion of 

selection. 

Basically our work stems from Fierz’s old observation 13 that a dyon, a 

system of a charged particle interacting with a magnetic monopole, has the 

algebraic structure of a symmetric rigid top. Hence we infer that natural reali- 

zations of Nambu mechanics are to be found in these Keplerian systems. We 
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have particularly in mind their non-Abelian generalizations which have been 

-the 0Qjects of several recent investigations. 

In a short note, one of us (M.H.)14 studied in the context of Nambu 

mechanics the motion of a test particle bearing.isotopic spin T in the field of a 

‘t Hooft-Polyakov 15 monopole. Such a classical dyon is conceived as a non- 

relativistic, point-singular limit of the field theory model of a SU(2) monopole 

interacting with a Higgs field carrying a representation T” of SU(2). While 

entirely bosonic in composition such a complex yet admits integral or half- 

integral total angular momentum depending on the tensor or spinor nature of 

a 16 T . In the latter case we-witness a realistic example of the dynamical fer- 

mionization phenomenon which has its counterpart in the duality between Sine- 

Gordon soliton and the massive fermion of the Thirring model. l7 The spin and 

statistics connection for such systems has been elucidated by A. S. Goldhaber. 18 

We have a system with superselection rule sectors set by Dirac or Schwinger’s 

quantization condition. The superselection rule manifests itself in a striking 

group theoretical manner which makes the dyons distinctly different from the 

usual top. While in the latter only the Lie algebra is of importance, with the 

dyon, the self-adjointness of the Hamiltonian and rotational invariance, are 

realized only if the algebra of the system can be integrated to yield the group. 

This globality constraint is nothing but the monopole quantization condition. 19 

In this work, we extend the work of Ref. 14 to the general cases where the 

composite SU(2) monopole $ test particle, a SU(2) dyon, is embedded in a- com- 

pact gauge group G. 

We do not lose any nontrivial topological feature by restricting ourselves 

to the limiting case of dyons involving a point-singular monopole and a test 

particle with internal quantum numbers. We will proceed rather systematically 
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from the standard problem of the U(1) dyon to that of the SU(2) dyon which 

receiles here an improved treatment over Ref. 14. Then we go on to the 

natural extension of the SU(2) problem, namely when SU(2) is embedded in 

SU(3) in two possible ways, respectively the SO(3) and the U(2) embeddings. 

All these exactly soluble systems are cast into Nambu mechanics. The physi- 

cal motivation for studying this SU(3) extension is enticing. In the case of the 

SU(3)/U(2) dyon the resulting monopole quantization restricts the electric 

charge of the test particle to be quark-like. So the resulting Nambu system 

describes a very massive composite quark-monopole complex endowed with 

dynamical fermionic spin. Such a structure might be of eventual interest. In 

particular for such a SU(3) dyon we obtain the corresponding SU(3) top equations 

of motion in the form conjectured by Nambu. Our analysis readily generalizes 

to the instance of a G dyon. 

Our paper is organized as follows: In Section II, we introduce the U(1) 

dyon in its new garment as a Nambu mechanics. In Section III we first recall 

the essential results of the embedding SO(3) point singular monopole in a general 

compact Lie group. Then we set up the dynamical equations in the usual 

Hamiltonian mechanics. We consider the dynamics of the SU(2) and SU(3) dyons 

as Nambu mechanics of non-Abelian tops. Our results are in such a form that 

generalization to a G dyon is manifest, Finally in Section IV we discuss the 

possible advantages of the new formalism and its pending problems. 

II. THE U(1) DYON 

In many ways, magnetic monopoles may play a role in particle physics. 

On one hand, they are soliton solutions to gauge theories of weak and electro- 

magnetic interactions. They can also be identified with the endpoints of vortex 

lines which then serve as field theoretical building blocks for dual string 
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theories. 20 As non-Abelian analogs of Cooper pairs in a color supervacuum, 

theyDay play a controlling role in the confining plasma phase of the quark- 

gluon dynamics. 21 On the other hand, even if these physical pictures fail to 

materialize the possibility still exists that the relevance of their underlying 

algebraic structures will survive under a different guise. So it is hoped that 

when recast into a new mathematical framework, the explicit examples given 

here may yet lead to possible generalizations of monopole systems. These 

observations are justification enough for the reformulation of monopole 

dynamics into Nambu mechanics. 

In this work we deal exclusively with dyons by which we mean composites 

of an electrically charged particle moving in the field of a fixed monopole. As 

the kernel of a Nambu mechanics of dyons is present in the Abelian case, it will 

be our first concern to study the U(1) dyon. 

The dynamics of a nonrelativistic dyon has received ample treatment in the 

literature; we only gather the ingredients necessary for our work. 22 

Since a true dyon does not have bound states, to secure binding we shall 

assume an added nonelectromagnetic potential V(r) taken spherically symmetric 

and free of singularities for radii r > 0. 

The Hamiltonian of the system is 

H=& $- eX)2 + V(r) (2.1) 

with 
---t--L 

-A= g b-S n)(rXn) 
r{r2 - (7. g)2} 

(2.2) 

Notably 7x x differs from the field %= g?/r3 of a fixed monopole by the Dirac 

string singularity starting at the pole and ending at infinity along the unit direc- 

tion ‘i;‘. For our problem the group kinematical structure of the system is of 
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central importance. First, we identify the constants of motion, foremost 

among them, the angular momenta. & Due to the contribution -pG @ =eg) of the 

gauge field, the conserved angular momentum is 

3= FX(jT-eX) -pc (2.3) 

already considered by Poincare. 23 

The constraint 3 G = -p implies the motion of the test charge is confined to 

a cone. If we are to use the 3 as a new dynamical variable, we are naturally 

led to introduce an object complementary to -5’, the radial dilatation generator 

D=?. ip’-ex) . (2.4) 

This is so since 3 does not carry any information about the radial component of 

z. Then one can check that the Poisson brackets of the system can be cast, into 

a closed Lie algebra. 22 

(xi3xjt 
= 0 , 

(Ji,Xjt= ‘ijkxk , 

{Ji* Jjt= EijkJk 9 (2.5) 

{D, xii = -xi , 

{Ji, D\=O . 

So the corresponding group is the 3-dimensional symmetric group S3 made up 

of the Euclidean group E3 =R(3) x T3 of rotations and translations plus the di- 

latations . The irreducible representation of S3 are labelled by the “helicity” 

invariants 

3.;=0, &l/2, rtl, . . . . (29 6) 

And since 3 i= -eg, they provide an algebraic derivation of Dirac’s quantization 

condition. The latter is seen as a global superselection rule required for rota- 

tional invariance and self-adjointness of the Hamiltonian. 19 It implies the 
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fictitiousness of the Dirac string. Instead of the momentum variables T, we 

can&se f and D. Then 

Hz-1 
2mr2 

(D2+ J2 -p2) + V(r) . (2.7) 

Since{F’, J\= 0, we see that for fixed r2, the system is isomorphic to a 

symmetric top, wherefore the natural motivation to reformulate it as a Nambu 

mechanics. 

From the above ingredients, we deduce the following equations of motion 

-if=0 , V-8) 

. D r=- 
mr ’ (2.9) 

D=2H-2V-r$ . (2.10) 

The geometry of the motion leads us to define two angles 8 and $ such that 

3-F cos 8 =Jr (2.11) 

and 

rsin8 d=??* TX-Et . 
I3Gl 

(2.12) 

Due to the constraint cos 8 = -p/J, 8 is not an independent variable. From 

(2.12) we have 

&+ 
mr 

(2.13) 

So the equations of motion for 7 and Fare equivalent to the set (2.8) - (2~10) and 

(2.13). We note that besides the triplet 3, the variables r, D and $ form 

another triplet. So these kinematics of the dyon system naturally invite a refor- 

mulation into a Nambu mechanics. Yet the variables r, D, + are still unsuitable 

for that purpose. From Eqs. (1.1) and (1.2), any differentiable function F(xi) 
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serves just as well as a new coordinate. It follows that if an F(xi) can be found 

I suchthat F(xi) = 0, we then know its orbit to be restricted to a submanifold of 

the phase space, one defined by F(xi) = const. One such constant is clearly the 

Hamiltonian H, (2.7)) which defines the energy shell. Besides r and H, the 

remaining fifth constant of motion of our problem can be chosen to be the angu- 

lar variable 

+=+Jl' dr' 
r? f(r*) 

given as an Abelian integral where f(r) is given by 

( f(r)t2 = D2 = 2mr2{H -V(r)] - J2 + p2 (2.15) 

(2.14) 

Usually the five constants of motion are taken as 3, H and 1x1 = m IFx ?I . 

However + is a better choice than lx I since it is conserved in the SU(N) (NZ2) 

dyon problem while lx I is not. This point will be made clear in Section III. 

The equations of motion are now 

jL&&o (2.16) 

and the corresponding five constants of motion determine a one dimensional sub2 

manifold, the orbit of the six dimensional phase space. For our sixth Nambu- 

coordinate completing the set 3, H, +‘, we can define 

such that &l. 

/ 

r r) dr’ S=m - 
f (r ‘) 

(2.17) 

Exploiting the two triplet structure of the U(1) dyon kinematics, contact 

with Nambu mechanics can be established in the following manner. We denote 

the two triplets as (Jl, J2, J3) = P,, Q,, Rl) and P,+, H) = P,, Q,, R2). Then 

the equation for an arbitrary F = F (Q, P, R) is given by 

(2.18) 
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withH1=Q2=Q,andH2=R2=Hand 

-h (2.19) 

Then we get 

kn, Q~,R~] = 1, etc. (2.20) 

The above equations (2.18) - (2.20) realize Nambu mechanics for the U(1) 

dyon system. 

In subsequent sections, it will turn out that for systems with correlation 

between spatial and internal degrees of freedom, there exists a more convenient 

time variable 7 defined by 

T=y. 
Then instead of the t-derivative $’ = dF/dt, we make use of the T derivative 

(2.21) 

(2.22) 

It is of course easy to rewrite (2.18) - (2.20) into Nam.bu mechanics with the 

proper time variable T 

I? = [F,H~,H~] . (2.23) 

The only modification necessary is that P2 should be identified not with S but 

with 

u=/l‘+j (2.24) 

which obeys 

6=1 . (2.25) 

Next, we proceed to the instance of non-Abelian dyons. 
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A. Generalities 4, 

III. NON-ABELIAN DYONS 

In this section we reformulate in the context of Nambu mechanics a general 

class of non-Abelian top-like systems. They are given by the non-relativistic 

dynamics of a classical point particle with mass m and G-spin Ta in the field of 

a fixed SU(2) monopole embedded in a general compact semi-simple gauge group 

G. Ta are the generators of some representation of G. For this task we need 

to know all spherically symmetric 3-dimensional point monopole solutions for 

the simply connected universal covering g of G. This purely group theoretical 

problem has been analyzed by many people and has been in particular solved 

completely in a very simple and compact manner by Wilkinson and Goldhaber. 24 

Here we only gather the results relevant to our work. Generally one seeks static 

solutions in the Coulomb gauge Ao=O of the Higgs-Kibble field equations 

eijk j k DB =ie +,Di+ , [ 1 
i3V DiDi@ = z , 

Bi=&.. G 2 ijk jk ’ 

(3.1) 

where G 
CLV =a[&,~ - i$&/V] and DP+ = aP@ - ie AP, @ . [ 1 AP and + are matrix 

fields in some faithful representation of G. V(+) is the standard G invariant 

quartic polynomial. Specifically the point-monopole solutions are obtained in 

the London limit25 when 6V/6@ = -ff@ = 0 everywhere except at the singularity 

positioned at the origin. The simple recipe 24 for constructing these solutions 

comes from using a singular Abelian gauge 

XD= SXii 

r(l-5?. Z) 
(3.2) 
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with the Dirac string singularity pointing from the pole along 2 to infinity. Thus 

a sol$ion to Eq. (3.1) is 

G=@ 0 ’ 
(3.3) 

(p. and Q are constant matrices such that (N/8+).+ = 0 and Q, cPo = 0. Then 
0 [ 1 

the generalized Dirac quantization condition is given by 

ei471Q = L . (3.4) 

Provided the eigenvalues of Q are all integers or half-integers, the Dirac 

string is unobservable and with “G being simply connected, it can be removed by 

way of a singular gauge transformation to get to a no-string gauge. 

The spherical symmetry of the problem is underscored by the conserved 

angular momenta 

3=7x3-ier2B 

with ?=F- ex and the associated gauge covariant properties 

(3.5) 

[I 1 Ji, Jj = i E.. 1Jk Jk ’ 

[ 1 Ji, 7rj = i E.. ljkrk ’ (3.6) 

[ 1 Ji, @ =0 e 

The main result of Ref. 24 is to provide the necessary and sufficient conditions 

for transferring the solution (3.3) to a regular gauge A; with manifest spherical 

symmetry, i.e., 

[,i+Ti,A;] = i eijkAk _ 

[LifTi,@] = 0 
(3.7) 

when 2 = ‘Et x z and Ti generate some SU(2) subgroup of G. We shall use such 

radial gauge in the following examples of the SU(2) and SU(3) dyons. The above 
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summary constitutes the minimum knowledge we need. For further details on 

actuakdetermination of point monopoles for a general group G, we refer the 

reader to the literature and shall only quote the results needed below. 

B. SU(2) Dyon 

The equations of motion of a test particle with mass m and isospin Ti 

(i = 1,2,3) interacting with a SU(2) magnetic monopole are 14,16: 

1 ki=~ (3.3) 

eA7 T 

with 

pi - eAt Td eAy T c - 

The notation is self-explanatory. 

These equations can be derived from 

%‘(x,p,T) = <F,H> 

with 

H=+$ 
2 

+ V(r) 

where a generalized Poisson bracket is defined as 

<A,B> = {A,B)+ (A,B) . 

Here 

is the standard bracket and 

(3.9) 

(3.10) 

(3.11) 

(3.12) 

(3. 13) 

(3.14) 

(A,B) z eabc $ $- Tc 
a b 

(3.15) 
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is characteristic of classical true spin systems. 26 The latter involve only 

the variables Ta and no others. * This is certainly not the case for a rigid body 

or our SU(2) dyon since the Ti do not form a complete set of coordinates, 

neither in the kinematic nor dynamic sense. 

In the radial gauge and the London limit where the Higgs field is ‘rigid’, 

i.e., everywhere constant, we have 

% A;(x) = - ; ciak 2 
r 

for all y E R3-(0). This potential corresponds to the only spherically sym- 

metric point monopole for SU(2). 24 The conserved angular momentum is 16 

and since 

;j’=Tx jfT+T (3.17) 

JY;LT.; (3.18) 

the total angular momentum takes on integral or half-integral values depending 

on the tensor or spinor character of the representation of T. 

We define the angles 8 and 4 just as in the previous section. 8 and r$ fix 

the direction of F relative to xi. It is convenient to introduce three orthonormal 

vectors m’ 1, g2 and z3 such that 

and 

They satisfy 

iii1 = (-3x C) x 1 

1(Xx i) x ;I 
, 

iii3 = ; . 

(3.19) 

(3.20) 

(3.21) 

(3.22) m’.m’=(j 
i j ij 
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and 

zi xi% 1 2=iii3, etc. 

Next we define the variables wl, w2 and w3 by 

T = wlsl + w2iii2 + w3iiT3 . 

It should be noted that w3 is given by 

w3 = J cos 8 . 

After some manipulations we find that j?can be expressed as 

F;‘= w2 -* -ym + 
w1 f J sin 6 

1 iii+ 2 
Dm’ 

r r 3 

where D is given by 

D=?t.j?. 

Using (3.12), (3.16), (3.24), and (3.26) we have 

1 TX7 2 
H== F+- 

r2 
-t V(r) 

1 =- 
2mr2 

D2 + J2 - w; + V(r) . 

(3.23) 

(3.24) 

(3.25) 

(3.26) 

(3.27) 

(3.28) 

It is easy to check that the set of nine variables JI, J2, J3, r, +, D, WI, w2, 

and w3 constitutes independent variables defining the SU(2) dyon system. 

The nine equations of motion for ?‘, F and?i! are then equivalent to 14 

j,=i,=3,=0 , 

r=D’ . 
mr ’ D=2H-2V-rg , 

mr 

. w2w3 . w3w1 
y=z, w2=--7, and G3 = 0 . 

(3.29) 
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In Eq. (3.29) we recognize the U(1) problem in the subset {T, r, +, Df. The 

remaining set of {WI, w2, w3} relates specifically to the SU(2) problem. We 

note that while L2= (?xF)~ is conserved in the U(1) problem, it is no longer 

so here. We find L2=T2+2w1 Jsin6. T2, J and sin 0 are conserved but w1 

is not, hence L2 is also not conserved. 

Just as in Section II we are led to define new variables 

and 

s r r’ drf S=m - 
f 03 

where 

{f(r)}2 = D2 = 2mr2 (H-V(r)) - J2 + wi . 

We further define u and o by 

u=qq 

and 

(3 = tan -lwl+itw 
w2 J 3 

Then Eqs. (3.29) are equivalent to 

and 

(3.30) 

(3.31) 

(3.32) 

(3.33) 

(3.34) 

(3.35) 

B=l . 

This form of the equations allows an immediate transcription into Nambu 

mechanics. Here we have a three triplet structure of dynamical variables. 

The simplest identification is (P,, Q,, RI) = (Jl, J2, J,), (P,, Q,, R2) = (S, Cp, H) 

and (P,, Q,, R3) = (u, o, 6) and HI= 9 and H2=H. In general we can identify the 
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eight variables Q,, Q,, PI, P2, P3, RI, R2 and R3 with any independent 

eight functions of the @, u, (T, H, c, 8, 3. By setting Q,=S, HI=PI and H2=R1 

any arbitrary differentiable function f(P, Q, R) will obey Eq. (1.7). 

An alternative and more elegant choice of variables is provided by the set 

a={T, U,+,H,Gi where G=(wl,w2,w3) and 

u = /’ r,“fr,:I, * (3.36) 

The motivation is apparent. The first six variables constitute the U(1) dyon 

system while z describes the internal rotation of the isospin. The nine equa- 

tions of motion in (3.29) can be reexpressed as 

$l = ?2 = 23 = 0 , 

&g&) f ;=1, (3.37) 

* * 
w1 = w2w3 , w2 = -w3w1 and G3 = 0 

where * -symbol denotes the T-derivative introduced at the end of Section II. 

It should be noted that % really satisfies the tlSU(2)-topl” equation of 

motion: 
* 

Ilwl = (I3 -I2) w2w3 9 

12GG2 = (I 1 -13) w3w1 , 

* 
I3w3 = (I2 -11) w1w2 

(3.38) 

with 

I3 = 25 = 212 . (3.39) 
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It is now easy to cast (3.37) into the form of Nambu mechanics. By making 

the identifications - 

tp,, Q,, R1) = (J,, J2, J3) , 

P2,Q2,R2) = UJ,+,H) i 

P,, Q,, R3) = tw1sw2, w3) 9 

12 2 2 H1=Fw1+~2+~3 
( 1 + 6, 

(3.40) 

and 

H =‘w2+H 223 ’ 

we get to 

;=$ W, H1, Hz) 

n=l W,, Q,, Rn) ’ 
(3.41) 

In Eq. (3.38) we have observed that % behaves just like the angular mo- 

mentum vector of a force-free rigid body in the body fixed frame. The coor- 

dinate system defined by gl, g2 and s, corresponds to the body fixed frame 

of a rigid body. The interconnection between internal and spatial motions of 

the test particle rests in the space-dependent definition of i;; and in the redefi- 

nition of the time variable. 

C. The SU(3) Dyon 

We now proceed to the SU(3) dyon, which turns out to have some inter- 

esting new structure. 

By a SU(3) dyon we understand the composite of a SU(2) monopole embedded 

in the group SU(3) and a test particle carrying a SU(3) unitary spin Aa. From 

the preliminaries in Section III. A, we know that all the SU(3) monopole solu- 

tions must be invariant under simultaneous spatial and isospatial rotations 
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generated by r+ T. There are two distinct embeddings of SU(2) into SU(3), 24 

the _I1U spin” U(2) - SU(2) @ U(1) case with?i? identified with (l/2 hl, l/2 h2, 

l/2 h3) and the “nuclear physics” SO(3) case with T= (A7, -h5, h2). 

The corresponding nonrelativistic Hamiltonian for the SU(3) dyon is then 

given as 

+ V(r) (3.42) 

The c-number l/2 ha (a= 1,2, . . . , 8) is the unitary spin carried by the test 

particle. V(r) is a spherically symmetric binding potential. 

The equations of motion are derived from 

@ = <F,H> 

where the generalized Poisson bracket is given by 

(3.43) 

<A,B>=$w+ 2 2f i3A i3B -- 
j=l ‘txj, Pj) a,b, c=l abc dh,. dIb ‘c. ’ (3.44) 

with f abc being the totally antisymmetric structure constants of SU(3). From 

Eqs. (3.42) and (3.43) we obtain 

1 Si = f;; , 

f Ab h 
abc j 2 

(3.45) 

which gives 

‘a m.Z$=ekG?. --g 
J1J2 i 

(3.46) 
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where 

GFj = a.Aa - ajA” + efabc A! A: . 
1 J 

(3.47) 

Following the detailed analysis of Corrigan et al. 
27 the two distinct ansatzes for -- 

the asymptotic forms of the gauge potentials are 

(4 
eA a’a . 

i 2 - = ’ ~1, “ill , [1 1 

‘a 
Ta=y, a= 1,2,3 , 

and 

eA~~=i[$l,J,o~ , 

(3.48) 

(3.49) 

T = th72-h5, $) - 

For the point singular limit of interest here, the above forms are valid over the 

whole space. We have for cases (a) and (b) 

‘a eAa - = - eia.f Tax1 
i 2 r2 ’ 

(3.50) 

The conserved angular momentum is ;j’=? x ‘F;+ ?I! which obeys the O(3) 

algebra <Ji, Jj> = E.. J and?! identified with the Aa1s according to the respective 
i&k 

._ 
embeddings. 

It follows from Eqs. (3.42) and (3.50) that 

H=$-(s+y)2+V(r) . (3.51) 
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which is identical to the SU(2) problem. The structure of the Poisson brackets 

for T&‘;;‘and T is also exactly that of the SU(2) dyon problem. Thus there is no 

difference between the SU(3)/U(2) and SU(3)/SO(3) dyons as far as the quantities 
+--D 
r, p and ‘;i; are concerned. As for the solutions-for the remaining SU(3) gener- 

ators, we select to analyze in detail the U(2) embedding case. Our motivation 

is as follows. The SU(3)/SO(3) monopole is a stable pure monopole and the 

quantization condition assigns to the test particle multiplet integral charges. So 

this system differs minimally from the SU(2) problem. On the other hand, the 

SU(3)/U(2) dyon is endowed with a more interesting new structure. Indeed its 

monopole is colored as it carries both electromagnetic and isomagnetic charges 

with the consequence that the quantization condition is no longer Dirac’s. The 

charges of the test particle are then quark-like. 27 So this SU(3) dyon is an 

object bearing both quark-like quantum numbers and dynamical half-integral 

. - spin. 

Denoting Ta= A,/2, a = 4,5, , . . ,8, the equation (3.45) becomes 

or 

where 

fa = fabcKbTc = <T,,K> 

1 111r2 {Jb - (7. ;)Gb) , b=l,2,3 

0 , b=4,5,6,7,8 

and 

K = + KbJb = ,ir2 (7 x $)2 

(3.52) 

(3.53) 

(3.54) 

(3.55) 
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The second equality in Eq. (3.53) follows from the fact that 

- 2 
H=K+m+V(r) . 

2mr2 
(3.56) 

To make an appropriate choice of isospin variables, we go to the “body 

fixed frame. I’ As 3 is conserved, we can, without loss of generality, fix -3’ to 

be parallel to the third axis. In that system, 7 and G are 

0 

3= 0 

0 

(3.57) 

J 

and 

sin 8 cos # 

;= ( i sin 6 sin $ 

cos 0 

. Then nil, 2 m’ and m’ 3 are 

?i! and % are related by 

T1 

o( 
cos cp -sin C$ 0 

T2 = sin $I cos$ 0 

T3 0 i 0 1 

(3.58) 

where w 1, w2 and w3 are given by (3.24). wl, w2 and w3 are the isospin vari- 

ables in the body fixed frame. 
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We define the variables w4, w5, . . 0, w8 which takes the place of 

.T4, TF o . . , T8 as follows: 

k2g Em 
2 3e2 3w 

, 

(3.61) 

w= 

and 

T* =w* , (3.62) 

D{ s being Pauli matrices. The definitions (3.61) and (3.62) should be regarded 

as the isospinor and isoscalar variants of (3.60), respectively. The decompo- 

sition of T1,T2, . . . , T8 into a triplet 5, a complex doublet W and a singlet w8 

corresponds to the SU(2) decomposition of an SU(3) octet: 

8=3+2+2+1 . 

Now it turns out that W and w8 satisfy 

* - 
w=;w3a3 w (3.63) 

and 
* 

w*=o . 

The triplet G of course satisfies 

(3.64) 

* * 
w1 

* = w2w3 , w2 = -w3w1 and w3=o . (3.65) 

It is straightforward to recognize that (3.63), (3.64) and (3.65) can be combined 

in a simple form 

Ga = f 
8G1 3G2 

abc=- b &c ’ 
a=l,2 ,-**2 8 (3.66) 
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where 

- 1* 2 
G1=Z a=lWa c 

and 

G z1w2 
223’ 

Equation (3.66) could indeed be called the “SU(3) top” equation. 

By making the identifications 

O+ u2s u3) = (J,, J2s J3, , 

(vl,v2,v3) = PsQ,~~) 9 

HI = Gl -I- Q 

and 

H2=G2+H , 

we are then led to the generalized Nambu mechanics 

(3.67) 

(3.68) 

(3.69) 

(3.70) 

(3.71) 

(3.72) 

(3.73) 

where F is an arbitrary differentiable dynamical quantity. In Eq. (3.73) 

u4,u5,*..9 u8 and v4, v5, . . . , v8 are regarded as the frozen degrees of freedom 

and reflect the three dimensionality of physical space. We should also mention 

that an equation of the form of (3.73) was suggested to us by Nambu as the 

natural generalization of his original scheme. 28 It is very pleasing to see such 

a realization among n’on-Abelian dyon systems as we recall Dirac’s invitation 

to exploit the kinship between mathematical and physical structures, a discourse 

which prefaced his celebrated introduction of monopoles into theoretical physics. 29 

The form (3.73) of the SU(3) dyon dynamics then invites the abstract algebraic 
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generalization in which none of the u’s, v’s, and w’s are frozen out. What 

would be a physical realization of such an extension? -c, 
IV. FINAL REMARKS 

As evidenced by studies of dynamical groups and supersymmetries, the 

underlying Lie algebra plays an essential role both in the formulation and the 

solutions of dynamical problems. It is a striking feature of Nambu mechanics 

that the Lie algebraic structure appear at the very level of the equations of 

motion. Another notable feature is the equal status of the space-time and 

internal symmetry dynamical variables. This has all the hallmarks of a unified 

theoretical framework. Indeed while the generalized Poisson bracket structure 

for the dyons looks rather unnatural both in the Dirac formalism or in pseudo- 

mechanics, no such an objection can be raised against the Nambu brackets. Of 

course to achieve this uniform symmetry with respect to all the variables in the 

new mechanics, a price must be paid. In general, our classical intuition is lost 

which may not be a handicap if one is seeking to generalize quantum mechanics 

not via any correspondence principle but, say, through some algebraic struc- 

tures and their deformations. 30 In the examples considered in our work, the 

choice of dynamical variables and conserved quantities is relatively easy since 

we understand the physics behind our systems and can solve for the mathematical 

structure. This removes some of the arbitrariness of the choice of dynamical 

quantities inherent to Nambu mechanics. Though we only consider the instance 

of the U(l), SU(2) and SU(3) dyons, our treatment makes obvious the structure 

of Nambu mechanics of the SU(N) and the G dyons. Namely if G 1 SU(2) with 

g abc Wv=L..., n) are the structure constants, then defining the wa in 
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the body fixed frame, we have 

4 1 2 G2=Z~3 (4-l) 

(4.2) 

(4.3) 

and 

Hl=Gl+ 6, , H2 = G2 + H 

then the Nambu equations of motion are 

F*=C 3F aH1 aH2 --P 
gabc 3xa &xb &xc ’ x=u, v, w 

In the introduction we give the main motivations for reformulation of the 

dynamics of dyons in the new mechanics. There the gauge field degrees of 

freedom are frozen down to a static potential. To go to a Nambu field theory is 

no easy task. As a first step beyond the Keplerian systems studied here, it 

would be natural to go over to the system of a Nambu string with monopoles at 

their ends. 31,20 Here the gauge field is dynamical but still frozen into the line 

geometry of a string. 

The hope in any reformulation of old problems in a new language lies in new 

possibilities which might show up in the new context. In the dyon systems 

studied here the correlation between internal symmetry and space-time degrees 

of freedom shows a richness and beauty of algebraic structures. Seen as Nambu 

mechanics, do they suggest completely novel algebraic dynamical structures? 

The generalized top-like structures we have obtained here are certainly sugges- 

tive. Indeed Nambu mechanics still has to come of age; its relevance awaits 

further and more radical illustrations than those provided here. Moreover the 

quantization of dyons in the new formalism should be studied. Already at the 

classical level of the dyons we see inviting connections of the new mechanics to 

dynamical groups, 32 to pseudomechamcs, 5 and in a larger context to the rich 
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symplectic structure 33 of the usual canonical formalism. We also note the 

analogy : between dyon systems with Yang-Mills34 and gravitational c, 

instantons; 35 would a Nambu statistical mechanics of non-Abelian tops 

be helpful in our understanding of the physical vacua? 21 Our investigations 

are continuing in these directions. -36 
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