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Abstract

We investigate the use of approximate Bayesian neural networks (BNNs) in modeling hundreds of time delay
gravitational lenses for Hubble constant (H0) determination. Our BNN was trained on synthetic Hubble Space
Telescope quality images of strongly lensed active galactic nuclei with lens galaxy light included. The BNN can
accurately characterize the posterior probability density functions (PDFs) of model parameters governing the
elliptical power-law mass profile in an external shear field. We then propagate the BNN-inferred posterior PDFs
into an ensemble H0 inference, using simulated time delay measurements from a plausible dedicated monitoring
campaign. Assuming well-measured time delays and a reasonable set of priors on the environment of the lens, we
achieve a median precision of 9.3% per lens in the inferred H0. A simple combination of a set of 200 test lenses
results in a precision of 0.5 km s−1 Mpc−1 (0.7%), with no detectable bias in this H0 recovery test. The
computation time for the entire pipeline—including the generation of the training set, BNN training and H0

inference—translates to 9 minutes per lens on average for 200 lenses and converges to 6 minutes per lens as the
sample size is increased. Being fully automated and efficient, our pipeline is a promising tool for exploring
ensemble-level systematics in lens modeling for H0 inference.

Unified Astronomy Thesaurus concepts: Hubble constant (758); Cosmology (343); Bayesian statistics (1900);
Hierarchical models (1925); Strong gravitational lensing (1643); Publicly available software (1864)

1. Introduction

The recent widening of the “Hubble tension” signals the
need for rigorous tests of systematics in all cosmographic
probes. The discrepancy in Hubble constant (H0) measurements
between early- and late-universe probes now lies at the 4–6σ
level (Verde et al. 2019). Particularly valuable in this context
are strong gravitational time delays—observed when light from
a variable source is lensed by a massive foreground object,
creating multiple images with relative delays in photon arrival
times (Refsdal 1964). As time delay cosmography is fully
independent of H0 determination methods using the local
distance ladder and the cosmic microwave background (CMB),
it can serve as a check against sources of bias that may be
affecting either method.

The H0 Lenses in COSMOGRAIL’s Wellspring (H0LiCOW)
Collaboration inferred H0 to 2.4% precision using six lenses in the
flat Lambda cold dark matter (ΛCDM) cosmology (Wong et al.
2019). The uncertainty increases to 7%, however, when the
assumptions on the radial mass density profile of the lenses are
relaxed and one additional lens is included (Birrer et al. 2020).
Further folding in the external information from 33 Sloan Lens
Advanced Camera for Surveys galaxy–galaxy lenses without time
delays (Bolton et al. 2008; Auger et al. 2009; Shajib et al. 2020b),
the precision improves to 5% assuming that the deflector galaxies
follow the same population statistics. According to Birrer & Treu
(2020), a sample size of 40 time delay lenses and 200 galaxy–
galaxy lenses can enable 1.2%–1.5% precision necessary to
resolve the H0 tension.

The current modeling cycle in time delay cosmography does
not scale well to the prospects of upcoming large-scale surveys.

The Legacy Survey of Space and Time (LSST) at the Vera
Rubin Observatory is expected to discover tens of thousands of
lens systems, among them hundreds of lensed quasars (Oguri &
Marshall 2010; Collett 2015). To date, time delay cosmography
has relied on a time-consuming and manual forward modeling
of observations. This approach takes several months under
expert monitoring. With automation efforts, which are under-
way, the time may be reduced to several weeks (Shajib et al.
2019).
The efficiency issues aside, the current method of fine-tuning

each lens model on a case-by-case basis makes it difficult to
conduct global sensitivity tests on the model assumptions. See
Shajib et al. (2019) for a uniform forward modeling of 13
quadruply lensed quasars (quads), among the first efforts to
capitalize on the self-similarity of quads for automated (and
thus consistent) lens modeling. A joint inference over hundreds
of lenses requires a computationally efficient method with a
uniform approach to modeling, so that systematics can be
probed in an ensemble of lenses within reasonable time.
Bayesian neural networks (BNNs) offer an efficient alter-

native to forward modeling (Denker & LeCun 1991). They are
a probabilistic variant of deep neural networks, which have
demonstrated state-of-the-art performance in extracting highly
abstract information from complex image data. Hezaveh et al.
(2017) and Levasseur et al. (2017) demonstrated the efficacy of
BNNs in accurately and precisely characterizing the lens model
parameter posterior probability density functions (PDFs) for
individual lenses, assuming a singular isothermal ellipsoid
(SIE) lens model. Not only do BNN-based methods preclude
the need for human supervision, once trained, a BNN model
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can be applied to thousands of lens systems within seconds on
a single GPU.

This paper connects the progress in BNN-based lens modeling
to the H0 inference stage, by extending BNN lens modeling to use
all the features in a time delay lensed active galactic nucleus
(AGN) system and combining the posterior PDFs from that
modeling in an industry-standard joint inference of H0 from a
plausible near-future ensemble.

We are guided by the following questions:

1. Can the BNN accurately characterize the individual lens
model posterior PDFs, given our model assumptions?

2. If so, do the BNN-inferred lens model posterior PDFs
enable unbiased H0 recovery when propagated into a joint
H0 inference over 200 lenses?

3. How sensitive are the H0 predictions to the factors that
are often considered when selecting lenses for follow-up,
namely, the exposure time, the lensed image configura-
tion, and the Einstein ring brightness?

4. Is our method efficient enough to handle large-scale tests
of systematics? What is the net speed increase over
traditional methods?

The goal of accurate and precise H0 recovery places extra
demands on lens modeling. This drives us to relax some of the
assumptions made in the previous literature on lens models that
are input to neural networks. We adopt the power-law elliptical
lens mass distribution (PEMD) (Barkana 1998), a more complex
form of the mass density profile than the fixed-slope SIE model
used by Hezaveh et al. (2017), Pearson et al. (2019), and Schuldt
et al. (2021) for their neural networks. PEMD is the model family
currently used by the H0LiCOW and Time-Delay Cosmography
(TDCOSMO) collaborations in their time delay cosmography
analyses (Wong et al. 2019; Birrer et al. 2020).

H0 inference also requires precise source position recovery.
As discussed in Birrer & Treu (2019), the precision required on
the source position is on the order of milliarcseconds. The
ability of BNNs to constrain source positions to this level of
precision has not yet been tested, but the accuracy of the
predicted time delays (and hence the inferred H0 value) will
depend critically on this.

Lastly, we include the lens light in the images. In Hezaveh
et al. (2017), the lens light was removed from the images via
independent component analysis before the images were passed
into the neural network for training. Pearson et al. (2019) saw a
34% reduction in accuracy of lens model recovery for images
with lens light included, but report that multiband imaging
could alleviate the decrease in performance. In the present
study we restrict ourselves to a single Hubble Space Telescope
(HST) infrared (IR) band and postpone the investigation of
multiple bands to further work.

In this paper, we demonstrate that BNN lens modeling
successfully meets the above performance requirements defined
by time delay cosmography. Given our model assumptions,
BNNs can, in fact, characterize the posterior PDF with
sufficient accuracy, so as to recover H0 without bias from a
joint 200-lens inference. The source code we developed for our
work has also been released for public use. The methodology
and software presented in this paper are inherently versatile and
allow extensions in many directions, including the hierarchical
inference setup we developed in Wagner-Carena et al. (2020).
They promise to become core infrastructure in time delay
cosmography, as the cosmology community prepares to beat

down systematics for a large sample of lenses due to be
available in a few years’ time.
This paper is organized as follows. Section 2 details each

step of our automated H0 inference pipeline. In Section 3, we
report H0 recovery results on a set of 200 test lenses under
varying noise levels, image configurations (double versus
quad), and Einstein ring brightness. Section 5 places our
findings within the larger context of BNN-aided time delay
cosmography and outlines next steps.

2. Methods

This section details the steps used for constructing an H0

inference pipeline with a BNN as the lens modeling engine,
beginning with a brief theoretical background of time delay
cosmography in Section 2.1. In Section 2.2, we state our
assumptions about the lens population, instrument optics,
observation conditions, and cosmology—all of which we used
to simulate the lensed AGN images and time delays. Then, in
Section 2.3, we explain how the BNN models the individual
lens model posteriors. The BNN-inferred lens model posterior
becomes propagated into H0 inference; Section 2.4 describes
this process on an individual lens level and Section 2.5 on the
joint-sample level. The entire pipeline is illustrated in Figure 1
as a flowchart and a probabilistic graphical model (PGM).
The implementation of the whole pipeline, including the

BNN lens modeling and H0 inference, is available in the open-
source Dark Energy Science Collaboration (DESC) Python
package H0RTON.4 To generate the training set, we developed
another DESC Python package BAOBAB,5 which wraps around
the multipurpose lens modeling package LENSTRONOMY6

(Birrer & Amara 2018) to render the images and compute the
time delays.

2.1. Time Delay Cosmography

Let us begin by reviewing the basic principles of time delay
cosmography (Refsdal 1964). Readers are referred to recent
reviews, e.g., Treu & Marshall (2016), for more details. When
light rays from a background source are deflected by some
foreground lens, the light travel time from the source to the
observer depends on both their path length and the gravitational
potential they must traverse. Assuming a single thin, isolated
lens, the excess time delay of an image at position θ originating
from a source at position β relative to an unperturbed path is

( ) ( ) ( )q b q bf= Dt
D

c
, , , 1t

where

⎡
⎣⎢

⎤
⎦⎥( ) ( ) ( ) ( )q b q b qf y=

-
-,

2
2

2

is the Fermat potential (Schneider 1985; Blandford &
Narayan 1986) defined for the lensing potential ψ(θ), and
DΔt is the time delay distance (Refsdal 1964; Schneider et al.
1992; Suyu et al. 2010). The time delay distance is defined as

( ) ( )º +DD z
D D

D
1 , 3t lens

d s

ds

4 http://github.com/jiwoncpark/h0rton
5 http://github.com/jiwoncpark/baobab
6 https://github.com/sibirrer/lenstronomy
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where zlens is the lens redshift and Dd, Ds, Dds are the angular
diameter distances from the observer to the lens, the observer to
the source, and from the lens to the source, respectively.

If the background source and the foreground lens are well
aligned, we observe multiple images of the same background
source. The position of the source with respect to the inner
caustic determines whether there are two images, making the
lensing system a “double,” or four images, making it a “quad.”
The time delay between any pair of such lensed images is the
difference of their excess time delays in Equation (1):

[ ( ) ( )] ( )q b q bf fD = -Dt
D

c
, , , 4i j

t
i j,

where θi, θj are the positions of images i, j in the image plane.
If the source is variable, like an AGN, it is possible to measure

the relative time delayΔti,j by monitoring the fluxes of the images
(Vanderriest et al. 1989; Schechter et al. 1997; Fassnacht et al.
1999; Kochanek et al. 2006; Courbin et al. 2011). The lensing
potentials at the two image positions ψ(θi), ψ(θj) and the source
position β can be determined by lens modeling, yielding a model
of the relative Fermat potential Δfi,j. Given the measured relative
time delay and the constrained relative Fermat potential, we can
constrain the time delay distance via

( )
f

=
D

D
DD
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i j
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,

,

Being inversely proportional to the absolute distance scale, H0

scales with DΔt as

( )µ D
-H D . 6t0

1

2.2. Simulated Data Set and Model Assumptions

The BNN, our lens modeling tool, requires a large training
set that spans the target parameter space with sufficient density.
The training set is necessarily synthetic because (1) fewer than

100 lensed AGN have been discovered to date and (2) it defines
the models we assume for the lens mass, lens light, and source
profiles during the inference stage. Our training set consists of
512,000 images, and we validate and test independent and
identically distributed sets of 512 and 200 lenses, respectively.

2.2.1. Profile Assumptions

This study requires model profiles that are flexible enough to
describe plausible lensing systems well but not too complex, so
as to allow for simple interpretations in the basic parameter
recovery tests. Earlier work on neural network-based lens
modeling had focused on the SIE lens mass profile (Hezaveh
et al. 2017; Levasseur et al. 2017; Pearson et al. 2019; Schuldt
et al. 2021). As an update to this model, we allow the 3D
power-law mass slope γlens to vary by adopting the PEMD
(Barkana 1998). Note that the precision in γlens roughly
translates to the precision in H0, so demonstrating that we can
recover γlens is crucial. The PEMD profile can be written in
terms of six parameters as

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟( ) ( )k

g q
=

-

+

g-

x y
q x y q

,
3

2
, 7Elens

lens
2 2

lens

1 lens

where qlens is the projected axis ratio and θE is the Einstein
radius chosen such that it encloses the mean surface density in
the spherical limit of qlens= 1. The coordinates (x, y) are the
result of rotating the sky coordinates by the lens orientation
angle flens, so that the x-axis and the major axis of the lens
align, and then centering them at the lens position (xlens, ylens).
We also include the external shear component, parameterized
by the shear modulus γext and the shear angle fext.
The lens galaxy light and the host galaxy light in our

simulations follow the elliptical Sérsic distribution, which can

Figure 1. Left: illustration of the H0 inference pipeline in the form of a flowchart. Right: the dependence relation shown as a PGM. Dots refer to delta functions, or
fixed values; shaded ovals refer to observed values, or data; and unshaded ovals refer to random variables.

3



be expressed in terms of seven parameters as
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where Ie is the surface brightness amplitude at the half-light
radius R, k is a constant depending on the Sérsic index n such
that R encloses half of the light, and q* is the axis ratio. The
coordinates (x, y) are as defined for Equation (7). As a simple
approximation, we assume the lens light to share the centroid
with the lens center. We parameterize the surface brightness
amplitude I* in terms of the magnitude m* and convert into
amplitude units using the instrument zero-point in order to
render the image.

The AGN was modeled as an unresolved point source. To
simulate microlensing, we added 10% Gaussian errors to the
magnifications of the lensed AGN images.

The distribution of the model parameters in our training set
serves as the implicit prior for our BNN. For the PEMD lens
mass, external shear, and Sérsic lens light, we chose parameter
distributions slightly broader than those in the Time Delay Lens
Modeling Challenge (TDLMC; Ding et al. 2018). The
distribution of the AGN host galaxy parameters was based on
the estimates of source galaxy populations in galaxy–galaxy
lenses presented in Collett (2015). See Table 1 for the specific
choice of hyperparameters defining the implicit prior.

When the true input model parameters were drawn from the
implicit prior, the ellipticities were parameterized in terms of
the axis ratio qlens and complex orientation angle flens as
defined above. Similarly, the external shear was parameterized
in terms of the shear modulus γext and complex shear angle
fext. But the 2π-periodic property of the angles introduces
degeneracies in target space that makes the BNN prediction
task ill-defined. For training the BNN, we thus parameterized
the target lens mass ellipticity and external shear in terms of the
coordinate values in their respective spaces:
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Whereas there are known empirical covariances between
subsets of our model parameters, such as a positive correlation
between the ellipticities of lens mass and lens light, we assume
the parameters to be a priori independent. This has the effect of
reducing the efficiency of our training set by including some
less plausible lenses in the BNN training. If the trained BNN
were to be tested on real data, there would indeed be greater
motivation to encode some covariance in the training set. The
independence assumption is a safe choice for the purposes of
our study, however, as it prevents the BNN from relying on the
prescribed covariances when it generates its predictions. Even
in applications when a more realistic training set is necessary,
one should exercise caution when encoding the covariances;
implicit priors that are too tight can introduce bias in the BNN
parameter inference as well as hierarchical inference. In fact, as
we demonstrated in Wagner-Carena et al. (2020), broad
implicit priors are generally advised because the wide support

aids in numerical stability when performing importance
sampling for hierarchical inference.
Throughout this paper, all magnitudes are given in the AB

system with the WFC3/F160W filter zero-point of 25.9463.

2.2.2. Instrument and Observation Conditions

We simulated images obtained with the HST using the Wide
Field Camera 3 (WFC3) IR channel in the F160W band,
following the design of TDLMC. Dust extinction was not
included, as it only has a weak effect in this filter. For simplicity,
we approximated the point-spread function (PSF) drizzling
process by convolving the unconvolved image with the drizzled
HST PSF template provided as part of the TDLMC Rung 1. The
effective pixel size of this drizzled PSF was 0.08″ and we fixed
the image size to 64× 64 pixels. The PSF FWHM was in the
range of 0.14″∼ 0.16″.
The PSF-convolved, noiseless images were stored so that

noise could be added on the fly during training and testing. This
setup exposes the network to different noise realizations of the

Table 1
Parameter Distributions

Parameter Distribution

Lens redshift zlens ∼ N(0.5, 0.2)
Source redshift zsrc ∼ N(2, 0.4)

Lens Galaxy

Elliptical power-law mass
Lens center (″) xlens, ylens ∼ N(0, 0.07)
Einstein radius (″) θE ∼ N(1.1, 0.1)
Power-law slope γlens ∼ N(2.0, 0.1)
Axis ratio qlens ∼ N(0.7, 0.15)
Orientation angle (rad) flens ∼ U( − π/2, π/2)

Elliptical Sérsic light
Magnitude mlens* ∼ U(19, 17)
Half-light radius (″) Rlens* ∼ N(0.8, 0.15)
Sérsic index nlens* ∼ N(3, 0.55)
Axis ratio qlens* ∼ N(0.85, 0.15)
Orientation angle (rad) flens* ∼ U( − π/2, π/2)

Environment

External shear modulus γext ∼ U(0, 0.05)
Orientation angle (rad) fext ∼ U( − π/2, π/2)

External convergence κext ∼ N(0, 0.025)

Host Galaxy

Elliptical Sérsic light
Host center (″) xsrc, ysrc ∼ U( − 0.2, 0.2)
Host magnitude msrc ∼ U(25, 20)
Half-light radius (″) Rsrc ∼ N(0.35, 0.05)
Sérsic index nsrc ∼ N(3, 0.5)
Axis ratio qsrc ∼ N(0.6, 0.1)
Orientation angle (rad) fsrc ∼ U( − π/2, π/2)

AGN

Point source
AGN magnitude mAGN ∼ U(22.5, 20)

Note. The distribution of input parameters in the training, validation, and test
data. N(μ, σ) denotes a normal distribution with mean μ and standard deviation
σ and U(a, b) denotes a uniform distribution with bounds a and b.
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same underlying system, which is known to help with
generalization. It also precludes the need to generate new
images for different noise levels. During training and testing,
the stored noiseless images were scaled appropriately to
simulate a new exposure time and BAOBAB efficiently
computed the noise map on the GPU. The noise model
included the background, readout, and Poisson CCD noise. We
used the read noise of 4 e− and CCD gain of 2.5 e−/ADU,
following the mean instrument statistics reported for WFC3/IR
F160W (Dressel 2019). The sky brightness was calculated to be
22 mag arcsec−2 based on the zodiacal light estimation in
Giavalisco et al. (2002), for the effective F160W filter
wavelength of 1526.91 nm. The median signal-to-noise ratios
(S/Ns) for the 0.5, 1, and 2 HST orbits were 4, 9, and 20,
respectively, where signal was taken to be the sum of the pixels
of the image with the lens light subtracted. Figure 2 displays
images in the training set, with a range of exposure times and
Einstein ring brightness.

2.2.3. Assumptions beyond the Images

The lens model parameters can be constrained from the
simulated imaging observables alone, but in order to perform
cosmological inference, we need to assign additional informa-
tion to each lensing system: the redshifts, density of matter in
the environment, and the time delay measurements.

The lens and source redshifts were drawn independently
from Gaussian distributions centered at 0.5 and 2, respectively,
as presented in Table 1. We assumed the availability of
spectroscopic redshifts such that, during inference, the true lens
and source redshifts were assumed to be known.

In principle, all masses in the lens environment and line of
sight contribute lensing effects. We approximate the entire set
of lensing mass as a single strong PEMD perturber plus
external shear and convergence (κext). Effectively the density
of a uniform mass sheet at the redshift of the main deflector,
κext, affects the observed time delays but cannot be constrained
by the image positions and fluxes—a phenomenon called
“mass sheet degeneracy” (MSD) (Falco et al. 1985). For
completeness, it should be noted that there is a separate aspect

of MSD that is internal to the main deflector’s mass profile,
which can be constrained by kinematic tracers of the
gravitational potential (Koopmans 2004; Saha & Williams
2006; Schneider & Sluse 2013; Birrer et al. 2016, 2020; Shajib
et al. 2020a). We do not consider this internal mass sheet in our
paper.
Failure to account for κext can bias the H0 inference. The

effect of κext on DΔt and H0 is as follows:

( )
k

µ µ
-

DD
H

1 1

1
. 10t

0 ext

In time delay cosmography, κext is often estimated to a few-
percent level using tracers of the large-scale structure, such as
galaxy number counts (Rusu et al. 2017) or weak lensing of
distant galaxies by all the mass along the line of sight
(Tihhonova et al. 2018). Given our focus on assessing the
impact of BNN lens modeling on H0, however, we simply
place a prior on κext. The images are generated with κext= 0
and we draw a true κext from

( ) ( )
k-

~ N
1

1
1, 0.025 , 11

ext

which, to first approximation, corresponds to

( ) ( )k ~ N 0, 0.025 12ext

and translates to an uncertainty of 2.5% on DΔt. During
inference, we use the exact input distribution in Equation (11)
as the κext prior. While Equations (11) and (12) are similar
distributions in κext, we chose the former because it amounts to
a Gaussian convolution in the DΔt posterior, by the relation in
Equation (10), whereas the latter introduces non-Gaussianities
in the DΔt posterior. Note that this choice is strictly numerical
and not motivated by the physics. In Section 3, we discuss
further the impact of non-Gaussianities in the individual DΔt

posteriors on the combined H0. Centering κext at zero is also an
artificial choice. The mean κext for real lines of sight likely does
not vanish for an ensemble of systems due to selection effects,
e.g., lens galaxies tend to lie in groups (Blandford et al. 2001),

Figure 2. Gallery of eight images from our simulation, in log intensity scale. From the top row to the bottom, the exposure time varies as 0.5, 1, and 2 HST orbit(s).
The columns are ordered such that, from left to right, the magnitude of the Einstein ring decreases. The eight images have been sampled from the test set, but this also
serves as a visualization of the training set, as the test set and training set images are drawn from the same distribution in our study. The same color scale is used across
the exposure times, for each lens.
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causing a slight preference for systems with overdense lines of
sight (Collett & Cunnington 2016).

To simulate measurements of time delays, we artificially
added Gaussian errors of 0.25 day to the true time delays,
corresponding to zero bias and the smallest possible random
errors under current monitoring strategies (Ding et al. 2018).
We assumed such an optimistic scenario in time delay
measurements so that the H0 inference precision would be
dominated by the capabilities of the BNN lens modeling rather
than the time delay measurements.

The true cosmology was a flat ΛCDM cosmology with H0=
70 km s−1 Mpc−1 and Ωm= 0.3. Throughout this study, Ωm

was assumed to be known and fixed so only H0 was
inferred.

2.3. Automated Lens Modeling with BNNs

What sets our method apart from the H0LiCOW method is
that the lens model is estimated by the BNN rather than by
forward modeling the images. As indicated in Figure 1, the
trained BNN takes a test image and outputs the posterior over
the target model parameters. The resulting lens model posterior
is propagated into H0 inference. There were 11 target model
parameters: the six PEMD parameters, the two external shear
parameters, the source position coordinates, and the host galaxy
size Rsrc. Though not necessary for time delay cosmography,
Rsrc was included in our predictions to allow the BNN to
explicitly capture its known degeneracy with γlens.

In Section 2.3.1, we review the statistical framework of BNN
posterior inference in the context of lens modeling. Section 2.3.2
briefly describes our choices in designing the network architecture
and training. More implementation details are available in
Appendix A.1.

2.3.1. Posterior Inference

BNNs represent a family of probabilistic neural networks that
extends standard neural networks with posterior inference over the
network weights (Denker & LeCun 1991). The uncertainty
estimated by BNNs can be decomposed into two types: aleatoric
and epistemic. Aleatoric uncertainty exists due to the intrinsic
randomness in the underlying process. This type of uncertainty
would persist even in the limit of infinite training data, i.e., perfect
knowledge of the parameter-to-image mapping because various
combinations of parameters may be capable of explaining a given
test image. It encodes γlens−Rsrc degeneracy; for instance, a thick
Einstein ring in a test image may be explained by a shallow lens
slope or a bigger source.

Aleatoric uncertainty is explicitly modeled as the width of
the distribution over the target parameters. Improving on the
work of Hezaveh et al. (2017) and Levasseur et al. (2017), who
had used a Gaussian distribution with a diagonal covariance
matrix, we adopt a mixture of two Gaussians (henceforward,
Gaussian mixture model (GMM), each with a full covariance
matrix, as we have done in Wagner-Carena et al. (2020).
Explicitly, for a given test lens, we assumed the following form
for the distribution over the target lens and light parameters
x x ,lens light given the image då and a set of network weights W:

( ∣ ) ( ) (·∣ ( )
( ))

( ( )) (·∣ ( ) ( )) ( )

x x f m

f m

=

S
+ - S

    



  

p d W w d W d W

d W
w d W d W d W

, , , , ,

,
1 , , , , , 13

lens light 1 1

1

1 2 2

where f( · |μ, Σ) denotes the PDF of a p-dimensional Gaussian
with mean m Î p and covarianceS Î ´p p and the weight on

the first Gaussian ( ]Îw 0,1
1

2
. The BNN predicted μ1, Σ1, μ2,

Σ2, and w1 so the size of the output dimension was
⎡⎣ ⎤⎦( )= ´ + ++p p2 1p p

out
1

2
for the p target parameters.

We had p= 11, so pout= 155.
Epistemic uncertainty, on the other hand, originates from

limited training data or the choice of an imperfect model. It
comes into play when the network attempts to generalize to
regions outside the training set. In the context of machine
learning, it is often described as a distribution over the network
weights, post-training. Each realization of the weights
corresponds to an alternative model, so integrating over this
learned weight posterior is akin to Bayesian model averaging.
Folding in the epistemic uncertainty, we have the full
predictive distribution:

( ∣ )

( ∣ ) ( ∣ ) ( )ò

x x

x x

W

= W

  

  

p d

p d W p W dW
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where we have made explicit the dependence on the specific
training set by appropriately conditioning on the hyperpara-
meters governing the implicit prior, Ωint. Not modeling the
epistemic uncertainty at all amounts to a simple conditional
density estimation, where the weight posterior p(W|Ωint) is a
delta function. In standard neural networks, which only give
point estimates for the target parameters, both p(ξå|då, W) and
p(W|Ωint) are delta functions, so the predictive distribution in
Equation (14) collapses to a delta function.
Consider the integral in Equation (14). An exact evaluation of

this integral is intractable, as it requires averaging over all the
weight configurations allowed by p(W|Ωint). There exist several
workarounds, including the Kronecker-factored Approximate
Curvature (K-FAC) Laplace approximation (MacKay 1992; Ritter
et al. 2018); Bayes by backprop (Blundell et al. 2015); stochastic
Markov chain Monte Carlo (MCMC; Welling & Teh 2011); deep
ensembles (Lakshminarayanan et al. 2017); and stochastic weight
averaging Gaussian variants (Maddox et al. 2019; Wilson &
Izmailov 2020). We opt for Monte Carlo (MC) dropout (Gal &
Ghahramani 2016; Kendall & Gal 2017), however, for con-
sistency with Wagner-Carena et al. (2020) and simplicity of
implementation. In MC dropout, the weight posterior p(W|Ωint) is
replaced with the variational distribution ( ˆ ∣ )Wqq W int parameter-
ized by θ:

( ˆ ∣ ) ( ˆ ∣ )

ˆ · ( )
( )

{ } ( )



q

W = W

=

~

º

q q
=

=

=

q W q W

W W z

z p

W p

diag

Bernoulli

, , 15

i

L

i

i i i j j
K

i j i

i i i
L

int
1

int

, 1

,

1

i

where i indexes the layer of the L-layer network and j the node
in a given layer. Here, Ki denotes the number of nodes at layer
i, such that the weight matrix for layer i is Î ´ -Wi

K Ki i 1. When
zi,j= 0, the input node j in layer i is dropped out, i.e., set to
zero. This form of the variational distribution arises from a
mathematical result that a network with randomly dropped
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weights is equivalent to a deep Gaussian process (Damianou &
Lawrence 2013); see Gal & Ghahramani (2016) for the
derivation.

To optimize θ, we minimize the Kullback–Leibler (KL)
divergence between the true weight posterior p(W|Ωint) and the
variational approximation ( ˆ ∣ )Wqq W int . Equivalently, the BNN
minimizes the log evidence lower bound (ELBO) over the number
(N) of examples in the training set { }( ) ( ) ( )x x =d , ,n n n

n
N

lens light 1:

( ) ( ˆ ∣ ) ( ∣ ˆ ) ˆ

( ( ˆ ∣ )∣∣ ( ˆ ))
( )

( ) ( ) ( )òå x x=- W

+ W

q

q

=

 W q W p d W dW

q W p W

log , ,

KL ,

16

n

N
n n n

1
int lens light

int

where p(W) is a prior on the network weights. To evaluate the
first term in an unbiased way, we approximate each entry in the
sum by MC integration with a single sample ˆ ( ˆ ∣ )~ WqW q W int .
Then W can be updated via stochastic gradient descent with
respect to the realized sample. The second KL term is the
“regularization” term that prevents the weights from deviating
too far from our prior. This is intractable in its exact form, but
reduces to L2 regularization

( ( ˆ ∣ )∣∣ ( ˆ ))
( )

∣∣ ˆ ∣∣ ( )W µ
-

qq W p W
l p

N
WKL

1

2
17i i

i
iint

2
2

when we assume a prior that can be factorized into a product of
Gaussian priors in each layer. The length scale l is a
hyperparameter that determines the width of the prior. Note
that the dropout probability p is also a hyperparameter in the
formulation introduced here. It is not optimized along with W
during training and must be tuned manually as part of the
hyperparameter search. We assume the same dropout prob-
ability pi= pdrop for every layer i. For a given choice of pdrop, l
can be folded into the L2 regularization strength hyperpara-
meter λ= l2(1− p)/(2N).

The full predictive posterior with the variational approx-
imation is thus

( ∣ ) ( ∣ )

( ∣ ) ( )
òx x x xW =

´ Wq

    p p d W

q W dW

, , ,

. 18

lens light int lens light

int

In order to propagate this into an MCMC-based H0 inference
procedure, we need to be able to evaluate it. We do so via MC
integration, i.e., by taking some S number of MC dropout
iterates and averaging the resulting aleatoric portions of the
posterior.

ˆ ( ˆ ∣ )

( ∣ ) ( ∣ ˆ ) ( )
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( )åx x x x

~ W =

W »

q
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W q W s S
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S
s

int

lens light int
1

lens light

The value of S is determined by a convergence test—that is, it
is increased from base values until the full predictive
distribution no longer changes. The resulting approximation
to the full predictive distribution is a mixture of S× 2
Gaussians, where the factor of S comes from the epistemic
MC dropout iterates and 2 from the aleatoric double-Gaussian
parameterization. In particular, the predictive mean is

[ ∣ ] [ ∣ ˆ ] ( )( )åx x x xW »
=

      d
S

d W, ,
1

, , . 20
s

S
s

lens light int
1

lens light

2.3.2. Network Architecture and Training

The convolutional engine of the BNN had the ResNet101
architecture (He et al. 2015), modified from the TORCHVISION
implementation (Marcel & Rodriguez 2010). The specific network
architecture used for this paper is illustrated in Figure 3. See
Appendix A.1.3 for more details on our choice of architecture.
It is common practice to transform the training images and

labels so that they fall into a predefined range. This
preprocessing step has the effect of facilitating optimization,
as it promotes the numerical stability of the network’s hidden
units and their gradients. The target labels for the model
parameters were normalized so that each parameter had a mean
of 0 and standard deviation of 1 across the entire training set.
Each input image Î ´d 64 64 was also pixelwise transformed
according to ( )+ dlog 1 i , where di represents each pixel
intensity value of d and is rescaled to the range [0, 1]. The
log transformation was adopted so that the bright pixels in the
cusp of the Sérsic or in the AGN images would not overwhelm
the informative pixels in the Einstein ring.
The network was trained with the ADAM optimizer (Kingma

& Ba 2014) for 50 epochs with the weight decay parameter

Figure 3. The ResNet101 network architecture used for the convolutional engine of the BNN. The size of the square feature maps evolves through the layers as
indicated on the top. Rectangular boxes contain convolutions of the indicated kernel size and channel number (width). Strides of 2 are denoted as /2. Note that blue
and orange boxes are two stacked convolutions. Curved arrows indicate shortcut connections; the solid ones preserve the input feature dimension and dotted ones
double the number of channels and halve the feature map resolution. Not shown are the 1D dropout layers, which were inserted before every convolutional layer and
before the final fully connected layer. Batch normalization and the rectified linear unit (ReLU) layers followed each convolution as well.
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λ= 1e− 6, batch size B= 1024, and initial learning rate of
ò0= 5e− 4. Although the network was allowed to train for 50
epochs, we only saved the checkpoint with the best validation
performance, which plateaued at 37–45 epochs for our
experiments. The learning rate was reduced by a factor of 2
whenever the validation loss did not decrease for 50 minibatch
updates, until it reached 1e – 5. The hyperparameters λ, B, and
ò0 were tuned via a random search on the validation set.

2.3.3. Calibration Metric

Recall that the MC dropout probability pdrop is also a
hyperparameter that is tuned rather than optimized. Among the
values 0.5%, 0.1%, and 0%, the value of 0.1% was found to be
optimal for all three exposure times in our study—0.5, 1, and 2
HST orbits. To select a particular dropout probability, we used
the confidence-frequency calibration, a semiquantitative metric
introduced in Wagner-Carena et al. (2020). We reproduce the
definition of this calibration metric here and state our own
choices in using this metric.

Denote the N parameter samples drawn from the BNN posterior
for some lens k as{ }( )x =n

k
n
N

1. The true parameter value is ( )x k
true. The

metric asks: for a given percentage of the BNN posterior
probability volume, pX, what percentage of the samples, pY,
contains the truth within this volume? If the posterior is perfectly
calibrated, we would expect pX of the samples to encompass the
truth pY= pX of the time, for every value of pX. We can apply this
metric on the validation set as a whole by averaging the pY values
evaluated on individual lenses. To wit,
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where 1{ · } is an indicator function that evaluates to 1 when
the argument is true and 0 otherwise, and d(ξ) is a measure of
distance of a particular point ξ from the posterior predictive
mean given the posterior width.

Plotting pY
val for a grid of pX values yields the calibration

curve, to be presented and discussed in Section 3.1.2 in the
context of evaluating the statistical consistency of BNN lens
modeling. Regions of the curve with <p pXY

val speak to an
overconfident BNN, because there are not as many lenses with
truth within the posterior volume pX than there should be.
Conversely, regions with >p pXY

val indicate underconfidence.
There are many choices for the distance measure d. We use

the Mahalanobis distance, a multidimensional generalization of
the standard score measuring how many standard deviations
away a point is from the mean.7
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2.4. Individual H0 Inference

At the stage of inferring H0, we use the lens model posterior
obtained from the BNN to properly account for the
uncertainties in the lens model parameters. In this section, we
describe the inference procedure on the individual lens level:
the arrow labeled “2” of the flowchart in Figure 1.
We make some simplifying assumptions in our inference. In

order to focus on basic H0 recovery, we fix Ωm= 0.3 and infer
only H0 for each test lens. In doing so, we only use simulated
images and time delay measurements, and do not include velocity
dispersion or line-of-sight measurements in our modeling. Recall
also that our training and test data were drawn from the same
distribution. In terms of the conventions we introduced in
Wagner-Carena et al. (2020), this setup translates to the
assumption that the set of hyperparameters implicit in the training
set equals that governing the test prior, i.e., Ωint=Ω. In addition,
we do not place population-level hyperpriors on the individual
model parameters; they are assumed to be known and accurate,
and thus not varied in a hierarchical manner. This is the approach
taken by the H0LiCOW Collaboration.
The posterior on the test set hyperparametersΩ can be written as

( ∣ )
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lens ext

lens light int
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lens light int
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where k denotes a single test lens. The integral in Equation (23)
represents the total likelihood for this lens. The data are the
observed time delay(s) Δt( k), where ( )D Î t k 1 for a double and

( )D Î t k 3 for a quad, and the image d( k). The first term in the
integral is the time delay likelihood, assumed to be diagonal
Gaussian with an uncertainty of 0.25 day. The second-to-last line
is the importance-weighted BNN-inferred lens model posterior,
which serves as a prior in this level of inference. When the
implicit prior differs from the test prior, the BNN posterior

( ∣ )( ) ( ) ( )x x Wp d, ,k k k
lens light int must be divided out by the implicit prior

the BNN was trained on and multiplied by the test prior. See
Foreman-Mackey et al. (2014) and Wagner-Carena et al. (2020)
for the derivation of importance weighting. The external
convergence κext and the lens model parameters ( ) ( )x x,k k

lens light are
nuisance hyperparameters that must be integrated out to obtain the
population likelihood.
Applying our assumption of ( ∣ ) (( ) ( ) ( )x x xW =p p,k k k

lens light lens,

∣ )( )x Wk
light int and paring down the target Ω to just H0,
Equation (23) can be greatly simplified to
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7 Levasseur et al. (2017) calibrated their pdrop using the 1D standard score.
This calibration method was more appropriate for their choice of a diagonal
Gaussian as the aleatoric portion of the posterior. For our study using the GMM
parameterization, we require the multidimensional distance metric so that the
parameter covariances can be taken into account.
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The notation DΔt(H0) simply makes explicit that, with other
cosmological parameters fixed, DΔt and H0 have a one-to-one
relation for a given lens.

The individual posterior in Equation (24) is difficult to
evaluate due to the complicated dependence structure of Δt( k)

but lends itself to sampling. We performed MCMC sampling
over DΔt jointly with ( ) ( )x x,k k

lens light, with the following objective
evaluated at each MCMC iteration:

( ∣ ( ) )

( ∣ ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

x x k

x x

D =

´

Dp t D H

p d

, , , 0

, . 25

k
t

k k k

k k k

0 lens light ext

lens light

Recall that we do not constrain κext from data and instead
assign a global prior of the form in Equation (11). To reduce
the sampling space, κext was assumed to be zero during MCMC
sampling, and accounted for only in post-processing by
multiplying each DΔt sample by

k-
1

1 ext
for multiple realizations

of p(κext).
The first term in Equation (25), the time delay likelihood, is a

one- or three-dimensional diagonal Gaussian PDF (depending
on whether the lens is a double or a quad). The second term, the
BNN-inferred lens model posterior in Equation (14), does not
allow for an exact evaluation but can be approximated using
MC integration with S dropout samples, as described in
Equation (19). We used S= 12, making the approximation a
mixture of 24 Gaussians.

To minimize burn-in time, we initialized the walkers at the
positions of the BNN posterior samples along the ( ) ( )x x,k k

lens light
dimensions. Along the DΔt dimension, the allowed range of the
walkers was between 0 and 15,000Mpc and the initial
positions were also uniformly sampled in this range. We found
that 18,000 samples gave good coverage of the 12 dimensional
sample space (11 for ( ) ( )x x,k k

lens light and 1 for ( )
DD t

k ). Our
implementation uses MCMC sampling modules in LENSTR-
ONOMY, which uses EMCEE (Foreman-Mackey et al. 2013) to
run the sampler. See Table 2 for a summary of the model
parameters and their priors in the cosmological sampling stage.

Once the DΔt MCMC samples were generated this way for
each lens, we stored them for the next step of joint-lens inference
(Section 2.5). They were, effectively, samples from the individual
DΔt posteriors ( ∣ )( ) ( ) ( )DDp D t d,t

k k k ∝ ( ) ( ∣ )( ) ( ) ( ) ( )DD Dp D p t d D,t
k k k

t
k ,

when assuming a broad uniform prior ( )( )
Dp D t

k in the range of
0–15,000Mpc.

To obtain the individual H0 posterior, the DΔt MCMC
samples were converted into H0 using the lens and source
redshifts, assumed to be known. Then, we applied the uniform
H0 prior in the range 50–90 kmMpc−1 s−1. A Gaussian fit to
the resulting H0 samples gave an estimate of the center and
spread of H0 posterior for each lens:

( ) ( )( ) ( ) ( )m s~H N , . 26k k k
0

2.5. Joint H0 Inference

To perform joint inference on a sample of lenses, we
combined the information from the individual DΔt posteriors,
as indicated in arrow 5 of the flowchart in Figure 1. The H0

posterior from a joint sample is
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where k indexes the set of test lenses. This is identical to
Equation (24) in form, except that our data now consist of the
entire test set of observed time delays { }( )D =t k

k 1
200 and images

{ }( )
=d k

k 1
200 . More simply, we can express this joint-sample

posterior as

( ∣{ } { }) ( ) ( ∣ ( )) ( )( ) ( ) ( )D µ D Dp H t d p H p t d D H, , . 28
k

k k
t

k
0 0 0

To generate H0 samples from this joint-sample posterior, we
MCMC sampled over H0 by evaluating the following like-
lihood objective at each MCMC iteration:

( ∣ ( )) ( )( ) ( ) ( ) D Dp t d D H, . 29
k

k k
t

k
0

Doing so required likelihoods that could be evaluated. Recall
from Section 2.4, that we stored the MCMC samples from
individual DΔt posteriors. We had applied a broad, uniform
prior on DΔt, so that these samples could be reinterpreted
as samples from the likelihoods ( ∣ ( ))( ) ( ) ( )D Dp t d D H,k k

t
k

0 . What
remained was to fit appropriate distributions on these stored
samples, so the likelihood could be evaluated. For our main
analysis, we adopted the kernel-density estimate (KDE) using
Gaussian kernels for its flexibility. The binning scheme
followed Scott’s normal reference rule (Scott 2015).
To assess the effect of the fit distribution on the joint-sample

inference of H0, we also experimented with two other, less
flexible parameterizations of the DΔt likelihood. One was the
Gaussian parameterization, by which the stored DΔt samples
for each lens were interpreted to follow a Gaussian distribution
and the two Gaussian parameters were fit. That is, we assumed

( ) ( )( ) ( ) ( )m s~D D D
D N , . 30t

k
D
k

D
k

t t

Table 2
Summary of Model Parameters

Parameter Prior Description

Flat ΛCDM
cosmology

H0 (km s−1 Mpc−1) U(50, 90) H0

Ωm δ(0.3) Mass density

Mass profile
( ) ( )x x,k k
lens light BNN-inferred lens model

posterior
PEMD, external
shear,

(see Equation (19)) source posi-
tion/size

Line of sight
κext ( )~

k-
N 1, 0.0251

1 ext
External
convergence
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The other was the lognormal parameterization:

( ) ( )( ) ( ) ( )~D D D
D N m slog , . 31t

k
D
k

D
k

t t

Post-MCMC sampling, we applied our uniform H0 prior to
obtain our final, combined H0 posterior. Our implementation of
the joint-sample MCMC sampling heavily borrows from
HIERARC8 (Birrer et al. 2020), which uses ASTROPY (Astropy
Collaboration et al. 2013) to compute cosmological quantities
and EMCEE to run the sampler.

3. Results

We organize our results as follows. Before we refer to the H0

inference results, in Section 3.1, we assess the precision, accuracy,
and statistical consistency of the first step in our pipeline: the
BNN lens modeling. Having established that the individual BNN-
inferred lens model posteriors are reasonable, in Section 3.2, we
proceed to interpret the H0 estimates obtained from individual
lenses in the context of the TDLMC metrics. In Section 3.3, we
report on the combined H0 predictions and discuss the potential
challenges associated with combining information from hundreds
of lenses. Section 4.5 describes the computational efficiency of
our pipeline as compared with traditional forward-modeling
approaches, with cost projections for possible future applications.

See Table 3 for a summary of our experiments. The first
block of experiments, labeled A, tests the sensitivity of our
method to the pixel noise level. We retrain the BNN on images
rendered with three different exposure times of 2700 s (0.5
HST orbit), 5400 s (1 HST orbit), and 10,800 s (2 HST orbits)
for these experiments. The second block B takes either the
doubles or the quads from the run with the longest exposure
time of 2 HST orbits. There were 89 quads and 111 doubles in
our set of 200 test lenses. To control for the sample size, we
took all the 89 quads and randomly sampled 89 doubles.

3.1. Individual Parameter Recovery

3.1.1. Accuracy

To evaluate the accuracy of BNN parameter recovery, we
adopt the median absolute error (MAE) metric, defined as the
median of the absolute-valued difference between the pre-
dictive mean (Equation (20)) and the true parameter value
across all the lenses in the experiment group, i.e.,

{∣ [ ∣ ] ∣} ( )( ) ( ) ( )x xº W - dMAE median , 32k k k
int true

for each parameter ( )x Î k for lens k. Table 4 lists the MAE
values evaluated on the validation set.
Overall, the BNN yields accurate posteriors. In particular, we

can retrieve γlens to 3% accuracy. Surprisingly, the accuracy
does not seem to vary across the exposure times. We
investigate the apparent insensitivity to the exposure time in
Section 4.1. The 6–7 mas accuracy in the source position is
contextualized further in Section 4.2.

3.1.2. Statistical Consistency

To probe the statistical consistency of BNN-inferred lens
model posteriors with the truth values, we use the calibration
metric presented in Section 2.3.3. It is this metric that we used
to select our final MC dropout rate pdrop= 0.1% as well, from
the values 0%, 0.1%, and 0.5%.
The calibration curves for the exposure time of 0.5 HST orbit

and dropout probabilities of 0% (no dropout), 0.1%, and 0.5%
are shown in Figure 4. The curves for longer exposure times
looked qualitatively similar. The no-dropout and 0.1% dropout
curves are almost indistinguishable; not modeling the epistemic
uncertainty at all (i.e., only performing simple conditional
density estimation) does not make the model significantly more
confident. The epistemic uncertainties are small, most likely
because we have a large training set of 512,000 lenses and a
relatively flexible GMM parameterization for the aleatoric

Table 3
Summary of Experiments

Label Exposure Time Image Number of Number of Training Inference
(HST Orbit) Configuration Test Lenses Validation Lenses Time (hr) Time (minutes lens−1)

A1 0.5 Both 200 512 5 6
A2 1 Both 200 512 5 6
A3 2 Both 200 512 5 6

B1 1 Doubles only 89 222 L 11
B2 1 Quads only 89 222 L 6

Note. Summary of experiments defined by lenses with varying exposure times (block A) and image configurations (block B). We report the median inference time
across the sample of lenses.

Table 4
Prediction Accuracy of Individual Parameters

Experiment γ1 γ2 xlens(″) ylens(″) e1 e2 γlens θE(″) xsrc(″) ysrc(″) Rsrc(″)

0.5 HST orbit 0.012 0.013 0.002 0.001 0.024 0.025 0.056 0.006 0.006 0.007 0.03
1 HST orbit 0.012 0.013 0.002 0.002 0.025 0.025 0.056 0.006 0.007 0.006 0.03
2 HST orbits 0.012 0.013 0.002 0.002 0.023 0.024 0.055 0.006 0.006 0.007 0.03

Doubles 0.011 0.015 0.002 0.001 0.022 0.025 0.064 0.006 0.008 0.010 0.03
Quads 0.013 0.013 0.002 0.002 0.025 0.024 0.050 0.006 0.005 0.005 0.03

Note. Reported values are the MAE on the validation set (Equation (32)). Significant differences within each experiment group are denoted in bold.

8 https://github.com/sibirrer/hierArc
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uncertainty. As mentioned in Section 2, we opt for
pdrop= 0.1% in this paper for all exposure times. We keep
the MC dropout parameterization in case the MC dropout
captures higher-order epistemic uncertainties that the calibra-
tion metric would miss.

If we increase dropout to pdrop= 0.5%, the BNN posterior
becomes overconfident. This result may be counterintuitive at
first glance; a higher dropout probability corresponds to a
higher assigned epistemic uncertainty, so we would expect the
BNN posterior to become less confident. One possible
explanation is the bias-variance trade-off. A higher dropout
means more regularization (lower variance), but regularization
can hamper optimization and lead to a larger training error
(higher bias). The MAE values for the pdrop= 0.5% model
were, in fact, higher than those for the pdrop= 0.1% model by
30%. To some extent, this pattern speaks to the limitation of
MC dropout as a method of quantifying epistemic uncertain-
ties. It would be worthwhile to explore other methods, such as
ensemble-based ones, that are not associated with underfitting.

3.1.3. Precision

Having established that the BNN is accurate and well
calibrated, we proceed to report its precision. The parameter
uncertainty values in Table 5 are the predictive standard
deviation, obtained by taking the standard deviation of the
posterior samples for each parameter. Similarly as with the
MAEs, we report the median uncertainty over the validation
set. More concretely, we defined the parameter uncertainty as

(·∣ )

{ { } } ( )

( )( )

( )( )

x

x

~ Wp d ,

median Var , 33

i k
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i k

int

where ( )( )x Î i k refers to the ith posterior sample of this
parameter for each lens k.
Taking the MAE and uncertainty together, the predictions for

γlens and xsrc, ysrc seem to be more accurate and precise for the
quads compared to the doubles. For γlens, the accuracy is better by
30% and precision by 20%. The source position errors are smaller
by 3–5mas and uncertainty smaller by 2–4mas. The two extra
AGN images in the quads likely offers additional information
about the position and orientation of the Einstein ring. Whereas
the accuracy on the lens ellipticity parameters e1, e2 is similar
between the doubles and quads, the BNN is 20% more uncertain
about these parameters for the quads on average. The reason for
this is not clear and merits further exploration.

3.2. Individual H0 Recovery

How does the BNN lens modeling performance, validated
previously in Section 3.1, translate to H0 (DΔt) for individual
lenses? The BNN was sufficiently accurate that, at the level of
inferring H0, none of the 200 test lenses were discarded. In this
section, we visualize the H0 posteriors for a few lenses and
summarize the per-lens H0 recovery for the entire set of 200
test lenses.
To guide our interpretation of the individual H0 posteriors,

let us first introduce a useful benchmark. Aside from the BNN-
inferred lens model, two more ingredients affect our H0

inference for a given lens: the time delays and the external
convergence. We had assumed small time delay uncertainties
and measurement errors (both 0.25 day) so that the relative
Fermat potential from the BNN lens modeling would dominate
the H0 uncertainty budget (see Equation (4)). We also assumed
a narrow distribution in the environment mass densities that
would shift the inferred H0 at a level of 2.5%. Whereas the
effects of time delays and convergence are small on average, it
is instructive to completely isolate the effect of BNN lens
modeling on the individual lens level. To this end, we define
the “time delay precision ceiling,” a reference H0 “posterior”
that fixes the lens model posterior at the delta-function truth:
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The time delay precision ceiling represents the precision ceiling
in the theoretical case of a perfectly known lens model.
The DΔt posterior under the time delay precision ceiling is

exactly Gaussian, by design. To see this, note that
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where Δf is the Fermat potential difference between the
images under consideration. The likelihood of the observed
time delay Δtobs is Gaussian and so is the prior on

k-
1

1 ext

(Equation (11)), so when the lens model is fixed at the truth,
DΔt being modeled is simply a convolution of Gaussians.
Any difference between the BNN-inferred posterior and the

time delay precision ceiling can be attributed to the BNN lens

Figure 4. The calibration curve pY
val vs. pX for the BNN lens model posterior as

defined in Equation (21), for an exposure time of 0.5 HST orbit and dropout
probabilities of 0% (no dropout), 0.1%, and 0.5%. There were Nval = 512 lenses in
the validation set. The aleatoric portion of the BNN lens model posterior seems to
be capturing most of the uncertainty. Not modeling the epistemic uncertainty at all
(pdrop = 0%) does not affect the calibration significantly. A slightly higher dropout
probability of pdrop = 0.5% leads to overconfidence because the model is underfit.
We choose pdrop = 0.1%.
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modeling. To illustrate this concept on the individual lens level, in
Figure 5, we display the BNN-inferred H0 posterior and time delay
precision ceiling of four test lenses along with their images. TheH0

precision of these four lenses is representative of that in the test set
as a whole; the set of 200 test lenses had been divided into four
bins of increasing H0 uncertainty and the four lenses sampled
randomly from the bins. Our predictions for the rightmost lens, a
double, is the least precise partly because, being spherical, the lens
has a very small caustic and hence a short relative time delay. On
the other hand, the leftmost, most precise lens is a fold quad.

Looking at the joint posteriors over key BNN-predicted
parameters and DΔt for individual lenses, obtained through the
MCMC sampling procedure described in Section 2.4, we
can determine whether DΔt was sensitive to any particular
parameter. Figures 6 and 7 show the posterior over key BNN-
predicted parameters and DΔt for the leftmost and rightmost
lenses in Figure 5. For both lenses, the BNN lens modeling was
accurate; the truth falls within the 68% contour of the inferred
posterior. The pairwise correlations between DΔt and each
parameter reveal that, for the lens in Figure 6, DΔt was mainly
sensitive to γlens, lens ellipticity, and ysrc. The lens in Figure 7
was sensitive to γlens, e2, and xsrc.

In addition, we can identify pairwise parameter degeneracies
modeled by the BNN. Notice that the BNN effectively captures
the e1− γ1 and e2− γ2 degeneracies. Because the Rsrc posterior is

no better than the implicit prior defined by the training set,
however, we do not observe any degeneracy between γlens and
Rsrc. The BNN does not constrain the external shear parameters
γ1, γ2 very well beyond the implicit prior, but it assigns
sufficiently large uncertainties so as not to bias the DΔt inference.
So far, we have looked at the H0 posterior for one lens at a

time. To summarize our method’s H0 retrieval performance on
individual lenses for the test set as a whole, we adopt some of
the metrics introduced in the TDLMC: precision, accuracy, and
goodness (Ding et al. 2018). Their definitions are reproduced
here. Precision (P) is the average fractional H0 uncertainty
across the Ntest test lenses in the experimental group. Letting
μ( k), σ( k) denote the assigned mean and uncertainty of the H0

prediction for lens k from Equation (26),
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Accuracy (A) is the average fractional bias across the lenses. If
the true H0 value is H0,
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Recall H0= 70 km s−1 Mpc−1. Finally, goodness (χ2) is the
standard reduced χ2 that evaluates the goodness of the assigned

Table 5
Uncertainty Assigned by the BNN on Individual Parameters

Experiment γ1 γ2 xlens(″) ylens(″) e1 e2 γlens θE(″) xsrc(″) ysrc(″) Rsrc(″)

0.5 HST orbit 0.020 0.020 0.004 0.004 0.039 0.039 0.080 0.011 0.011 0.012 0.04
1 HST orbit 0.020 0.020 0.005 0.005 0.039 0.040 0.077 0.011 0.012 0.012 0.04
2 HST orbits 0.020 0.020 0.05 0.005 0.039 0.039 0.076 0.011 0.012 0.012 0.04

Doubles 0.020 0.020 0.005 0.005 0.036 0.036 0.074 0.011 0.013 0.014 0.04
Quads 0.020 0.020 0.005 0.005 0.044 0.044 0.078 0.011 0.011 0.010 0.04

Note. Definition is given in Equation (33). Significant differences within each experiment group are denoted in bold.

Figure 5. Example lenses from the test set with increasing H0 uncertainties from left to right. Top: the BNN-inferred H0 posterior for 2 HST orbits and time delay
precision ceiling (defined in Equation (34)) for each lens, with the mean and standard deviation (68% credible interval) of the Gaussian fit (Equation (26)). Note that
the BNN-inferred posterior and the time delay precision ceiling share the effect of time delay errors and external convergence, so any difference between them is
purely due to BNN lens modeling. Bottom: noiseless images of the lenses, overlaid with the true source position (red star), caustics (red), and critical curves (yellow).
AGN image positions are labeled A-D or A-B, with the size of the diamond marker indicating the magnification.
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uncertainties across the lenses.
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The TDLMC metrics for all our experiments in Table 3 are
plotted in Figure 8. Overlaid are the target ranges for the
metrics, which were determined following Ding et al. (2018).
The target for P is based on the best forward-modeling results
reported in the literature by the start of the challenge:

( )<P 6%. 40

Our precision of 9%–10% does not meet this target. This is
expected, as classical forward modeling would be more precise
than the BNN-based inference, even for our simple model
assumptions.
The accuracy target of

∣ ∣ ( )<A 1% 41

expresses the goal of sub-percent accuracy. All the BNN
experiments are well within sub-percent accuracy.
The target range for χ2 corresponds to the 1 and 99

percentiles of the χ2 distribution for 200 degrees of freedom

Figure 6. The joint posterior over key BNN-predicted parameters and DΔt for the leftmost lens in Figure 5. Contours are the 68% and 95% credible intervals.
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(for the 200 lenses in our test set).

( )c< <0.8 1.2. 422

When taking the 89 doubles or quads only, adjusting the
degrees of freedom gives

( )c< <0.7 1.4. 432

All except the doubles meet the goodness target, but this does
not necessarily imply statistical inconsistency for the doubles,
given that the TDLMC metrics weight the lenses equally. In

order to account for the varying information content across the
lenses, we analyze the combined posteriors in the next section.

3.3. Combined H0 Recovery

The true efficacy of our pipeline lies in the joint inference
over hundreds of lenses. In Figure 9, we overlay the combined
H0 posterior for the 200 test lenses along with the 200
individual H0 posteriors, assuming a broad uniform prior in H0

everywhere. We report a final precision of 0.5 km s−1 Mpc−1

(0.7%). There is no detectable bias; the combined posterior is
consistent with the truth. As an additional test of statistical

Figure 7. The joint posterior over key BNN-predicted parameters and DΔt for the rightmost lens in Figure 5. Contours are the 68% and 95% credible intervals.
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consistency, for each lens, we computed the credible interval at
which the truth H0 lies. The confidence matched the frequency
closely; the truth fell within the 68.3% credible interval in 65%
of the lenses, within the 95.5% credible interval in 95.5% of the
lenses, and within 99.7% credible interval in 99.0% of the
lenses.

To assess the impact of the exposure time and image
configuration on the joint-sample inference, the combination
was done for each of the experiment groups in Table 3.
Figure 10 shows the combined estimate for experiments A1–
A3, i.e., 200 lenses in the exposure times of 0.5, 1, and 2 HST
orbit(s). The precision of the combined posterior does not vary
with image depth, as expected from the lack of such a trend in
the individual parameter recovery (Section 3.1) and individual
H0 recovery (Section 3.2) with the image depth.

Figure 11 shows the combined H0 posteriors for the 89
doubles and 89 quads separately (groups B1, B2 in Table 3).

For both doubles and quads, the precision is comparable, at
0.7 km s−1 Mpc−1 (1%), and there is no bias. Again, there is no
significant trend with image depth.
Systematics that appear small on an individual level can

figure prominently in the combined posterior when the sample
size is large. We find that the form of the fit distribution for the
DΔt posterior merits careful consideration. See Section 4.4 for a
discussion of this issue.

4. Discussion

4.1. Pixel-level Information Processed by the BNN

In this section, we explore the patterns in the BNN
predictions with the exposure time and various properties of
the lens, to confirm that the BNN-inferred posteriors are
reasonable. We also compare the BNN lens modeling with
traditional forward modeling on a lens-by-lens basis.

Figure 8. The TDLMC metrics evaluated on the test sample (see Equations (37)–(39) for the definitions). The shaded region corresponds to the target region for a
sample of 200 lenses (Equations (40)–(42)). For the doubles and quads, the dotted lines demarcate the goodness (χ2) target range for the sample size of 89
(Equation (43)). Our precision of 9%–10% lies outside the target of 6% expected for the best-performing forward-modeling approaches. All experiments meet the sub-
percent accuracy target. All except the doubles meet the goodness target, but note that the TDLMC metrics weight the lenses equally, so a few outlying lenses could
have skewed the metric.
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According to the MAE values in Table 4 and BNN-assigned
parameter uncertainty in Table 5, the BNN appears to be
insensitive to the exposure time. To investigate this surprising
behavior, we take a closer look at the BNN constraints on the
γlens parameter, whose information is largely contained in
pixels comprising the Einstein ring. In Figure 12, we plot the
weighted mean of the absolute bias in γlens binned by the
surface brightness of the Einstein ring, where the weights are
the inverse of the predictive variances in γlens. The surface
brightness of the Einstein ring was computed by rendering an
image of the source galaxy, without the lens light, and
summing up the pixel values. The error bars indicate the
weighted standard deviation of the absolute bias. We confirm
that the bias is consistent with zero, so that γlens does not bias
our H0 predictions downstream. Yet we do not detect a strong
correlation in the center and spread of the γlens bias with the
ring brightness, nor with the exposure time.

Does the apparent lack of dependence on the exposure time
originate from the data or the BNN? To explore this question,
we directly compare the BNN to forward modeling. Because
running forward modeling on all 200 test lenses is computa-
tionally prohibitive, we examine one lens at a time. In Figures 6
and 7, we overlaid the BNN-inferred posterior with the
forward-modeling posterior. Forward modeling achieves tigh-
ter constraints on most parameters by a factor of 2–3 compared
to the BNN. As shown in Figure 5, we can see that forward
modeling can even approach the time delay precision ceiling on
H0 on some lenses, whereas the BNN precision trails behind.
The BNN is indeed limited in its ability to extract all the
information out of the pixels. The strength of the BNN method
lies not in the per-lens precision but in the accuracy and
computational efficiency, which enable joint inference over
hundreds of lenses.

Figure 9. The BNN-inferred H0 posteriors for 200 lenses were combined to yield an unbiased H0 estimate of precision 0.5 km s−1 Mpc−1 (0.7%). We overlaid the 200
individual H0 posteriors with the joint-sample posterior. The colors of the individual H0 posteriors represent the credible interval in which the truth H0 value falls. The
colors corresponding to 68.3%, 95.5%, and 99.7% credible intervals are indicated in the legend.

Figure 10. Combined H0 prediction on a set of 200 test lenses (solid). Error
bars represent 68% credible intervals. The final precision is 0.5 km s−1 Mpc−1

(0.7%) and there is no detectable bias.

Figure 11. Combined H0 prediction on 89 doubles and 89 quads (solid). Error
bars represent 68% credible intervals. For both doubles and quads, the final
precision is around 0.7 km s−1 Mpc−1 (1%) and there is no detectable bias.
Again, the combined posteriors do not vary significantly with image depth.
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There is more information in the pixels than the BNN can
harness at each exposure time. In addition, with increasing
exposure time, the forward-modeling constraints become
tighter, whereas the BNN constraints remain at the same level.
Figure 13 overlays the constraints on γlens from the BNN and
forward modeling across the exposure times, for a single lens.
Forward modeling is able to extract the extra information from
deeper images, achieving higher precision by a factor of 6, 8,
and 13 compared to the BNN for exposure times of 0.5, 1, and
2 HST orbits, respectively. The inner workings of the BNN’s
response to image depth requires further investigation. We
postpone this to future work.

Given that the pixel intensity values do not significantly
affect the BNN, we proceed to establish whether the BNN
predictions follow expected trends with more geometric
features of the image. In Figure 14, we plot the weighted
mean of the absolute bias in γlens binned by the lens axis ratio,
where the weights are the inverse of the predictive variances in
γlens. We see a trend of smaller uncertainty in γlens with more
elliptical lenses, most likely because the elongated shape of the
critical curves make the relative Fermat potential differences
more dramatic. Because doubles are generally more spherical
than quads, this trend may partly explain why the parameter
constraints on γlens was 30% more accurate and 20% more
precise for quads compared to doubles (see Tables 4 and 5).
Similarly, in Figure 15, we bin by the image separation and find
that the spread of the bias reduces for lenses with bigger
separation, as we expected.

4.2. Astrometric Requirements

We can put the BNN’s source position predictions in the
context of time delay cosmography by propagating astrometric
errors through the relative Fermat potential, into the H0

inference (see Equation (5)). Birrer & Treu (2019) derived the
following approximate requirement for the astrometric uncer-
tainty to be subdominant to the time delay uncertainty:

( )q s sb D
D

 c

D
, 44i j t

t
, i j,

where θi,j is the separation between images i and j; sDti j, the
uncertainty in the measurement of the relative time delay,
Δti,j; and σβ the astrometric uncertainty in the source plane. For
our galaxy-scale lenses, θi,j∼ 1″. Further assuming that the
zlens∼ 0.5, zsrc∼ 2, and Δti,j∼ 4 days, we can estimate that the
astrometric uncertainty will have to be beaten down to 3 mas.
The BNN’s astrometric uncertainties were 6–7 mas, as
estimated from adding in quadrature the median BNN-assigned
uncertainties on the xlens/ylens and xsrc/ysrc—because the BNN
was trained to predict xsrc/ysrc, defined as the source’s offset
from the lens centroid xlens/ylens. For the BNN, the astrometric
uncertainties will therefore dominate the uncertainty error
budget. Conversely, for σβ∼ 7 mas to be subdominant, the
time delay measurement would have been degraded to
s ~D 0.6ti j, day.

4.3. Impact of the Lens Light in BNN Lens Modeling

By comparing these MAE values with the values reported in
Wagner-Carena et al. (2020), where the BNN was trained on

Figure 12. The weighted mean and standard deviation of the absolute bias in
γlens, binned by the Einstein ring brightness. The bias is consistent with zero.
There is no strong pattern in the center and spread of the bias with the ring
brightness in any of the exposure times.

Figure 13. The marginal posteriors on γlens from forward modeling and BNN
for the rightmost lens in Figure 5. Forward modeling generates tighter
constraints on deeper images, whereas the BNN precision remains similar.

Figure 14. The weighted mean and standard deviation of the absolute bias in
γlens binned by the Einstein ring brightness. The spread of the bias clearly
increases for more spherical lenses.
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lens-subtracted images, we can draw rough conclusions about
the impact of including the lens light on parameter recovery.
For one, the lens light seems to have aided in the prediction of
the lens centroid because we artificially centered the lens light
with the lens mass. Our predictions for the xlens, ylens were
accurate to 1–3 mas, compared to 5–6 mas on the lens-
subtracted images for the best-performing BNN model in
Wagner-Carena et al. (2020) (Gaussian mixture model, 0.1%
dropout). The partial mixing of the Einstein ring with the bright
lens light, however, appears to have hurt the prediction
accuracy for most other parameters, notably, γlens which had
double the MAE. Other parameters saw an MAE increase of
25%–50%. The interpretation that the lens light hurts more than
helps agrees with previous experiments with non-Bayesian
convolutional neural nets, in which the lens light reduced
parameter accuracy by 30%–40% (Pearson et al. 2019). Note,
however, that this comparison is approximate at best, as it does
not control for the size of the training set (our 512,000 versus
the previous 400,000), the width of the training distribution
(the previous was almost twice as wide), and the volume
of the target parameter space (our 11 dimensions versus the
previous 8).

4.4. Choice of Fit Distribution

When the uncertainty in the relative Fermat potential is the
precision bottleneck and is approximately Gaussian, it follows
from Equation (35) that DΔt∝ 1/Gaussian. The PDF for the
inverse of a Gaussian random variable does not exist
(Robert 1991), but the resulting distribution has a heavy upper
tail. We opted to run KDE on the MCMC samples from the DΔt

posterior (as stated in Equation (31)) so as to explicitly assign
weight to this upper tail. Gaussian or lognormal distributions,
on the other hand, will not be appropriate. As a simple
illustrative example, a Gaussian fit will underestimate ( )

DD t
k . See

Figure 16 for a visual comparison of lognormal and normal fits
on individual ( )

DD t
k samples. The normal fit always lies to the left

of the lognormal fit. The difference is qualitatively small for
some lenses with a well-constrained Fermat potential, e.g., the
leftmost lens, but is consistent.

In Figure 17, we confirm that the Gaussian is an inadequate
choice of the fit distribution when the sample size is 200;
seemingly small fit errors on individual lenses result in a
significant upward bias in the combined H0. Fitting a lognormal
instead brings the combined H0 posterior to a level more
consistent with the truth. The KDE parameterization agrees the
best with the truth.
As we look to the prospect of hundreds, maybe thousands, of

lens samples, making statements at a 0.1% level will require
knowing the shape of the DΔt posterior with great accuracy,
including the regions toward its tails. We have chosen the KDE
with Gaussian kernels for this proof-of-concept study because
of its flexibility, but it may be worthwhile to experiment with
distributions that can accommodate a positive skew, such as the
skew normal distribution (Suyu et al. 2010; Suyu 2012).

4.5. Computational Efficiency

Computational efficiency is an important metric for the
inference pipeline we present in this paper because its use case
lies in a joint-sample inference over many lenses. The total
CPU time of our inference pipeline can be broken down into
the data generation time, the BNN training time, and the H0

inference time. Generating the training and validation sets
consisting of 512,000 and 512 lenses, respectively, took a total
of 6 hr on 8 CPU cores. Training the BNN with the architecture
and training configuration, detailed in the Appendix, took less
than 5 hr on a 16 GB NVIDIA Tesla P100 GPU.
The cosmological inference includes evaluating the BNN

lens model on the set of test lenses and sampling from the ( )
DD t

k

posterior for individual lenses k. The former step can be done
within seconds on a CPU or GPU across all the lenses at once.
The latter step requires MCMC sampling, which dominates the
total inference time. The median sampling time across 4 CPU
cores was about 6 minutes per lens. The sampling time for a
given lens depends on the shape of the caustic, which
determines the stability of the lens equation solver called every
iteration to solve for the image positions. Even for a fixed
number of iterations, the MCMC sampling time varied greatly,
from 3–50 minutes, across the lenses. Interestingly, of the eight
lenses for which the MCMC sampling took more than 30
minutes, seven were doubles.
Taken together, the total computational time required to

obtain the H0 posterior from each test lens was 9 minutes. For
a set of 200 test lenses, this translates to around 30 hr—which
is promising, as complete experiments can be performed on
shorter than a 1.25 day development cycle. Note also that the
data set generation and training time is a fixed investment
that does not vary with the test set size. For 2000 test lenses,
for instance, the pipeline would only take 6.3 minutes
per lens.
It is useful to compare our computational efficiency with that

of the traditional forward-modeling approach. Given the same
set of simple model assumptions, Lenstronomy takes 0.1 s
per likelihood evaluation. It will yield a reasonable but
unconverged H0 posterior in 100,000 MCMC samples, or 3
hr, and will fully converge within 200,000 MCMC samples, or
6 hr. The 9 minute inference time of our method thus represents
a speed-up of a factor of 20–40, with the range reflecting the
degree of uncertainty in the Lenstronomy output.

Figure 15. The weighted mean and standard deviation of the absolute bias in
γlens, binned by the Einstein radius. Bigger separation lenses lead to a small
spread in bias, as expected.
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4.6. Limitations and Future Directions

Having demonstrated proof of concept, we can now move
onto testing the robustness of our approach to systematic errors,
particularly those arising from a nonrepresentative training set.
We intend to apply the BNN hierarchical inference framework
developed in Wagner-Carena et al. (2020) to the problem of
inferring H0 from large samples of lenses and recovering the
population prior over the lens model parameters in a follow-up
study.

In this method paper, we did not test the response of the
BNN to line-of-sight objects and image artifacts like cosmic
rays. Such systematics tests must be performed before our
method is applied to real data. One way to improve the BNN’s
robustness is to augment the training data. Hezaveh et al.
(2017) added faint cosmic rays, hot pixels, and randomly

distributed circular masks to their training images and reported
good performance on real HST images.
The BNN lens modeling with lens light in the images is

expected to improve with multiband imaging, as demonstrated
by experiments with non-Bayesian convolutional neural net-
works (CNNs; Pearson et al. 2019). Encoding the color
difference between the lens and source in the images will
alleviate the contaminant effect of the deflector lens light.
Another interesting avenue for exploration is advancing to

more realistic sources. For the demonstrated method to be
applicable to real systems, we must be able to handle more
complex host galaxy profiles, including those of spiral galaxies,
and possibly more than one source. The BNN can be put to the
test of inferring the posterior over the coefficients of a shapelet
decomposition (Birrer et al. 2016).
Similarly, the lensing mass distribution can be made more

complex. Whereas we have considered the total density profile
in this work, we can probe the detailed structure of the lensing
mass by adopting two-component models with explicitly
assigned stellar and dark matter halo profiles. Disentangling
the stellar and dark contributions would be particularly
instructive for galaxy evolution studies. Other natural exten-
sions include additional angular modes beyond elliptical
symmetry and multiplane, multi-deflector lensing.
As discussed in Section 2.2.3, we have not addressed the

internal and external mass sheets, which are potential sources
of bias in H0. These aspects will need to be investigated using
separate data sets. The former can be probed with galaxy
kinematics data, and the latter with photometry and spectrosc-
opy of the environment. Our lens modeling pipeline thus
requires an accompanying method that can characterize the
mass sheets accurately from individual systems, so that biases
can be mitigated hierarchically. The method must also be
scalable, so as not to severely bottleneck the computation time.
While parameterizing the lens model posterior distribution as

a mixture of two Gaussians served our simple profile
assumptions, the training time and GPU memory requirement
may not scale well to more complex lenses and source profiles,
given that the output dimension of the BNN increases

Figure 16. A simple illustration of the importance of the fit distribution. When the dominant source of uncertainty in ( )
DD t

k is the relative Fermat potential, the ( )
DD t

k

posterior will take on a heavy upper tail. KDE can capture the tail well. On the other hand, the lognormal (Equation (31)) tail is not heavy enough for some lenses.
Normal approximation (Equation (30)) will always underestimate ( )

DD t
k , even compared to lognormal.

Figure 17. Small fit errors on individual DΔt posteriors can be amplified into a
substantial bias in the combined H0 when the sample size is 200. For a simple
illustration, we overlaid the combined H0 from using a Gaussian fit distribution
—and observed a significant upward bias. Lognormal does better because it can
still capture some of the upper tail in DΔt. KDE agrees the best with the truth.
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exponentially with the number of model parameters. More
complex models may also demand more flexibility in the shape
of the posterior. Likelihood-free inference methods such as
flow-based generative models are likely to be interesting in that
regard.

Lastly, our method can be applied to time delay cosmo-
graphy with lensed supernovae (SNe) as well. The LSST is
expected to discover 3500 lensed SNe over the course of its 10
yr survey (Goldstein et al. 2019). With follow-up spectroscopy
and time delay monitoring, the sample of “cosmo-grade”
lensed SNe will be significantly increased and will benefit from
the efficiency of BNN lens modeling.

5. Conclusions

In this paper, we introduced an automated pipeline for
gravitational lens modeling and H0 estimation that takes as
input a high-resolution image, derives an approximate lens
model parameter posterior PDF via a BNN, and then
propagates the posterior PDFs from multiple lenses into an
estimate of the H0 following the H0LiCOW/TDCOSMO
project approach. The computational efficiency of our pipeline
enables various sensitivity and robustness checks, from which
we draw the following conclusions:

1. BNNs can yield accurate and well-calibrated posterior
PDFs over the lens model parameters and the source
position required for time delay cosmography.

2. A simple combination of 200 mock test lenses yields a
precision of 0.5 km s−1 Mpc−1 (0.7%) and no detectable
bias in H0. For our choice of network architecture and and
optimization strategy, the BNN lens modeling and the
inferred H0 are insensitive to varying image depth.

3. Our inference pipeline takes around 9 minutes per lens,
including the time taken to generate the training set, train
the network, and run the cosmological sampling. It is
automated and requires no expert supervision. This
represents a 20–40x speed-up compared to the traditional
forward-modeling method. The computational efficiency
makes the pipeline a promising method to handle large-
scale sensitivity tests.

The methodology and software presented in this paper promise
to become core infrastructure in time delay cosmography, as
the cosmology community prepares to beat down systematics
for a large sample of lenses due to be available in a few
years’ time.

The BNN-based H0 inference pipeline presented in this
paper provides a route to rapid inference of lens model
parameters for a large sample of lenses. We have demonstrated
that BNN lens modeling can accurately characterize the
individual lens posterior PDFs and leads to an unbiased
estimate of H0 on a 200-lens sample, given simple assumptions
on the lens model, time delay measurements, and the lens
environment. The accuracy and speed make it a promising tool
for the exploration of various systematics that may enter the H0

analysis, where traditional forward-modeling approaches could
be slow and intractable. Given the large volumes of data
expected from upcoming surveys, our pipeline can play a
crucial role in time delay cosmography.
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Appendix

A.1. BNN Implementation Details

A.1.1. Scalability of the BNN with Increasing Target Parameters

More complex lens profiles will likely be described by more
parameters. Yet the size of the output dimension scales
exponentially with the number of model parameters, an oft-
criticized trait of BNNs. This effect can be mitigated by
parameterizing the covariance matrix as positive diagonal
elements plus a low-rank (rank r) matrix, in which case the
pout= 2× (2+ r)p+ 1 and the scaling is instead linear. See
the LowRankGaussianNLL and DoubleLowRankGaus-
sianNLL classes in the H0RTON repo for the implementation.

A.1.2. Numerical Stability of the Loss Function

As presented in Section 2.3.1, the ELBO objective is the
negative log of the posterior given in Equation (13) plus an L2
weight regularization term with strength λ. Given our double-
Gaussian parameter posterior assumption, this can be written
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more concretely as
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where m1, m2 represent the network-predicted posterior means
for the two Gaussians. The dependence of each posterior
parameter on W and the input training image d is made explicit
here. To ensure that the optimization is numerically stable and
well defined, each covariance matrix was parameterized as the
log Cholesky decomposition of its inverse (the precision
matrix), i.e., for Σ(d;W)=Σ1/2(d;W),
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Note that the BNN predicts the log of the diagonal entries, so
that the diagonal entries are positive. This extra requirement of
the log Cholesky parameterization guarantees that Σ is positive
definite, whereas the regular Cholesky parameterization only
guarantees that Σ is positive semidefinite and can thus lead to a
nonunique L. Also, we parameterized w1 as the half-sigmoid of

the BNN-predicted logit ω to get it in the range of ( )0, 1
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The source positions xsrc, ysrc were parameterized in terms of
their offsets from the lens positions xlens, ylens.

A.1.3. Deep Residual Networks with MC Dropout

ResNets, or deep residual networks, address the problems of
vanishing/exploding gradients (Bengio et al. 1994) and
degradation of training accuracy known to plague deep
networks. They do so by inserting so-called “shortcut
connections” between the inputs and outputs of a few stacked
convolutional layers (He et al. 2015). The idea is that, instead
of expecting a set of stacked layers to learn the mapping H
between the input x and output H(x), we require it to learn the
difference, i.e., the residual mapping F(x)≡H(x)− x. The
original mapping is then recovered as F(x)+ x. The shortcut
connections implement precisely this addition operation. See
Figure 3 for the architecture of ResNet101 as applied to our
images. We inserted 1D dropout before every convolution,
including the first convolution prior to max pooling. We also
had batch normalization and ReLU activation after every
convolution. ResNet101 has 44 million trainable parameters
and 347 layers.

The depth and width of the architecture were also tunable
hyperparameters. We chose ResNet101 among ResNet
variants with different depths and widths—the other candidates
being ResNet50, which was shallower but equally wide, and
ResNet56, which was shallower but much wider—based on
the validation set performance.
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