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Abstract: We present the analytic formula for the Energy-Energy Correlation (EEC)

in electron-positron annihilation computed in perturbative QCD to next-to-next-to-next-

to-leading order (N3LO) in the back-to-back limit. In particular, we consider the EEC

arising from the annihilation of an electron-positron pair into a virtual photon as well as

a Higgs boson and their subsequent inclusive decay into hadrons. Our computation is

based on a factorization theorem of the EEC formulated within Soft-Collinear Effective

Theory (SCET) for the back-to-back limit. We obtain the last missing ingredient for our

computation - the jet function - from a recent calculation of the transverse-momentum

dependent fragmentation function (TMDFF) at N3LO. We combine the newly obtained

N3LO jet function with the well known hard and soft function to predict the EEC in the

back-to-back limit. The leading transcendental contribution of our analytic formula agrees

with previously obtained results in N = 4 supersymmetric Yang-Mills theory. We obtain

the N = 2 Mellin moment of the bulk region of the EEC using momentum sum rules.

Finally, we obtain the first resummation of the EEC in the back-to-back limit at N3LL′

accuracy, resulting in a factor of ∼ 4 reduction of uncertainties in the peak region compared

to N3LL predictions.
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1 Introduction

In the quest of understanding the nature of the strong interaction, the study of QCD

radiation produced in high-energy electron-positron collisions provides a powerful lens into

the behavior of Quantum Chromodynamics (QCD). Among the observables that one can

consider to perform precision studies of QCD radiation, the Energy-Energy Correlation

(EEC) [1] stands out for its simplicity, and has been an important benchmark observable

to test QCD and to extract the strong coupling constant αs, which has been explored both

at LEP and at SLAC [2–8].

The EEC is an e+e− event shape to measure the energy-weighted angular distance

between any pair of particles in an event [1], and as such is one of the earliest examples of

an infrared and collinear (IRC) safe observable. It is defined as

EEC(χ) =
dσ

dχ
=
∑
i,j

∫
dσe+e−→ij+X

EiEj
Q2

δ(cos θij − cosχ) . (1.1)

Here, the sum runs over all pairs of particles {i, j} in the final state, with Ei,j denoting

their energies, Q2 is the invariant mass of the e+e− collision, and θij is the angle between

the particles. The differential cross section dσe+e−→ij+X contains the phase-space measure

and squared matrix elements for the process e+e− → ij +X.

An extensive effort has been devoted to the calculation of the EEC, both in QCD and in

maximally supersymmetric Yang-Mills theory (N = 4 sYM). In QCD, results for the EEC

were obtained numerically in ref. [6, 9] at NNLO in the CoLoRFulNNLO framework [10–

12]. The analytic form of the EEC is only known at NLO in QCD, thanks to the recent

calculation of ref. [13], see also ref. [14] for the EEC in gluon-initiated Higgs decays (some-

times referred to as the Higgs EEC). In N = 4 sYM, the EEC was calculated analytically

both at NLO [15–17] and at NNLO [18], and also at strong coupling using the AdS/CFT

correspondence [19, 20]. Moreover, much progress has been achieved in understanding the

EEC in N = 4 SYM [15–18, 20, 21] and interesting efforts are being employed to shed light

on its relation to energy correlators in QCD [22–27]. Another observable closely related

to the EEC is the Transverse Energy Energy Correlator (TEEC) [28]. A factorization

theorem for the TEEC in the back-to-back limit has been presented in ref. [29] for hadron-

hadron colliders and extended in ref. [30] for DIS,1 which shares various ingredients with

the factorization of the EEC.

The EEC is commonly expressed in the variable z,

z ≡ 1

2
(1− cosχ) . (1.2)

The differential cross section is distribution-valued in the small-angle limit (sometimes also

referred to as collinear or forward limit) χ → 0 and in the back-to-back limit χ → π. By

expressing the EEC in terms of z the singular points of the distributions are mapped onto

z → 0 and z → 1, respectively. The differential cross section at Born level is given by

dσ

dz
=

2

sinχ

dσ

dχ
=

1

2
σ̂0δ(z) +

1

2
δ(1− z)σ̂0 +O(αs), (1.3)

1For a recent analysis of the TEEC at the electron-proton collider HERA see ref. [31].
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where αs is the strong coupling constant. In this article we will direct attention towards

the singular limits of the EEC. Consequently, it is useful to split the cross section into three

different contributions.

dσ

dz
=

dσ0

dz
+

dσreg.

dz
+

dσ1

dz
, (1.4)

where dσ0
dz and dσ1

dz contain all terms that behave as 1/z and 1/(1− z), respectively. More

precisely, they are expressed in terms of (plus) distributions to regulate these divergences,

while
dσreg.

dz is a regular function of z that is holomorphic in the entire unit interval, z ∈ [0, 1].

The EEC can also be expressed in the variable

dσ

dx
= 2x

dσ

dz
, x =

√
z = sin

(χ
2

)
, x ∈ [0, 1]. (1.5)

The gluon and photon-induced EEC was computed through order α2
s in refs. [13, 14] in

terms of classical polylogarithms as a function of z. Here, we note that expressing the

differential cross section in terms of the variable x allows us to represent it in terms of

harmonic polylogarithms [32] with argument x and indices {−1, 0, 1}. We provide analytic

formulae for the EEC expressed in x including all distribution valued terms through αs as

ancillary files together with the arXiv submission of this article. The recent computation of

the EEC at O(α3
s) in N = 4 sYM in ref. [18] finds evidence that at this order the analytic

formula contains elliptic functions and is no longer expressible in terms of HPLs.

At Born level the EEC vanishes for z 6= 0, 1. Consequently, in the context of the

fixed-order calculations reported above it is customary not to include the distributional

behavior as z → 0, 1 and count O(αs) as the leading order (LO). Accordingly O(αn+1
s )

contributions are counted as NnLO. Such fixed-order calculations become unreliable in the

singular limits z → 0 and z → 1, where large logarithms ln(z) and ln(1 − z) can spoil

perturbative convergence. In these limits the EEC needs to be resummed to all orders in

perturbation theory to retain predictive power.

In the forward limit, this resummation was performed at leading logarithmic (LL)

accuracy a long time ago [33]. Recently, a factorization theorem was derived in this limit

and the resummation was improved in ref. [23]. In the back-to-back limit, the resummation

was carried out at next-to-next-to-leading logarithmic (NNLL) accuracy [6, 34] based on

transverse-momentum dependent (TMD) factorization in e+e− [35–38]. Recently, ref. [39]

proofed that the all-order factorization for the EEC in the back-to-back limit indeed follows

from TMD factorization, and presented first results at N3LL acurracy. In N = 4 sYM, the

factorization of the EEC in both its forward and back-to-back limit has also been explored

up to four loops by using the operator product expansion for light-ray operators [40], and

by relating the EEC to four-point correlation functions of conserved currents [22]. Note

that these factorization theorems contain the full distributional structures, and thus their

fixed-order expansions start at O(α0
s). Hence, in the context of factorization theorems one

counts O(αns ) as NnLO accuracy.

In this paper we calculate the full singular structure of the EEC in QCD in the back-to-

back limit at N3LO, i.e. O(α3
s). This is achieved by calculating the EEC jet function at the
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same order, which is the only unknown ingredient of the factorization theorem derived in

ref. [39]. As an application, we resum the EEC in the back-to-back limit at N3LL′ accuracy,

i.e. N3LL resummation combined with the full N3LO fixed-order boundary condition. This

constitutes the highest level of accuracy obtained for an event shape sensitive to QCD

radiation to date. We show that thanks to the resummation of large logarithms up to

N3LL and the inclusion of fixed-order boundary terms at N3LO, we achieve a ∼ 4-fold

reduction of uncertainty compared to previous results obtained at lower accuracy. We

thoroughly discuss different schemes to estimate the uncertainties due to missing higher

order corrections both in the boundary terms as well as in the anomalous dimensions

and compare them with the ones used in the literature for this observable. Adopting a

scheme in line with the ones previously used in the literature we obtain a 0.5% uncertainty

at the peak. Using a more conservative scheme, which also estimates uncertainties from

soft physics, we obtain a 4% uncertainty for our result at N3LL′. Furthermore, using a

momentum sum rule we also analytically calculate the N = 2 Mellin moment of the regular

part at N3LO, which will be an important check of the full result once it becomes available.

The jet functions calculated in this work are necessary ingredients to describe the singular

behavior of the TEEC in the large angle limit at O(α3
s) as well as to the resummation of

large logs at N3LL′ and N4LL accuracy for this observable.

This paper is organized as follows. In section 2 we briefly review the factorization

theorem for the EEC in the back-to-back and show how to extend it to gluon-induced

Higgs decays, clarifying its nontrivial helicity structure. We also obtain the three-loop jet

functions from our results for the transverse-momentum dependent fragmentation functions

(TMDFFs) calculated in the companion paper [41],2 and present the full singular structure

of the EEC at N3LO in QCD in the back-to-back limit. In addition, we validate the

conjecture that in the back-to-back limit, the leading transcendental terms in QCD match

those in N = 4 supersymmetric Yang-Mills ref. [22]. In section 3, we exploit the fact that

the EEC obeys a set of sum rules to analytically obtain the N = 2 Mellin moment of the

bulk of the EEC distribution at NNLO in QCD. In section 4, we carry out the resummation

of the EEC at N3LL′ accuracy to illustrate the improved perturbative accuracy compared

to previous results. We conclude in section 5.

2 The EEC in the back-to-back limit

2.1 Factorization of the EEC in the back-to-back limit

In this section, we briefly review the factorization of the EEC in the back-to-back limit

z → 1. In the case of electron-positron annihilation, i.e. quark-initiated EEC, this was first

derived by Collins and Soper [35, 36] and Kodaira and Trentadue [37, 38]. Recently, it was

also formulated in ref. [39] using Soft-Collinear Effective Theory (SCET) [43–46], which

clarified the role of nontrivial fixed-order boundary terms in the factorization formula.

So far, no details have been given in the literature on the Higgs EEC. To fill this gap, we

briefly review the derivation of the quark EEC in section 2.1.1, and then show how the same

2While ref. [41], an independent calculation of the TMDFF at N3LO appeared in ref. [42].
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strategy can be applied to the gluon EEC in section 2.1.2, where additional complications

arise from a nontrivial Lorentz structure.

2.1.1 Quark EEC

In the back-to-back limit, the EEC can be related to identified hadron production, e+e− →
h1h2 +X, at small transverse momentum ~qT of the dihadron system [35, 36, 39],

lim
z→1

dσ

dz
=

∫ 1

0
dz1dz2

z1z2

2

∫
d2~qT δ

(
1− z −

q2
T

Q2

)
lim
qT→0

∑
h1,h2

dσe+e−→h1h2
dz1dz2d2~qT

. (2.1)

Here, z1,2 = (P1,2 · q)/q2 describe the longitudinal momenta carried away by the hadrons,

with the total momentum transfer given by qµ = pµ
e+

+pµ
e− .3 The factorization of dihadron

production at small qT was derived in seminal works by Collins and Soper [35, 36] (see also

ref. [47]), and can be written as

dσe+e−→h1h2
dz1dz2d2~qT

= σ̂0Hqq̄(Q,µ)

∫
d2~bT
(2π)2

ei~qT ·~bT D̃h1/q

(
z1, bT , µ,

ν

Q

)
D̃h2/q̄

(
z2, bT , µ,

ν

Q

)
× S̃q(bT , µ, ν) ×

[
1 +O

( q2
T

Q2

)]
. (2.2)

Here, summation over all quark flavors q is kept implicit, the hard function Hqq̄ encodes

virtual corrections to Born process e+e− → qq̄, Dh/q is the fragmentation function encoding

the probability to obtain the hadron h from the fragmentation of a quark q, and S̃q is the

TMD soft function.4 Note, that in the literature, the soft function is often combined with

the fragmentation function as D̃h/q

√
S̃q, whereas we keep it explicit. The scale ν is the

so-called rapidity renormalization scale, which is closely related to the Collins-Soper scale

ζ. For more details in the fragmentation function D̃h/q, we refer to ref. [41].

By combining eqs. (2.1) and (2.2), we obtain the EEC factorization theorem in the

back-to-back limit as stated in ref. [39],

dσ

dz
=
σ̂0

2
Hqq̄(Q,µ)

∫
d2~bT d2~qT

(2π)2
ei~qT ·~bT δ

(
1− z −

q2
T

Q2

)
Jq

(
bT , µ,

ν

Q

)
Jq̄

(
bT , µ,

ν

Q

)
S̃q(bT , µ, ν)

× [1 +O(1− z)]

=
σ̂0

8
Hqq̄(Q,µ)

∫ ∞
0

d(bTQ)2 J0

(
bTQ
√

1− z
)
Jq

(
bT , µ,

ν

Q

)
Jq̄

(
bT , µ,

ν

Q

)
S̃q(bT , µ, ν)

× [1 +O(1− z)] , (2.3)

where Hqq̄ and Sq are the same hard and soft functions as in eq. (2.2), J0(x) is the 0-th

Bessel function of the first kind, and the jet functions Jq are defined as the first moments

3In a frame where the hadrons are aligned along back-to-back lightlike directions, i.e. pµ1 = p−1 n
µ/2 and

pµ2 = p+2 n̄
µ/2 with n2 = n̄2 = 0 and n · n̄ = 2, these evaluate to z1 = p−1 /q

− and z2 = p+2 /q
+, up to

corrections suppressed by qT . In this frame, ~qT is the transverse component of the momentum transfer qµ.
4The TMD soft function is universal between e+e− and pp processes [48], i.e. it is independent of the

direction of the contained Wilson lines, and thus we do not further distinguish these. For a detailed

discussion of the equivalence of the TMD soft function in the context of the EEC, see ref. [39].
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of the fragmentation functions,

Jq

(
bT , µ,

ν

Q

)
≡
∑
h

∫ 1

0
dz z D̃h/q

(
z, bT , µ,

ν

Q

)
. (2.4)

To simplify the jet functions, we use that for perturbative bT . Λ−1
QCD they can be pertur-

batively matched onto the collinear fragmentation functions dh/q as

D̃h/q

(
z, bT , µ,

ν

Q

)
=
∑
q′

∫ 1

z

dz′

z′
dh/q′

( z
z′

)
K̃qq′

(
z′, bT , µ,

ν

Q

)
+O(b2TΛ2

QCD) , (2.5)

where K̃qq′ is a perturbative matching kernel. Applying eq. (2.5) to eq. (2.4), we obtain

Jq

(
bT , µ,

ν

Q

)
=
∑
q′

∫ 1

0
dz′ z′ K̃qq′

(
z′, bT , µ,

ν

Q

)
, (2.6)

where we used the momentum sum rule of the fragmentation function,∑
h

∫ 1

0
dz z dh/q(z, µ) = 1 . (2.7)

Thus, the EEC jet function is free from nonperturbative hadronic matrix elements, which

makes the EEC much less susceptible to nonperturbative effects than the qT distribution

itself. We note that perturbative power corrections to eq. (2.3) can be systematically

studied using the operator formalism of SCET [21, 49, 50] and involve the treatment of

rapidity divergences beyond leading power [51, 52]. Nonperturbative power corrections to

the EEC have been explored in ref. [53].

The factorization for the EEC in the back-to-back limit has been explored in the

literature since a long time. In refs. [35, 36], Collins and Soper derived the qT factorization

theorem in eq. (2.2), which albeit using a different notation already contained hard and

transverse-momentum dependent fragmentation functions, with the soft function absorbed

into the TMDFFs. They also showed how to resum large logarithms by solving evolution

equations in the unphysical scales µ and ν, which we will discuss in detail in section 4.

Using the relation between z and small qT , they also obtained a resummed formula for the

EEC. However, it was only provided at LO in the matching, where the hard, jet and soft

functions all evaluate to unity. Similarly, Kodaira and Trentadue presented qT factorization

with TMDFFs that are matched onto collinear FFs, but only provided formulas for the

resummed EEC spectrum valid at LL and NLL, where the hard and jet functions again

evaluate to unity [37, 38]. Nontrivial fixed-order terms in the factorization formula were first

pointed out in ref. [34], which however did not separate between hard, jet and soft functions,

such that their hard function is equal to the product of Hqq̄JqJq̄Sq when evaluated at fixed

order.5 However, for the purpose of resummation, it is important to distinguish the hard

function, which describes physics at the high scale µ ∼ Q, from the jet and soft functions

5An additional minor difference arises by normalizing by the total cross section σT instead of the Born

cross section σ0.
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which describe physics at the low scale µ ∼ 1/bT . (In the context of TMD factorization,

the TMDFFs and soft function are often combined.) This will be addressed in section 4.4.

This separation was first achieved in ref. [39], and we closely follow their conventions.

2.1.2 Higgs EEC

We now discuss the extension of the EEC factorization to gluon-induced processes, e.g. the

Higgs EEC in e+e− → H → gg + X, which has not yet been given explicitly in the

literature. As in the quark case, one relates the EEC in the back-to-back limit to TMD

factorization for identified hadron production, e+e− → h1h2 +X, which for gluon-induced

processes reads

dσ

dz1dz2d2~qT
= 2σ̂0Hρσρ′σ′(Q,µ)

∫
d2~bT e

i~qT ·~bT D̃ρσ
h1/g

(
z1,~bT , µ,

ν

Q

)
D̃ρ′σ′

h2/g

(
z2,~bT , µ,

ν

Q

)
× S̃g(bT , µ, ν) +

[
1 +O

(
q2
T /Q

2
)]
. (2.8)

To the best of our knowledge, this formula has not yet been explicitly given in the literature,

but it follows immediately from the similar structure of TMD factorization at hadron

colliders [54–56]. Similar to eq. (2.2), H, D̃h/g and S̃g denote the hard, fragmentation and

soft function, respectively. For more details on the definition of the gluon fragmentation

function, we refer to ref. [41].

The key difference between eqs. (2.2) and (2.8) is the Lorentz structure of the hard

function and the fragmentation functions, reflecting the transverse polarization of the frag-

menting gluons in the factorization limit. Since the gluon fragmentation functions D̃ρσ
h/g

only depend on one Lorentz vector, namely bµ⊥ = (0,~bT , 0), their most general decomposi-

tion is given by

D̃ρσ
h/g(z,

~bT ) =
gρσ⊥
2
D̃h/g(z, bT ) +

(
gρσ⊥
2
−
bρ⊥b

σ
⊥

b2⊥

)
D̃′h/g(z, bT ) , (2.9)

where for brevity we suppressed the scales.

In this work, we will only be interested in the Higgs-initiated gluon EEC. In this case,

the scalar nature of the Higgs boson implies a trivial Lorentz structure of the hard function,

Hµνρσ(Q,µ) = gµρ⊥ g
νσ
⊥ H(Q,µ) . (2.10)

Inserting this into eq. (2.8) and using eq. (2.9), we obtain

dσ

dz1dz2d2~qT
= σ̂0H(Q,µ)

∫
d2~bT e

i~qT ·~bT
[
D̃h1/g

(
z1,~bT , µ,

ν

Q

)
D̃h2/g

(
z2,~bT , µ,

ν

Q

)
+ D̃′h1/g

(
z1,~bT , µ,

ν

Q

)
D̃′h2/g

(
z2,~bT , µ,

ν

Q

)]
S̃g(bT , µ, ν) , (2.11)

i.e. we simply encounter the sum of two factorized expressions, one for the polarization-

independent contribution and one for the polarization-dependent contribution. (Note the

factor 1/2 from contracting eq. (2.9) with itself.)
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We can now apply the same steps as in section 2.1.1 to obtain the factorization formula

for the Higgs EEC as

dσ

dz
=
σ̂0

8
H(Q,µ)

∫ ∞
0

d(bTQ)2 J0

(
bTQ
√

1− z
)[
Jg

(
bT , µ,

ν

Q

)2
+ J ′g

(
bT , µ,

ν

Q

)2
]
S̃g(bT , µ, ν)

× [1 +O(1− z)] . (2.12)

As before, the gluon jet functions are related to the matching coefficients of the gluon

fragmentation functions,

Jg

(
bT , µ,

ν

Q

)
=
∑
i

∫ 1

0
dz z K̃gi

(
z, bT , µ,

ν

Q

)
,

J ′g

(
bT , µ,

ν

Q

)
=
∑
i

∫ 1

0
dz z K̃′gi

(
z, bT , µ,

ν

Q

)
, (2.13)

where K̃gi and K̃′gi are the matching kernels of D̃h/g and D̃′h/g onto the gluon fragmentation

function dh/g, with the matching taking the same form as eq. (2.5). Since the polarized

TMDFF K′gi starts at O(αs), the same holds for the polarized jet function J ′g, implying

that it contributes to eq. (2.12) starting at O(α2
s).

Note that our factorization theorem for the Higgs EEC disagrees with the statement

in ref. [57], where the gluon jet function is claimed to be the linear combination Jg + J ′g.

In this case, the J ′g would already contribute to the cross section at O(αs). However, by

comparing our results for the Higgs EEC in the back-to-back limit with the fixed-order

calculation of ref. [14], we confirm that this is not the case, and find perfect agreement

with the prediction from eq. (2.12).

2.2 Jet function for the back-to-back limit at N3LO

Using eqs. (2.6) and (2.13), the EEC jet function can be easily obtained from the N3LO

result for the TMDFF calculated in our companion paper [41]. To present our results, we

expand the jet functions as

Ji

(
bT , µ,

ν

Q

)
=
∞∑
n=0

[αs(µ)

4π

]n
J

(n)
i (Lb, LQ) , (2.14)

where the n-th order coefficient J
(n)
i only depends on the logarithms

Lb = ln
b2Tµ

2

b20
, LQ = ln

ν

Q
, (2.15)

with b0 = 2e−γE . The logarithmic structure of the J
(n)
i is fully encoded by the jet function

RGEs, which due to its definition in eq. (2.4) are identical to the RGEs of the TMDFF,

d

d lnµ
ln Ji(bT , µ, ν/Q) = γ̃iJ(µ, ν/Q) ,

d

d ln ν
ln Ji(bT , µ, ν/Q) = −1

2
γ̃iν(bT , µ) , (2.16)
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where the anomalous dimensions have the all-order expressions

γ̃iJ(µ, ν/Q) = 2Γicusp[αs(µ)] ln
ν

Q
+ γ̃iB[αs(µ)] ,

γ̃qν(bT , µ) = −4

∫ µ

b0/bT

dµ′

µ′
Γicusp[αs(µ

′)] + γ̃iν [αs(b0/bT )] . (2.17)

Here, Γicusp(αs) is the cusp anomalous dimension, γ̃iB(αs) is the noncusp anomalous dimen-

sion of the TMD beam function, and γ̃ν(αs) is the rapidity anomalous dimension. Explicit

results for these in our notation are collected in ref. [58].

We have explicitly checked that our result for the jet function obeys eqs. (2.16) and

(2.17). Solving these equations order-by-order in αs, one easily obtains the logarithmic

structure of the J
(n)
i (Lb, LQ) in terms of the anomalous dimension and the constant piece

of the jet function, which we define as

j
(n)
i ≡ J (n)

i (Lb = LQ = 0) . (2.18)

In appendix A, we provide the full fixed-order structure of the J
(n)
i through N3LO, and

for brevity in the following we only present the constant terms j
(n)
i through N3LO. The

complete N3LO jet functions are also provided as ancillary files with this submission.

2.2.1 Quark jet function

The quark jet function has already been calculated in ref. [57] at NLO and NNLO, with

which we find full agreement with their results. For completeness, we repeat these results,

j(0)
q = 1 ,

j(1)
q = CF (4− 8ζ2) ,

j(2)
q = C2

F

(139

24
− 28ζ2 − 74ζ3 + 140ζ4

)
+ CFCA

(1549

72
− 178

3
ζ2 +

74

3
ζ3 − 5ζ4

)
+ CFnf

(
−149

36
+

28

3
ζ2 +

4

3
ζ3

)
. (2.19)

The new result of this paper is the three-loop coefficient, which is given by

j(3)
q = C3

F

(
−496

3
ζ2

3 −
17062

9
ζ6 + 600ζ2ζ3 +

2008

3
ζ5 + 243ζ4 +

32

3
ζ3 +

22

3
ζ2 +

163

4

)
+ C2

FCA

(
184

3
ζ2

3 +
2255

9
ζ6 −

856

9
ζ2ζ3 +

9620

9
ζ5 +

46220

27
ζ4 −

44224

27
ζ3 −

15004

27
ζ2 +

24673

216

)
+ CFC

2
A

(
56

3
ζ2

3 +
248

9
ζ6 + 134ζ2ζ3 −

2876

3
ζ5 +

19895

108
ζ4 +

98269

162
ζ3 −

107441

162
ζ2 +

173785

1944

)
+ C2

FnfTF

(
7976

27
ζ2 +

12584ζ3

27
− 14188ζ4

27
− 832

9
ζ2ζ3 −

2368ζ5

9
− 3761

27

)
+ CFCAnfTF

(
224ζ5 +

80

3
ζ2ζ3 −

974

27
ζ4 +

928ζ3

81
+

29900

81
ζ2 −

16895

243

)
+ CFn

2
fT

2
F

(
−352

9
ζ2 −

5344

81
ζ3 −

448ζ4

27
+

1586

243

)
. (2.20)
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2.2.2 Gluon jet function

In the gluon case, we have to consider both the polarization-independent jet function Jg
and the polarization-dependent jet function J ′g.

At NLO and NNLO, the finite terms for Jg can be obtained from the calculation of

the unpolarized gluon TMDFFs of ref. [59],

j(0)
g = 1 ,

j(1)
g = CA

(
65

18
− 8ζ2

)
− 5

18
nf ,

j(2)
g = C2

A

(
135ζ4 −

176

3
ζ3 −

727

9
ζ2 +

2269

81

)
+ CAnf

(
8

3
ζ3 +

85

9
ζ2 −

145

162

)
+ CFnf

(
8ζ3 −

49

6

)
− 14

81
n2
f . (2.21)

The new result at three loops can be obtained from our calculation of the TMDFF in

ref. [41]. We obtain

j(3)
g = C3

A

(887378

3645
− 7091

6
ζ2 −

52064

45
ζ3 +

101995

54
ζ4 +

8540

9
ζ5 +

2228

3
ζ2ζ3 −

4853

3
ζ6 −

256

3
ζ2

3

)
+ C2

Anf

(111563

2430
+

6937

27
ζ2 +

77459

270
ζ3 −

16631

108
ζ4 −

2060

9
ζ5 −

58

3
ζ2ζ3

)
+ CACFnf

(320843

1620
+

1168

9
ζ2 +

3254

45
ζ3 −

8

9
ζ4 + 120ζ5 −

352

3
ζ2ζ3

)
+ CAn

2
f

(
−59131

4860
− 349

27
ζ2 −

94

45
ζ3 −

100

9
ζ4

)
+ C2

Fnf

(331

18
+

148

3
ζ3 − 80ζ5

)
+ CFn

2
f

(1624

81
− 44

3
ζ3

)
+ n3

f

(494

729
− 32

27
ζ3

)
. (2.22)

The polarization-dependent jet function J ′g starts at O(αs), but for Higgs production only

interferes with itself, see eq. (2.12). Hence, it is sufficient to know J ′g at O(α2
s) to obtain

the Higgs EEC at N3LO. For completeness, we report their results from ref. [59],

j′(0) = 0 ,

j′(1)
g =

CA
3
−
nf
3
,

j′(2)
g = C2

A

(
−8ζ2

3
+

107

27

)
+ CAnf

(
8ζ2

3
− 163

27

)
+ 2CFnf +

2

27
n2
f . (2.23)

2.3 The EEC in the back-to-back limit at N3LO

Combining our result with the hard function from ref. [60] and the soft function from

ref. [61], we have all ingredients to obtain the EEC in the z → 1 limit at N3LO. The Bessel

integral in eqs. (2.3) and (2.12) can be easily evaluated analytically, see appendix B.

To present our results, we expand the EEC in the back-to-back limit as

dσ1

dz
= σ̂0

∞∑
n=0

[αs(µ)

4π

]ndσ̄(n)(Lh)

dz
, (2.24)
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where we have divided out the Born partonic cross section σ̂0. In eq. (2.24), Lh = ln(Q/µ)

is the only remaining logarithm, and the logarithmic structure is entirely governed by the β

function. For brevity, we only report the nonlogarithmic terms, but provide the full result

in an ancillary file with this submission.

2.3.1 Quark EEC

The results through NNLO were already given in ref. [57], with which we fully agree, and

which are repeated here for completeness:

dσ̄(0)

dz
=

1

2
δ(z̄) ,

1

CF

dσ̄(1)

dz
= −2L1(z̄)− 3L0(z̄)− (4 + 2ζ2)δ(z̄) ,

1

CF

dσ̄(2)

dz
= 4CFL3(z̄) + L2(z̄)

(
18CF +

22

3
CA −

4

3
nf

)
+ L1(z̄)

[
CF (34 + 8ζ2) + CA

(
−35

9
+ 4ζ2

)
+

2

9
nf

]
+ L0(z̄)

[
CF

(45

2
+ 24ζ2 − 8ζ3

)
+ CA

(
−35

2
+ 22ζ2 + 12ζ3

)
+ nf (3− 4ζ2)

]
+ δ(z̄)

[
CF

(41

3
+ 49ζ2 − 80ζ3 + 48ζ4

)
+ CA

(
−382

9
− 104

9
ζ2 +

182

3
ζ3 − 8ζ4

)
+ nf

(58

9
+

8

9
ζ2 +

4

3
ζ3

)]
. (2.25)

Here, we introduced the standard plus distributions

Ln(z̄) =
[ lnn z̄

z̄

]
+
, z̄ ≡ 1− z . (2.26)

The new result at N3LO reads

1

CF

dσ̄(3)

dz
= −4C2

FL5(z̄)

+ L4(z̄)
[
−30C2

F −
220

9
CFCA +

40

9
CFnf

]
+ L3(z̄)

[
C2
F (−16ζ2 − 104) +

88

9
CFnf + CFCA

(
−16ζ2 −

388

9

)
− 242

9
C2
A +

88

9
CAnf −

8

9
n2
f

]
+ L2(z̄)

[
C2
F (−144ζ2 − 16ζ3 − 189) + CFCA

(
−592

3
ζ2 − 72ζ3 +

244

3

)
+ CFnf

(88

3
ζ2 −

40

3

)
+ C2

A

(2471

27
− 88

3
ζ2

)
+ CAnf

(16

3
ζ2 −

760

27

)
+

44n2
f

27

]
+ L1(z̄)

[
C2
F

(
−542

3
− 412ζ2 + 224ζ3 − 192ζ4

)
+ CFCA

(
−2900

9
ζ2 −

1688

3
ζ3 − 8ζ4 +

3797

9

)
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+ CFnf

(536

9
ζ2 +

32

3
ζ3 −

479

9

)
+ C2

A

(
−916

9
ζ2 − 44ζ4 −

2354

81

)
+ CAnf

(448

9
ζ2 + 16ζ3 −

380

81

)
+ n2

f

(124

81
− 16

3
ζ2

)]
+ L0(z̄)

[
C2
F

(
64ζ3ζ2 − 402ζ2 + 332ζ3 − 552ζ4 + 48ζ5 −

169

2

)
+ CFCA

(
−128ζ3ζ2 +

212

3
ζ2 −

2812

9
ζ3 −

1342

3
ζ4 − 120ζ5 +

3358

9

)
+ CFnf

(
−20

3
ζ2 −

296

9
ζ3 +

244

3
ζ4 −

623

18

)
+ C2

A

(4420

9
ζ2 −

560

9
ζ3 −

326

3
ζ4 − 40ζ5 −

4241

27

)
+ CAnf

(
−1508

9
ζ2 +

184

9
ζ3 +

56

3
ζ4 +

1414

27

)
+ n2

f

(112

9
ζ2 +

16

9
ζ3 −

98

27

)]
+ δ(z̄)

[
C2
F

(
−337

3
− 1049

3
ζ2 +

530

3
ζ3 + 512ζ2ζ3 − 64ζ2

3 − 1396ζ4 +
3136

3
ζ5 − 672ζ6

)
+ CFCA

(10169

27
+

2729

3
ζ2 −

22070

9
ζ3 +

2176ζ4

9
+ 528ζ5 + 22ζ6 − 288ζ2ζ3 + 64ζ2

3

)
+ CFnf

(
−148

27
− 985ζ2

9
+

3340ζ3

9
+

58ζ4

9
− 368ζ5

3
− 224

3
ζ2ζ3

)
+ C2

A

(
−55504

81
− 3968

81
ζ2 +

39337

27
ζ3 +

3815

18
ζ4 −

2720

3
ζ5 −

700

3
ζ2ζ3 + 59ζ6 − 56ζ2

3

)
+ CAnf

(15626

81
− 3326

81
ζ2 −

3788

27
ζ3 −

290

9
ζ4 + 80ζ5 + 72ζ2ζ3

)
+ n2

f

(
−1048

81
+

616

81
ζ2 −

464

27
ζ3 −

16

9
ζ4

)
+NF,V

dabcd
abc

Nr
(2 + 5ζ2 +

7

3
ζ3 −

ζ4

2
− 40

3
ζ5)
]
. (2.27)

Here, following the notation of ref. [60] the factor NF,V arises from virtual diagrams where

the exchanged vector boson couples to a closed quark loop, and hence this contribution

is not proportional to the charges of the Born process. For the simplest case of photon

exchange, it is given by NF,V = (
∑

f ef )/eq, where eq is the flavor of the external quark.

Note that dabcd
abc = (N2

c − 4)(N2
c − 1)/Nc and Nr is the dimension of the fundamental

representation, hence Nr = 3 in QCD.
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2.3.2 Gluon EEC

The singular structure of the Higgs EEC in the back-to-back limit is given by

dσ̄
(0)
H

dz
=

1

2
δ(z̄)

dσ̄
(1)
H

dz
= −2CAL1(z̄)− L0(z̄)

[
11

3
CA −

2

3
nf

]
+ δ(z̄)

[
CA

(
65

18
− 2ζ2

)
− nf

5

18

]
dσ̄

(2)
H

dz
= 4C2

AL3(z̄) + L2(z̄)

[
88

3
C2
A −

16

3
CAnf

]
+ L1(z̄)

[
C2
A (12ζ2 + 11)− 34

3
nfCA +

4

3
n2
f

]
+ L0

[
C2
A

(
4ζ3 +

154

3
ζ2 −

907

18

)
+ CAnf

(
233

18
− 28

3
ζ2

)
+ 2CFnf −

5

9
n2
f

]
+ δ(z̄)

[
C2
A

(
40ζ4 − 44ζ3 −

65

3
ζ2 +

17515

216

)
+ CAnf

(
−8ζ3 +

5

3
ζ2 −

1657

108

)
− 17

216
n2
f + CFnf

(
16ζ3 −

58

3

)]
. (2.28)

The logarithmic structure matches the fixed order calculation of ref. [14], while to the best

of our knowledge, the δ(z̄) term has not appeared in the literature before. Note that the

polarized jet function J ′g appears for the first time in the δ(z̄) coefficient at O(α2
s), as it

vanishes at tree level and interferes only with itself.

For the singular structure at N3LO we find

dσ̄
(3)
H

dz
= −4C3

AL5(z̄)

− L4(z̄)

[
550

9
C3
A −

100

9
C2
Anf

]
+ L3(z̄)

[
C3
A

(
−32ζ2 −

4630

27

)
+

2252

27
C2
Anf −

232

27
CAn

2
f

]
+ L2(z̄)

[
C3
A

(
−88ζ3 −

1232

3
ζ2 +

9589

27

)
+ C2

Anf

(
224

3
ζ2 −

731

27

)
− 482

27
CAn

2
f

−16CACFnf +
16

9
n3
f

]
+ L1(z̄)

[
C3
A

(
−244ζ4 −

880

3
ζ3 −

2200

3
ζ2 +

12719

54

)
+ C2

Anf

(
400

3
ζ3 +

976

3
ζ2 −

2173

9

)
+CAn

2
f

(
811

18
− 32ζ2

)
+ CACFnf

(
133

3
− 80ζ3

)
+ CFn

2
f

28

3
− 40

27
n3
f

]
+ L0(z̄)

[
C3
A

(
−64ζ2ζ3 − 112ζ5 − 1232ζ4 +

1280

9
ζ3 +

30232

27
ζ2 −

81466

81

)
+C2

Anf

(
224ζ4 +

436

3
ζ3 −

8720

27
ζ2 +

18079

54

)
+ CAn

2
f

(
−272

9
ζ3 +

520

27
ζ2 − 26

)
+CACFnf

(
−176ζ3 − 28ζ2 +

4261

18

)
− C2

Fnf + CFn
2
f

(
32ζ3 −

356

9

)
− 17

81
n3
f

]
+

+ δ(z̄)

[
C3
A

(
−56ζ2

3 − 591ζ6 + 68ζ2ζ3 +
2128

3
ζ5 −

916

3
ζ4 −

271522

135
ζ3 −

50077

54
ζ2 +

14650931

7290

)
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+C2
Anf

(
166

3
ζ2ζ3 −

316

3
ζ5 +

10345

36
ζ4 +

27833

90
ζ3 +

8254

27
ζ2 −

3381919

4860

)
+CACFnf

(
−208

3
ζ2ζ3 + 200ζ5 + 4ζ4 +

15254

45
ζ3 +

449

3
ζ2 −

189683

270

)
+CFn

2
f

(
−8

9
ζ4 −

176

3
ζ3 −

92

9
ζ2 +

8983

108

)
+ C2

Fnf

(
−240ζ5 + 148ζ3 +

313

6

)
+CAn

2
f

(
−284

9
ζ4 −

314

45
ζ3 −

620

27
ζ2 +

105647

2430

)
+ n3

f

(
32

27
ζ3 +

511

729

)]
.

(2.29)

2.4 The maximally transcendental limit from N = 4 sYM

It is conjectured that the leading transcendental term of the EEC in QCD (with CF , CA →
Nc) in the back-to-back limit is given by the EEC in the back-to-back limit in maximally

supersymmetric Yang-Mills theory (N = 4 SYM) [17]. This relation has been observed to

hold up to O(α2
s) [13, 14, 23, 57] and it is known not to hold beyond leading power [18, 21].

Here, we validate this conjecture at O(α3
s), which also provides us with an independent

check of the leading transcendental limit of the three-loop jet functions.

In N = 4 SYM, the back-to-back limit of the EEC is given by a (simplified) conformal

version of the factorization formula in eq. (2.3) [17, 22, 40],

lim
z→1

dσN=4

dz
=
σ̂0

8

H(a)

z̄

∫ ∞
0

db bJ0(b) exp

[
−1

2
Γcusp(a) ln2

(
b2

z̄b20

)
− Γ(a) ln

(
b2

z̄b20

)]
. (2.30)

Here, z̄ ≡ 1−z, and Γcusp(a) and Γ(a) are the cusp and the collinear anomalous dimensions

[62–66]. In ref. [22] it has been shown that the boundary function H(a) can be obtained

from the OPE coefficients of twist-two operators at large spin up to 3 loops [67, 68] and it

reads

H(a) = 1− ζ2a+ 5ζ4a
2 −

(
17

12
ζ2

3 +
591

32
ζ6

)
a3 +O(a4) . (2.31)

While H(a) is sometimes referred as the hard function of the back-to-back asymptotic

in N = 4 SYM, it is important to notice that it is neither the N = 4 analog nor the

maximally transcendental part of the QCD hard function H(Q,µ) which appears in the

factorization theorem in eq. (2.3) (or in eq. (2.12) for that matter). The reason lies in the

fact that in QCD the running of the coupling forces a distinction between the constants of

the δ(1 − z) term due to hard, collinear or soft corrections. However, in N = 4, because

of conformal invariance, there is no reason for such separations and therefore the non-

logarithmic enhanced corrections get combined into a single term, namely H(a).

Combining eqs. (2.30) and (2.31), we obtain the contact term of the z = 1 endpoint in

N = 4 up to three loops [22, 40],

1

σ̂0

dσN=4

dz

∣∣∣∣
δ(1−z)

=
1

2
δ(1− z)

[
1− 4ζ2

(
Nc

αs
4π

)
+ 80ζ4

(
Nc

αs
4π

)2

− (112ζ2
3 + 1182ζ6)

(
Nc

αs
4π

)3
+O(α4

s)
]
. (2.32)
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If the principle of maximal transcendentality holds at this order, eq. (2.32) should predict

the leading transcendental terms of the δ(1 − z) coefficient of the EEC in QCD through

O(α3
s).

6

We find perfect agreement between eq. (2.32) and the leading transcendental terms of

the quark and gluon EEC in eqs. (2.27) and (2.29), confirming that the conjectured principle

of maximal transcendentality holds for the EEC in the back-to-back limit through O(α3
s).

Conversely, if we instead assume that eq. (2.32) predicts the maximal transcendental

limit of the EEC in QCD, we can use it to predict the leading transcendental term of the

EEC jet function at O(α3
s), as the required hard and soft functions are already known at

this order [60, 61]. We obtain

j(3) l.t.
q,g = −N3

c

(256

3
ζ2

3 +
4853

3
ζ6

)
, (2.33)

which precisely agrees with the leading transcendental limit of the quark and gluon jet

functions given in eqs. (2.20) and (2.22). Since the jet functions are obtained from a

weighted integral of the corresponding TMDFF, summed over all contributing partonic

channels, this also provides a remarkable cross check on the N3LO TMDFF matching

kernels calculated in the companion paper [41].

3 Sum rules and the N = 2 Mellin moment of the EEC at O(α3
s)

An interesting property of the EEC is that it obeys the sum rules [22]∫ 1

0
dz

dσ

dz
= σ (3.1)∫ 1

0
dzz

dσ

dz
=

∫ 1

0
dz(1− z)dσ

dz
=

1

2
σ , (3.2)

where σ is the inclusive cross section for e+e− → hadrons (or Higgs decay to hadrons),

which is known up to O(α4
s) [69–71]. These sum rules are due to energy and momentum

conservation, respectively. The first sum rule can be derived by noting that

∑
a,b

∫
dσV→a+b+X = σ ,

∑
a,b

EaEb
Q2

=

(∑
a

Ea
Q

)(∑
b

Eb
Q

)
= 1 . (3.3)

The second follows from

pa · pb = EaEb − EaEb cosχa,b , (3.4)

such that

∑
a,b

EaEb
Q2

(1− cosχa,b)

2
=

(∑
a

pµa
Q

)(∑
b

pbµ
Q

)
, (3.5)

6Note that starting at O(α3
s) there is a leading transcendental contribution to the δ(1 − z) term from

the Fourier transform of the cusp, see appendix B. Therefore, the boundary terms do not agree between bT
space and z even at leading transcendental weight.
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where
∑

i p
µ
i = qµ = (Q, 0, 0, 0) in the rest frame of the source.7 The presence of these sum

rules puts interesting constraints on the EEC distribution and allows one to use information

about one region to extract nontrivial information on the distribution away from that

region [22]. In particular it is useful to divide the EEC distribution in different terms

[22, 23]

dσ

dz
= V0δ(z) +

[
φ0(z)

z

]
+

+ V1δ(1− z) +

[
φ1(z)

1− z

]
+

+
dσreg

dz
. (3.6)

This isolates the endpoint singular terms with respect to the regular part of the distribution,

such that dσ
dz

∣∣
reg.

is finite as z → 0 and z → 1 and the plus prescription for φ0 is taken to

act at z = 0, while that for φ1 at z = 1. The functional form of the leading term of the

EEC in the z → 0 and z → 1 limit in QCD is known at all orders due to the factorization

theorems presented in ref. [23] and ref. [39]. In particular, order by order in αs one finds

φ0(z) = σ̂0

∑
n

(αs
4π

)n n−1∑
m=0

c
(n,m)
0 logm z

φ1(z) = σ̂0

∑
n

(αs
4π

)n 2n−1∑
m=0

c
(n,m)
1 logm(1− z) , (3.7)

where all the coefficients c
(k)
n,m with n ≤ 3 are known [23, 39]. In particular, the coefficient

c
(3,m)
1 is the coefficient of Lm(z̄) in eqs. (2.27) and (2.29) for e+e− and Higgs, respectively.

Expanding the total cross section and the boundary constants as

σ = σ̂0

∑
n

(αs
4π

)n
R(n) , V0 = σ̂0

∑
n

(αs
4π

)n
V

(n)
0 , V1 = σ̂0

∑
n

(αs
4π

)n
V

(n)
1 , (3.8)

we can make use of the sum rules and obtain relations order by order in αs. We can write

the relations at O(αns ) in compact form as

R(n) = V
(n)

0 + V
(n)

1 +
1

σ̂0

∫
dz

dσreg

dz

∣∣∣∣
O(αns )

(3.9)

R(n)

2
= V

(n)
1 +

2n−1∑
m=0

(−1)mm!
[
c

(n,m)
0 − c(n,m)

1

]
+

1

σ̂0

∫
dz z

dσreg

dz

∣∣∣∣
O(αns )

(3.10)

R(n)

2
= V

(n)
0 +

2n−1∑
m=0

(−1)mm!
[
c

(n,m)
1 − c(n,m)

0

]
+

1

σ̂0

∫
dz (1− z) dσreg

dz

∣∣∣∣
O(αns )

. (3.11)

In appendix C we collect the expressions for the terms entering eq. (3.9), eq. (3.10) and

eq. (3.11). The different ingredients can be obtained with wildly different techniques and,

as it is often the case, some are easier to obtain than others. Therefore, the power of

7Note that the choice of frame is already implicitly taken in defining the EEC observable in terms of the

angle χa,b which is clearly frame dependent. An alternative, and equivalent, way of defining the observable

in a frame independent way is to let z = pa·pb
2pa·qpb·q

. It is easy to check that, in the rest frame of the source,

this gives back the definition in eq. (1.2).
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these sum rules lies in the ability of extracting information about the endpoints from the

bulk of the distribution and vice versa. This idea has been applied in ref. [22] to obtain

the endpoint behaviors of the EEC in N = 4 up to three loops.8 In QCD, it has been

applied in ref. [23] to extract V
(2)

0 , i.e. the two loop δ(z) coefficient, using the two loop

δ(1−z) coefficient V
(2)

1 from refs. [57, 59] and the regular part of the distribution dσreg

dz

∣∣
O(α2

s)

from the fixed order calculation of refs. [13, 14] both for the EEC in e+e− as well as in

gluon-induced Higgs decay.

While all the ingredients are known in QCD at O(α2
s), much less is known at O(α3

s).

In particular, only the logarithmic structure at the endpoint, i.e. the c
(3,m)
1 and c

(3,m)
0

coefficients, is known [23, 39], but neither the regular part of the distribution nor the

δ(z), δ(1 − z) terms are known. In this work we have calculated the EEC jet function at

O(α3
s), which is the last missing ingredient to obtain V

(3)
1 , i.e. the three-loop coefficient of

δ(1−z), which we have presented in eqs. (2.27) and (2.29) for e+e− and Higgs, respectively.

Combining our new results with eq. (3.10), we obtain the N = 2 Mellin moment of the

EEC in the bulk at O(α3
s).

For e+e− we obtain

1

σ̂0

∫ 1

0
dz z

dσreg
e+e−

dz

∣∣∣∣
O(α3

s)

= C3
F

(
64ζ2

3 + 672ζ6 − 496ζ2ζ3 −
3616

3
ζ5 +

4778ζ4

3
− 210ζ3 +

99397

216
ζ2 −

3809015

7776

)
+ CFn

2
f

(16

9
ζ4 +

56

27
ζ3 +

3094

405
ζ2 +

156437

13500

)
+ CFC

2
A

(
56ζ2

3 − 59ζ6 +
628

3
ζ2ζ3 +

2212

3
ζ5 −

1768

9
ζ4 −

438601

270
ζ3 +

7930931

8100
ζ2 −

96056179

180000

)
− C2

FCA

(
64ζ2

3 + 22ζ6 − 232ζ2ζ3 − 8ζ5 +
19883

18
ζ4 −

74378

45
ζ3 +

392641

216
ζ2 −

113349701

51840

)
+ CFCAnf

(
−72ζ3ζ2 −

200

3
ζ5 +

812

9
ζ4 +

61169

270
ζ3 −

3933857

16200
ζ2 +

167350393

2160000

)
+ C2

Fnf

(224

3
ζ3ζ2 +

128

3
ζ5 −

34

9
ζ4 −

7726

45
ζ3 +

98803

360
ζ2 −

406426043

972000

)
+
dabcd

abc

NR
NF,V

(40

3
ζ5 +

ζ4

2
− 19

3
ζ3 − 5ζ2 −

1

6

)
, (3.12)

where we adopt the same convention for the dabcd
abc color structure as in eq. (2.27).

We stress that to calculate theN = 2 Mellin moment using eq. (3.10) we need theO(α3
s)

logarithmic coefficients also in the forward (z → 0) limit, whose factorization theorem was

obtained in ref. [23]. However, at the time of the publication of ref. [23], the NNLO time-

like splitting function P
(2)
qg available in the literature was not correct. A new result for P

(2)
qg

was more recently obtained in ref. [26] and we have confirmed this result in our calculation

in ref. [41]. Since P
(2)
qg is part of the singlet time-like splitting kernel matrix governing the

logarithmic structure of the EEC in the z → 0 limit [23], the new result for P
(2)
qg modifies

the small angle limit of the Higgs EEC at O(α3
s) and beyond. The result in e+e− is not

modified since in that case P
(2)
qg contributes to the z → 0 logarithmic coefficients only

8The contact terms of the EEC in N = 4 were also obtained in ref. [40].
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starting at O(α4
s). In the Higgs case, using the correct splitting function we obtain

1

σ̂0

∫ 1

0
dz z

dσreg
H

dz

∣∣∣∣
O(α3

s)

= C3
A

(
56ζ2

3 + 591ζ6 − 132ζ2ζ3 − 356ζ5 −
1345

3
ζ4 −

259187

225
ζ3 −

1722547ζ2

2250
+

168476576111

24300000

)
+ C2

Anf

(
−166

3
ζ2ζ3 + 92ζ5 −

4705

36
ζ4 +

182159

450
ζ3 +

8938517

13500
ζ2 −

194619951647

48600000

)
+ CACFnf

(208

3
ζ2ζ3 − 120ζ5 −

263

15
ζ4 +

48022

225
ζ3 −

48299

540
ζ2 −

3671238613

9720000

)
+ C2

Fnf

(
80ζ5 +

308

15
ζ4 −

19342

225
ζ3 +

1333

100
ζ2 −

1101193

97200

)
+ CAn

2
f

(284

9
ζ4 −

1234

45
ζ3 −

34771

225
ζ2 +

427251479

607500

)
+ CFn

2
f

(8

9
ζ4 −

536

15
ζ3 −

6967

900
ζ2 +

173703509

1620000

)
+ n3

f

(596

45
ζ2 −

4947899

121500

)
. (3.13)

The N = 2 Mellin moment of the EEC for e+e− and Higgs at O(α3
s) in eqs. (3.12) and

(3.13) constitute two new results. In particular it is the first piece of information on the

EEC in QCD analytically at NNLO in the bulk of the distribution. As a matter of fact, at

NNLO the EEC is only known numerically in QCD for e+e− [6, 9] while no results at this

order at all are available for the EEC in gluon-initiated Higgs decay. Noting that the full

result for the EEC at this order is known in N = 4 [18], we can check if the N = 4 result

indeed constitutes the leading transcendental terms of the QCD result. While the result

of ref. [18] is expressed in terms of a two-fold integral and therefore cannot be directly

checked analytically, in ref. [22] the N = 2 Mellin moment of the distribution away from

the endpoints has been obtained and reads

1

σ̂0

∫ 1

0
dz z

dσN=4
reg

dz
= 2
(Ncαs

π

)3(
−2 +

2

3
π2 − 11

8
ζ3 +

π4

80
− π2ζ3

12
− 5

4
ζ5 +

197

40320
π6 +

7

16
ζ2

3

)
.

(3.14)

We see that this result has no uniform transcendentality, but the leading transcendental

piece exactly matches our result in QCD after taking CA, CF → Nc. Therefore we confirm

that the principle of maximal transcendentality holds also at NNLO for the N = 2 Mellin

moment of the distribution in the bulk.

4 Resummation of the EEC at N3LL′ accuracy

In this section, we use our results to obtain for the first time the EEC spectrum in the

back-to-back limit resummed at N3LL′ accuracy. In section 4.1, we review how the large

logarithms ln(1 − z) can be resummed to all-orders by solving the renormalization group

equations (RGEs) of the hard, jet and soft functions. Details of its implementation are

presented in section 4.2, before we show our numeric results in section 4.3.
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4.1 Renormalization group evolution

The hard, jet and soft functions entering eqs. (2.3) and (2.12) obey the same RGEs as the

hard, beam and soft functions in TMD factorization,

d

d lnµ
lnHi(Q,µ) = γiH(Q,µ) ,

d

d lnµ
ln Ji(bT , µ, ν/Q) = γ̃iJ(µ, ν/Q) ,

d

d ln ν
ln Ji(bT , µ, ν/Q) = −1

2
γ̃iν(bT , µ) ,

d

d lnµ
ln S̃i(bT , µ, ν) = γ̃iS(µ, ν) ,

d

d ln ν
ln S̃i(bT , µ, ν) = γ̃iν(bT , µ) . (4.1)

The jet anomalous dimension is identical to the beam anomalous dimension, γ̃iJ ≡ γ̃iB, and

γ̃iν is the TMD rapidity anomalous dimensions. The anomalous dimensions with respect

to µ have the all-order form

γiH(Q,µ) = 4Γicusp[αs(µ)] ln
Q

µ
+ 4γi[αs(µ)] ,

γ̃iJ(µ, ν/Q) = 2Γicusp[αs(µ)] ln
ν

Q
+ γ̃iB[αs(µ)] ,

γ̃iS(µ, ν) = 4Γicusp[αs(µ)] ln
µ

ν
+ γ̃iS [αs(µ)] , (4.2)

where Γicusp is the cusp anomalous dimension, γq (γg) is the quark (gluon) anomalous

dimension, and γ̃iB and γ̃iS are the TMD beam and soft noncusp anomalous dimensions,

respectively. Note that µ independence of the cross section implies that

γiH(Q,µ) + 2γ̃iJ(µ, ν/Q) + γ̃iS(µ, ν) = 0 . (4.3)

The rapidity anomalous dimension itself obeys an RGE and is given by

γ̃iν(bT , µ) = −4

∫ µ

µ0

dµ′

µ′
Γicusp[αs(µ

′)] + γ̃iν,FO(bT , µ0) , (4.4)

which follows by commutativity of applying both d/d lnµ and d/d ln ν to either Ji or S̃i.

As indicated, the second term on the right hand side of eq. (4.4) is evaluated at fixed order,

while the integral over Γicusp resums the logarithms ln(µ/µ0). By choosing µ0 = b0/bT , all

large logarithms ln(µbT /b0) are resummed, and γ̃iν,FO(bT , µ0) reduces to the boundary term

γ̃ν [αs(b0/bT )] which can be reliably calculated in fixed order.

We note that the rapidity anomalous dimension becomes nonperturbative for bT &
Λ−1

QCD, irrespective of whether µ is perturbative or not. In our numeric analysis, we will

simply freeze out µ0 to avoid the Landau pole, but note that it would be very interesting to

extract nonperturbative contributions to γ̃ν using EEC data from LEP. Another promis-

ing approach is to calculate it using lattice QCD as suggested recently [72–74], and first

exploratory results have recently been obtained in refs. [75, 76], see also ref. [77] for first

estimates of its large-bT asymptotics.

By solving eq. (4.1), one can evolve the hard, jet and soft functions from their natural

scales to the common scales (µ, ν). This two-dimensional evolution is independent of the
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chosen path by virtue of eq. (4.4), and we choose to first evolve in virtuality µ before

evolving in rapidity ν. The resummed cross section in eq. (2.3) is then given by

dσ

dz
=
σ̂0

8

∫ ∞
0

d(bTQ)2 J0

(
bTQ
√

1− z
)
Hqq̄(Q,µH)Jq

(
bT , µJ ,

νJ
Q

)
Jq̄

(
bT , µJ ,

νJ
Q

)
S̃q(bT , µS , νS)

× exp

[∫ µ

µH

dµ′

µ′
γqH(Q,µ′) + 2

∫ µ

µJ

dµ′

µ′
γ̃qJ(µ′, νJ/Q) +

∫ µ

µS

dµ′

µ′
γ̃qS(µ′, νS)

](νJ
νS

)γ̃qν(bT ,µ)

×
[
1 +O(1− z)

]
, (4.5)

and similar for the gluon case shown in eq. (2.12). Eq. (4.5) is manifestly independent

of the overall rapidity scale ν, while the dependence on µ cancels due to eq. (4.3).9 By

choosing the canonical resummation scales as

µH ∼ Q , µJ ∼
b0
bT

, µS ∼
b0
bT

,

νJ ∼ Q , νS ∼
b0
bT

, (4.6)

the fixed-order boundary terms in the first line of eq. (4.5) are free of large logarithms and

can be reliably evaluated in fixed-order perturbation theory, while all large logarithms are

explicitly exponentiated.

The logarithmic accuracy of the resummed cross section in eq. (4.5) is classified by

the exponentiated logarithms. For example, LL refers to exponentiating all terms αsL
2,

requiring only the one-loop cusp anomalous dimension and beta function. The fixed-order

boundary terms H,J and S must be chosen at an order such that they cancel all logarithms

obtained from expanding the exponential in fixed order. In practice, one often chooses the

boundary terms at one order higher as this significantly reduces residual scale dependencies,

which is referred to as prime counting [80]. For completeness, table 1 lists the ingredients

required up to N3LL′.

At N3LL′, we need to implement the hard, jet and soft function at three loops. The

Drell-Yan hard function is known at O(α3
s) from the quark form factor [60, 81–88], and is

explicitly given in ref. [60].10 The soft function has been calculated at O(α3
s) in ref. [61] and

confirmed in ref. [89], while the EEC jet function at three loops is the remaining ingredient

provided in this paper. The resummation also requires knowledge of the four-loop cusp

anomalous dimension [62, 64, 90–97] (see ref. [96] for a complete list of partial four-loop

results). The three-loop quark and gluon anomalous dimensions γq,g are known from the

corresponding form factors [81–86, 98] (see ref. [97] for the result at four loops). The beam

and soft noncusp anomalous dimensions γ̃iB,S were first obtained by consistency with the

invariant-mass dependent jet function and threshold soft function, all of which are known

9The integrals over µ′ are often implemented using an approximate analytic solution which leads to a

small residual dependence on µ [78, 79]. To avoid this effect, we have implemented all integrals and the

running coupling constant exactly, but we have checked that the difference to the analytic approximation

is negligible.
10Note that starting at three loops, the exchanged vector boson can couple to closed quark loops, whose

couplings differ from those of the Born process. This is the origin of the NF,V piece in ref. [60]. For our

numerical illustration later, we simply set NF,V = 0.
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Accuracy H, J , S Γcusp(αs) γ(αs) β(αs)

LL Tree level 1-loop – 1-loop

NLL Tree level 2-loop 1-loop 2-loop

NLL′ 1-loop 2-loop 1-loop 2-loop

NNLL 1-loop 3-loop 2-loop 3-loop

NNLL′ 2-loop 3-loop 2-loop 3-loop

N3LL 2-loop 4-loop 3-loop 4-loop

N3LL′ 3-loop 4-loop 3-loop 4-loop

Table 1. Classification of the resummation accuracy in terms of the fixed-order expansions of

boundary term, anomalous dimensions and beta function.

at three loops [90, 91, 99–102], and were confirmed by explicit calculations in refs. [61, 89,

103]. The rapidity anomalous dimension γ̃ν(αs) is known at N3LO [61, 104, 105]. Finally,

resummation at N3LL accuracy also requires knowledge of the QCD β function at four

loops [106–109]. Explicit expressions for all these anomalous dimension through N3LO in

the notation used in this paper are collected in refs. [58, 110].

4.2 Resummation scales and perturbative uncertainties

We choose the canonical resummation scales as

µH = νJ = Q , µJ = µS = µ0 =
b0

b∗T (bT )
, νS =

b0
bT

. (4.7)

Here, we employ a local b∗ prescription to freeze out the virtuality scales to avoid the

Landau pole at large bT , with

b∗T (bT ) =
bT√

1 + b2T /b
2
max

,
b0
bmax

= 1 GeV . (4.8)

The functional form in eq. (4.7) is identical to the b∗ prescription of refs. [35, 36], but

following ref. [111] we only modify the resummation scales rather than globally replacing

bT by b∗T (bT ), as this would induce a global power correction O(b2T /b
2
max).

Note that we always choose (variations around) the canonical resummation scales in

eq. (4.7). In a detailed phenomenological study, one would smoothly turn off the resumma-

tion when the power corrections to eq. (4.5) become comparable to the terms predicted by

the factorization theorem. Here, we refrain from doing so, as we only intend to illustrate

the impact of the new three loop results on the resummation in the regime where canonical

resummation is justified.

To estimate perturbative uncertainties, we follow the procedure developed in ref. [112]

and separately consider a fixed-order and a resummation uncertainty, and in addition

consider an uncertainty from our nonperturbative prescription. Since these sources are
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considered uncorrelated, the individual uncertainties are then added in quadrature,

∆tot =
√

∆2
fo + ∆2

res + ∆2
np , (4.9)

which we apply symmetrically around the central prediction.

The fixed-order uncertainty is estimated by varying all scales except µ0 in eq. (4.7) by a

common factor of 1/2 or 2 and take ∆fo to be the maximum deviation. This probes all fixed-

order boundary terms in the first line of eq. (4.5), but does not affect the exponentiated

logarithms in the second line, and thus is akin to a standard fixed-order scale variation.

The resummation uncertainty is probed by individually varying all scales by a factor

of 1/2 or 2 around their central value, constrained such that the arguments of all exponen-

tiated logarithms in the second line of eq. (4.5) are varied up or down by a factor of at most

2. We do not vary µH , whose variation is already covered by the fixed-order uncertainty,

resulting in 35 variations in total [112]. These variations probe the cancellation of the

exponentiated logarithms with those in the fixed-order boundary conditions, and thus are

interpreted as a resummation uncertainty. Since these variations can be highly correlated,

we define ∆res as the envelope of all variations.

Finally, we vary b0/bmax = 0.5, 2 GeV to probe the uncertainty ∆np of our nonpertur-

bative prescription.

4.3 Numerical results

We illustrate the impact of our new results by numerically studying the EEC spectrum

differential in the angle χ,

dσ

dχ
=

1

2
sinχ

dσ

dz

∣∣∣∣
z= 1

2
(1−cosχ)

, (4.10)

for photon-induced hadron production up to N3LL′. We always work on the Z-pole with

Q = mZ = 91.1876 GeV, and choose αs(mZ) = 0.118 and evolve it according to table 1.

The resummed spectra are evaluated using an implementation in SCETlib [113].

Figure 1 shows the breakdown of the total uncertainty into the different sources, namely

fixed-order (∆fo, green), resummation (∆res, blue) and nonperturbative (∆np, orange) un-

certainties, for all resummation orders except LL. In all cases, the smallest uncertainty is

∆np from varying bmax, and only becomes relevant for the very precise N3LL′ prediction.

The resummation uncertainty ∆res is always larger than ∆fo, but both are of compara-

ble size at NNLL and higher. As is clear from figure 1, the overall uncertainties reduce

drastically with increasing the resummation accuracy, i.e. as NLL → NNLL → N3LL.

A striking feature is the huge reduction of uncertainties when going from NnLL (left

panel) to NnLL′ (right panel), which has a much bigger impact than simply increasing

the resummation order from NnLL to Nn+1LL. This illustrates the importance of prime

counting, i.e. including the fixed-order boundary terms in the resummation at the same

perturbative order as the resummation (confer table 1).

We remark that we encounter much larger uncertainties than observed in the NNLL

results in refs. [6, 7, 34]. Our uncertainties are dominated by variations of the low scales, as
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Figure 1. Breakdown of the total uncertainty into fixed-order (∆fo), resummation (∆res) and

nonperturbative (∆np) uncertainties for different resummation orders.

they probe αs(1/b
∗
T ) and thus become large at large bT . Due to applying these uncertainties

symmetryically, the resulting uncertainty bands even become negative up to NNLL, but

greatly improved beyond starting beyond NNLL. We will address this in more detail in

section 4.4.

Figure 2 shows a comparison of the resummed EEC spectrum at various orders. In the

left panel, we compare NLL′ through NNLL′, while in the right panel we compare NNLL′

through N3LL′. In both cases, the dot-dashed black line shows the neglected correction from
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Figure 2. Comparison of the resummed EEC spectrum as a function of the angle χ at different re-

summation orders. The shaded areas, bounded by the solid lines, show the individual uncertainties,

with the central value indicated according to the legend.

the NLO fixed-order results calculated in ref. [13].11 Clearly, these fixed-order corrections

are largely suppressed, thus justifying employing canonical resummation in the shown

range. One notable feature in figure 2 is that going from NLL′ to NNLL actually increases

the size of the scale variations, except in the region χ ∼ 170 − 177◦. Nevertheless, the

central value at NNNL (blue dashed) is much closer to the central value at NNLL′ (red

solid) than at NLL (green dotted). We observe a similar pattern when comparing NNLL′

and N3LL in the right panel, even though the effects are less pronounced at this order.

Overall, the central values show very good convergence beyond NNLL, with greatly reduced

uncertainties at N3LL′ of about ±4% at the peak, compared to about ±15% at N3LL.

4.4 Comparison to literature

Resummed predictions for the EEC in the back-to-back limit have previously been reported

in refs. [6, 7, 34] at NNLL, based on the approach developed in refs. [35–38]. To compare

our formalism to theirs, we start from eq. (4.5) and choose the resummation scales as

µH = νJ ≡ µh ∼ Q , µJ = µS = νS ≡ µl ∼
b0
bT

, µ0 =
b0
bT

, (4.11)

i.e. we distinguish only an overall high scale µh and low scale µl, but always evaluate

the rapidity anomalous dimension at its canonical scale µ0 = b0/bT . With these choices,

11At N3LL′, it would be more appropriate to include the NNLO fixed-order results, which are however

only known numerically [6, 9].
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eq. (4.5) can be rewritten as

dσ

dz
=
σ̂0

8
Hqq̄(Q,µh)

∫ ∞
0

d(bTQ)2 J0

(
bTQ
√

1− z
)
Jq

(
bT , µl,

µh
Q

)
Jq̄

(
bT , µl,

µh
Q

)
S̃q(bT , µl, µl)

× exp

{
−
∫ µ2h

µ2l

dµ′2

µ′2

[
ln
Q2

µ′2
Aq[αs(µ

′)] +Bq[αs(µ
′)]

]}

× exp

{
ln
µ2
l

µ2
h

∫ µ2l

µ20

dµ′2

µ′2
Aq[αs(µ

′)] + ln
Q2

µ2
h

1

2

[
γ̃qν [αs(µh)]− γ̃qν [αs(µl)]

]}
, (4.12)

The coefficients Aq and Bq in eq. (4.12) are given by

Ai(αs) = Γicusp(αs) +
1

4
β(αs)

dγ̃iν(αs)

dαs
, Bi(αs) = 2γi(αs)−

1

2
γ̃iν(αs) , (4.13)

where we remind the reader that γ̃iν [αs(b0/bT ] ≡ γ̃iν(bT , b0/bT ) is the boundary term of the

rapidity anomalous dimension. Notably, the Aq coefficient differs from the cusp anomalous

dimension starting at O(α3
s), which already contributes at NNLL [114].

In eq. (4.12), the first line contains the fixed-order boundary terms, which at canon-

ical scales are free of any logarithms and only depend on αs(µh) = αs(Q) and αs(µl) =

αs(b0/bT ). The second line in eq. (4.12) contains the Sudakov form factor that exponen-

tiates the large logarithms. The third line only contributes when µh 6= Q or µl 6= µ0,

i.e. when scales are not chosen exactly canonically, and thus can be used to assess resum-

mation uncertainties by separately varying µh and µl. We note that this procedure is not

quite as refined as the one introduced in section 4.2, where we separately vary all resum-

mation scales. Also note that since γ̃iν = O(α2
s), the second term in this exponential first

contributes at O(α3
s).

To compare eq. (4.12) to the results used refs. [6, 7, 34], we now explicitly choose the

canonical scales, using which eq. (4.12) reads

dσ

dz
=
σ̂0

8
Hqq̄(Q,µh)

∫ ∞
0

d(bTQ)2 J0

(
bTQ
√

1− z
)
Jq

(
bT , µl,

µh
Q

)
Jq̄

(
bT , µl,

µh
Q

)
S̃q(bT , µl, µl)

× exp

{
−
∫ Q2

b20/b
2
T

dµ′2

µ′2

[
ln
Q2

µ′2
Aq[αs(µ

′)] +Bq[αs(µ
′)]

]}
. (4.14)

For comparison, the resummation formula given in ref. [6] reads12

dσ

dz
=
σtot

8
H̃[αs(µR)]

∫ ∞
0

d(QbT )2J0

(
bTQ
√

1− z
)

× exp

{
−
∫ Q2

b0/b2T

dµ̄2

µ̄2

[
ln
Q2

µ̄2
Aq[αs(µ̄)] +Bq[αs(µ̄)]

]}
, (4.15)

where σtot is the total hadronic cross section. Comparing eqs. (4.12) and (4.15), we first

notice that both formulas contain the same Sudakov form factor.13 However, as already

12Their expansion of the Sudakov form factor contains an implicit µR dependence, which formally cancels

with the µR dependence of the overall hard function.
13Note that ref. [34] did not use the correct N3LO result for Aq, which was first obtained in ref. [114].
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discussed at the end of section 2.1.1, their result only contains a combined function H̃

instead of separating physics at the high and low scales into a hard function and jet and

soft functions, respectively. It obeys

σtotH̃[αs(Q)] = σ̂0Hqq̄[αs(Q)]Jq[αs(b0/bT )]Jq̄[αs(b0/bT )]S̃q[αs(b0/bT )]

×
{

1 +O[αs(Q)]2
}
. (4.16)

Here, each term is evaluated at canonical scales, and thus only depends on the scale through

the running coupling. Eq. (4.16) is to be understood as a reexpansion in αs(b0/bT ) =

αs(Q) + O(α2
s). Due to eq. (4.16), both eqs. (4.14) and (4.15) recover the correct fixed-

order expansion of the EEC in the back-to-back limit. However, only eq. (4.14) yields the

correct NNLL result, as eq. (4.15) does not contain the correct boundary terms.

As remarked earlier, while the original works in ref. [35–38] did not yet contain separate

hard and jet functions, as they do not yet contribute a the NLL accuracy they work at,

the existence of these functions can already be seen in the qT factorization used in those

works to derive the EEC factorization in the back-to-back limit. For instance, ref. [38] also

explicitly mentions corrections to the TMDFF in αs(1/bT ).

Another crucial difference lies in the estimation of perturbative uncertainties. In our

approach, we vary all resummation scales, which in particular separately varies the high

scale µh ∼ Q and the low scale µl ∼ 1/bT . This reflects that in the back-to-back limit,

the EEC contains two parametrically different scales, and varying both resummation scales

probes the physics at both scales. In contrast, in refs. [6, 7, 34] effectively only the hard

scale µR is varied, while the low scale is always kept canonical at µl = µ0 = b0/bT .

This completely neglects the variation from the last line in eq. (4.12), and thus largely

underestimates the perturbative uncertainties. Note that due to the lack of a jet and soft

function evaluated at the low scale, variations of the low scale can not even cancel formally

in eq. (4.15), in contrast to variations of the hard scale µR. Also note that refs. [6, 7, 34]

avoid the Landau pole by deforming the integration contour into the complex plane, rather

than freezing out the scale as done in our analysis.

The above observation already explains why the perturbative uncertainties observed

in our analysis are larger than those seen in refs. [6, 7, 34], as we cover a larger set of scale

variations. Moreover, since variations of the low scale µl ∼ 1/bT probe the strong coupling

at much larger values than variations of the high scale µh ∼ Q, it is not surprising that the

former are in fact the dominant uncertainties. To validate this, we compare three methods

of estimating uncertainties:

1. ∆tot: Full set of profile scale variations as discussed in section 4.2

2. ∆(µh): We only consider two variations,

µH = νJ =
1

2
Q , µH = νJ = 2Q , (4.17)

while all other scales are kept as in eq. (4.7). This roughly mimics the procedure in

refs. [6, 7, 34].
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3. ∆(µl): We only consider three variations,

(µJ , µS) =
(1

2
, 1
) b0
b∗T

, (µJ , µS) =
(

1,
1

2

) b0
b∗T

, (µJ , µS) =
(1

2
,
1

2

) b0
b∗T

, (4.18)

while all other scales are kept as in eq. (4.7). These are the only scale variations

where the hard scales µH,J are unchanged, and the low scales are only varied down.

We also keep the rapidity scale νS = b0/b
∗
T canonic, as it does not enter the running

coupling.

The results are shown in figure 3, in a similar pattern as in figure 1 such that one can

easily compare the two figures. At NLL, we see that the variations of both the high scale

(orange) and low scale (blue) are significant, giving rise to a very large overall uncertainty

(green). In contrast, at all higher orders we clearly see that it is indeed the low-scale

variation ∆(µl) (blue) that dominates the total uncertainty, while the high-scale variation

∆(µh) and the remaining scale variations are almost negligible.

In ref. [34], the uncertainty of the peak at NNLL was given by roughly ±8%, compared

to ∆(µh) ∼ 12%. By only considering the variation ∆(µh), our uncertainty at N3LL′

(N3LL) reduces to only ±0.5% (±2%), compared to our more conservative uncertainty of

about ±4% (±15%) when using all scale variations. In both approaches, the uncertainty

reduces by a factor of about 4 when going from N3LL to N3LL′, illustrating the importance

of including the N3LO boundary terms computed in this work. However, we stress again

that only varying the high scales neglects important uncertainties from soft physics, and

thus the ∆(µh) variation alone is not sufficient to obtain a robust estimate of theory

uncertainties.

We close by remarking that it was already remarked in ref. [38] that the EEC is quite

sensitive to the high bT region, and nonperturbative model functions were introduced in

order to achieve agreement with CELLO data. This is consistent with our observation that

variations of the 1/bT scales yield the dominant uncertainties.
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Figure 3. Comparison of the total uncertainty ∆tot, estimated by a full set of profile scale vari-

ations, to varying only the high scales µh ∼ Q or the low scales µl ∼ 1/bT . See text for more

details.

5 Conclusions

In this work we have calculated the full singular structure of the Energy-Energy Correlation

(EEC) in the back-to-back limit at O(α3
s) in QCD, including contact terms. Our work

applies both in the case of e+e− annihilation as well as in gluon induced Higgs decays. To

obtain these results we have calculated the quark and gluon jet functions for the EEC in the

back-to-back limit at N3LO, which were the last missing ingredients for the factorization
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theorem in this limit at N3LO. The computation of the jet functions relies on the calculation

of the kernels of the transverse-momentum dependent fragmentation functions at N3LO

in our companion paper [41]. We checked that the logarithmically enhanced terms of our

calculation match those predicted by the rapidity renormalization group (RRG) evolution.

By comparing the leading transcendental part of our results we show that the prin-

ciple of maximal transcendentality, which states that a quantity obtained in N = 4 SYM

constitutes the leading transcendental term of the same quantity in QCD, holds for the

EEC in the back-to-back asymptotic up to O(α3
s). In particular, we show that the leading

transcendental part of the EEC in e+e− is identical to the one for the EEC in Higgs decay

to gluons and that both match the result in N = 4 [18, 22, 40], not only for the logarithmic

part but also for the contact terms. This also provides a non-trivial cross check on both

the quark and gluon jet function calculations of the δ(1 − z) constants in addition to the

one on the logarithmic parts coming from the RRG evolution.

Leveraging on the fact that the EEC obeys a set of non trivial sum rules [22, 40], we

used our newly calculated result for the contact terms at O(α3
s) as well as the logarithmic

enhanced contributions in the small angle limit [23] to obtain the N = 2 Mellin moment of

the EEC distribution in the bulk at NNLO in QCD analytically. This constitutes the first

piece of analytic information on the EEC distribution at this order in QCD away from the

endpoints, both in the case of e+e− annihilation as well as in gluon induced Higgs decays.

Finally, we have carried out the resummation of the EEC in the back-to-back region at

N3LL′ accuracy. This is the first time an event shape observable is resummed at this level

of accuracy and, more generally, this constitutes the highest level of resummation for any

infrared and collinear safe observable in QCD to date. We show that by performing the

resummation at N3LL′ we obtain a reduction of uncertainties by a factor of ∼ 4 in the peak

region compared to previous results obtained at lower accuracy. We thoroughly discuss

different schemes to estimate the uncertainties due to missing higher order corrections both

in the boundary terms as well as in the anomalous dimensions. We compare these different

schemes with the ones used in the literature for this observable. Adopting a scheme in line

with the ones previously used in the literature we obtain a 5 per-mille uncertainty at the

peak. Using a more conservative scheme, which includes a significant contribution from

non-perturbative regions, we obtain a 4% uncertainty for our result at N3LL′. We point

out that the accuracy for lower order results is severely affected by the choice of scheme

and that varying the low-energy scale gives a dramatically larger estimate of uncertainties.

The recent progress in understanding Energy-Energy correlators is very promising and

we believe it shows that they will play a crucial role in improving our understanding of the

strong interaction in the years to come. For example, as the EEC has been often used to

determine the strong coupling constant [2–8], it would be interesting to leverage the high

level of perturbative control we gained on this observable thanks to the N3LL′ resummation,

to improve the extraction of αs, complementing the extractions based on other event shape

observables in e+e− such as thrust and C-parameter [115–118]. In addition, it could also

be used to extract nonperturbative corrections to the rapidity anomalous dimensions. We

expect that further studies of perturbative [21] and non-perturbative [53] power corrections

will be important to improve the theoretical control on this observable.
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It will also be interesting to explore the application of the techniques used in this

work and its companion paper [41] to higher point energy correlators in QCD where recent

progress has been obtained [27, 119, 120].
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A Fixed-order structure of the EEC jet function

Here, we provide the fixed-order structure of the jet function, obtained by solving the

RG eqs. (2.16) and (2.17) order-by-order in αs. The fixed-order coefficients as defined by

eq. (2.14) are given by

J
(0)
i (Lb, LQ) = 1 ,

J
(1)
i (Lb, LQ) = Lb

(
Γi0LQ +

γ̃iB 0

2

)
+ j

(1)
i ,

J
(2)
i (Lb, LQ) =

1

2
L2
b

[
L2
Q(Γi0)2 + Γi0LQ

(
γ̃iB 0 + β0

)
+

1

4
γ̃iB 0

(
γ̃iB 0 + 2β0

)]
+ Lb

[
LQ
(
Γi1 + Γi0j

(1)
i

)
+

1

2
γ̃iB 1 +

(1

2
γ̃iB 0 + β0

)
j

(1)
i

]
− γ̃iν 1

2
LQ + j

(2)
i ,

J
(3)
i (Lb, LQ) =

1

6
L3
b

[
L3
Q(Γi0)3 +

3

2
(Γi0)2L2

Q(γ̃iB 0 + 2β0) + Γi0LQ

(3

4
(γ̃iB 0)2 + 3β0γ̃

i
B 0 + 2β2

0

)
+ γ̃iB 0

(3

4
β0γ̃

i
B 0 +

1

8
(γ̃iB 0)2 + β2

0

)]
+ L2

b

{
L2
QΓi0

(
Γi1 +

1

2
Γi0j

(1)
i

)
+

1

2
LQ

[
Γi1(γ̃iB 0 + 2β0) + Γi0(β1 + γ̃iB 1) + Γi0(γ̃iB 0 + 3β0)j

(1)
i

]
+

1

2
β0γ̃

i
B 1 +

1

4
γ̃iB 0(γ̃iB 1 + β1) +

(3

4
β0γ̃

i
B 0 +

1

8
(γ̃iB 0)2 + β2

0

)
j

(1)
i

}
+ Lb

{
−1

2
Γi0γ̃

i
ν 1L

2
Q + LQ

[
Γi2 + Γi1j

(1)
i + Γi0j

(2)
i −

(1

4
γ̃iB 0 + β0

)
γ̃iν 1

]
+

1

2
γ̃iB 2 +

(1

2
γ̃iB 1 + β1

)
j

(1)
i +

(1

2
γ̃iB 0 + 2β0

)
j

(2)
i

}
− 1

2
LQ
(
γ̃iν 2 + γ̃iν 1j

(1)
i

)
+ j

(3)
i . (A.1)

Here, the Γn and γn are the O[(αs/4π)n] coefficients of the cusp and jet noncusp anomalous

dimensions, respectively. Explicit expressions for these anomalous dimensions in our con-

ventions are collected in ref. [58]. The corresponding fixed-order expansion of the polarized

– 30 –



gluon jet function J ′g can be obtained from eq. (A.1) by dropping all terms that do not

contain an explicit factor j
(n)
i , as in this case J

′(0)
g = 0.

B Bessel transform

To evaluate eqs. (2.3) and (2.12) at fixed order, we need to evaluate Bessel transforms of

the form

In ≡
1

8

∫
d(b2TQ

2)J0

(
bTQ
√
z̄
)

lnn
b2Tµ

2

b20

=
1

2

n−1∑
k=0

(−1)k+1n

(
n− 1

k

)
R

(n−k−1)
2

[
lnk[(Q2/µ2)z̄]

z̄

]
+

+
1

2
R

(n)
2 δ(z̄) , (B.1)

which follows immediately from Eq. (C.16) of ref. [121], with

R
(n)
2 =

dn

dan
e2γEa

Γ(1 + a)

Γ(1− a)

∣∣∣∣
a=0

. (B.2)

The plus distributions in eq. (B.1) are defined as usual such that
∫ 1

0 dx [lnn x/x]+ = 0.

They can be easily rewritten in terms of distributions in z̄ using[
lnk[(Q2/µ2)z̄]

z̄

]
+

=
k∑
`=0

(
k

`

)
ln`

Q2

µ2
Lk−`(z̄) +

lnk+1(Q2/µ2)

k + 1
δ(z̄) , (B.3)

where the plus prescription on the right hand side now acts with respect to z̄. For example,

the first few Bessel transforms read

I0 =
1

2
δ(z̄) ,

I1 = −1

2

[
L0(z̄) + Lhδ(z̄)

]
,

I2 = L1(z̄) + LhL0(z̄) +
1

2
L2
hδ(z̄) ,

I3 = −3

2
L2(z̄)− 3LhL1(z̄)− 3

2
L2
hL0(z̄) +

(1

2
L3
h − 2ζ3

)
δ(z̄) , (B.4)

where Lh = ln(Q2/µ2). Starting from n = 3, the R
(n)
2 terms start to induce ζ values.

C Sum Rules Ingredients

Here we collect all required results for the quantities in eq. (3.8).

First, we note that V
(n)

1 is the coefficient of δ(z̄) at O(αns ), and thus can be immediately

read off from the results in eqs. (2.25) and (2.27) for e+e− and in eqs. (2.28) and (2.29) for

Higgs. For example,

V
(1)

1,e+e− = −CF (4 + 2ζ2) , V
(1)

1,H = CA

(
65

18
− 2ζ2

)
− 5

18
nf . (C.1)
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The expressions for V
(n)

0 , the coefficients of δ(z), can be in principle extracted via the

factorization formula for the EEC in the collinear limit of ref. [23]. Here, we have extracted

them by using the sum rule in eq. (3.9) and analytically integrating the regular part of the

distribution obtained from the fixed order calculation of refs. [13, 14]. For e+e− we obtain

V
(1)

0 =
13

24
CF ,

V
(2)

0 = C2
F

(
44ζ4 − 84ζ3 +

109

12
ζ2 +

208219

5184

)
+ CFnf

(
33ζ2

20
+ 4ζ3 −

751777

216000

)
+ CFCA

(
−22ζ4 + 36ζ3 −

373

45
ζ2 −

3032011

162000

)
, (C.2)

while for the Higgs case we obtain:

V
(1)

0 =
3311

300
CA −

1447

600
nf ,

V
(2)

0 = C2
A

(
22ζ4 −

242

3
ζ3 −

18337

450
ζ2 +

31760837

101250

)
− CAnf

(
4

15
ζ3 −

2891

225
ζ2 +

183628817

1620000

)
+ CFnf

(
224

15
ζ3 −

23

10
ζ2 −

249491

12000

)
− n2

f

(
22

15
ζ2 −

274091

27000

)
(C.3)

Finally, for the expressions for the total cross section we take the results of ref. [71].

For e+e− they read14

R
(1)
e+e− = 3CF

R
(2)
e+e− = −3

2
C2
F + CACF

(
123

2
− 44 ζ3

)
− CFnf

(
11− 8 ζ3

)
R

(3)
e+e− = −69

2
C3
F − CAC

2
F

(
127 + 572 ζ3 − 880 ζ5

)
+ C2

ACF

(
90445

54
− 242

3
ζ2 −

10948

9
ζ3 −

440

3
ζ5

)
− C2

F nf

(
29

2
− 152 ζ3 + 160 ζ5

)

− CACF nf

(
15520

27
− 88

3
ζ2 −

3584

9
ζ3 −

80

3
ζ5

)
+ CF n

2
f

(
1208

27
− 8

3
ζ2 −

304

9
ζ3

)
.

+NF,V
dabcd

abc

16Nr

(
176

3
− 128ζ3

)
. (C.4)

14Note that for the color structure dabcd
abc of the singlet part we adopted the same convention as in

eq. (2.27), which is different from the one adopted in ref. [71].
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For Higgs, they are given by

R
(1)
H =

73

3
CA −

14

3
nf

R
(2)
H = C2

A

(
37631

54
− 242

3
ζ2 − 110 ζ3

)
− CA nf

(
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− CF nf
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+ n2

f
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)

R
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ζ2 −
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3
ζ5
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− CFCA nf
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. (C.5)
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