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Abstract: We compute the unpolarized quark and gluon transverse-momentum depen-

dent fragmentation functions (TMDFFs) at next-to-next-to-next-to-leading order (N3LO)

in perturbative QCD. The calculation is based on a relation between the TMDFF and the

limit of the semi-inclusive deep inelastic scattering cross section where all final-state radi-

ation becomes collinear to the detected hadron. The required cross section is obtained by

analytically continuing our recent computation of the Drell-Yan and Higgs boson produc-

tion cross section at N3LO expanded around the limit of all final-state radiation becoming

collinear to one of the initial states. Our results agree with a recent independent calculation

by Luo et al.
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1 Introduction

Highly energetic scattering processes allow us to test our understanding of fundamental

interactions with incredible precision. It is the asymptotic freedom of strong interactions

of QCD that allows us to contrast our first principle understanding of the interactions with

experimental data. The interacting elementary particles of QCD - quarks and gluons - are

however concealed in our observations as they form hadronic bound states as the strong

interactions confine at long distances. The gateway that bridges the world of partonic

interactions, where observables are calculable in perturbative QCD, to the observation in

real-life detectors is provided by factorisation theorems. Factorisation theorems split the

long range, confining part of a scattering process from the short range collision process of

quarks and gluons. The long range part of this factorisation theorems is typically expressed

in terms of parton distribution functions (PDFs) and fragmentation functions (FFs). PDFs

and FFs are independent of the particularities of the scattering process and are universal,

such that they can be measured and used in many different experiments and observables.

Longitudinal FFs are the simplest example of FFs, as they only describe the probability

of a quark or a gluon to convert to a hadron that carries a given momentum fraction of

the fragmenting parton [1–4]. This notion is expanded by transverse-momentum dependent

FFs (TMDFFs) [5–12], which encode the probability of a hadron to arise from a fragmenting

parton with a certain fraction of the partons longitudinal momentum and a small transverse

momentum relative to the parton.

TMDFFs are important ingredients for describing high-energy scattering processes in-

volving hadronic final states at low transverse momentum, for example hadron production

at e+e− colliders [13–16] or semi-inclusive deep-inelastic scattering (SIDIS) [17–23]. Fur-

thermore, they play an important role in the description of energy correlation functions in

electron-positron annihilation [24, 25] and transverse-momentum dependent event shapes

involving jets at hadron colliders [26] and in SIDIS [27, 28]. TMDFFs will also be a corner-

stone of the theoretical description of many measurements at the EIC [29] and proposed

future colliders such as the ILC or FCC-ee. For a review on TMDFFs see for example

ref. [30] and references therein.

TMDFFs are intrinsically nonperturbative objects, as they relate the dynamics of

partons and hadrons, and as such have been extracted from various experiments [30–38].

However, for transverse momenta qT that are much larger than the confinement scale ΛQCD,

an operator product expansion in ΛQCD/qT allows one to express each TMDFF in terms

of a standard longitudinal FF and a qT -dependent matching kernel. The matching kernels

are calculable order by order in perturbation theory and are currently known at next-to-

next-to-leading order (NNLO) [39–41] in perturbative QCD. In the regime of perturbative

qT , they can be used for example in extractions of longitudinal FFs from differential mea-

surements of suitable observables, see for example refs. [42–45].

In this article we present the calculation of the matching kernels for all unpolarized

quark and gluon TMDFFs at N3LO. TMD parton distribution functions (TMDPDFs),

the initial-state counterparts of TMDFFs, are already known at this order [46, 47]. Our

calculation relies on a recently developed method to expand hadron collider cross sections
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around the limit where final state QCD radiation is collinear to an incoming parton [48].

We demonstrate explicitly how partonic cross sections for the production of electro-weak

gauge bosons can be related to DIS cross sections via analytic continuation. We apply

this analytic continuation to the collinear limit of the partonic cross section of gluon-

fusion Higgs boson production and Drell-Yan production to obtain their DIS counter part.

The collinear limit of these production cross sections was recently computed by us for

the calculation of the N3LO TMDPDFs [46] and N -jettiness beam function [49]. We then

establish an analytic relation among the TMDFF matching kernels and the newly obtained

collinear limit of the DIS cross sections. With this we are finally able to extract the desired

perturbative TMDFF matching kernels.

The paper is structured as follow. In section 2, we setup the kinematics for SIDIS

retaining full information on the momentum of the final state hadron. In section 3, we

show how to use crossing symmetry and analytic continuation to obtain results for fully

differential partonic cross sections in SIDIS from analogous cross sections in proton-proton

collision. In section 4, we study the behaviour of the partonic cross section when taking

the radiation to be collinear either to the struck proton or to the final state hadron. In

section 5, we make use of the framework developed in the previous sections to extract

the TMDFFs at N3LO by imposing a transverse-momentum measurement to the leading

collinear expansion of the cross section. We conclude in section 6.

2 Setup

In this section we introduce our notation for the description of semi-inclusive deep inelastic

scattering (SIDIS), reviewing both the scattering process and providing the definitions of

all required kinematic variables and the associated final-state phase space. Finally, we

define the transverse momentum observables of interest in this article.

2.1 Semi Inclusive Deep Inelastic Scattering

We study cross sections for the production of a hadron H in DIS alongside additional

radiation, which we indicate as a multiparticle state X. In particular, we focus on the

hadronic part of the DIS cross section that is initiated by the scattering of a proton with

momentum P1 and an electro-weak boson h with the space-like momentum q,

P (P1) + h(q)→ H(−P2) + X(−k) . (2.1)

Here, we take all momenta to be incoming. This process is schematically depicted in figure 1

for the example of a virtual photon as the electro-weak gauge boson. In this article, we

will consider DIS with either a virtual photon or a Higgs boson as the electro-weak gauge

boson.

We are interested in SIDIS, where we measure an observable O that depends on the

final-state hadronic momenta. For perturbative O � ΛQCD, the cross section differential

in O can be factorized as

dσP+h→H+X

dxFdO = σ̂0

∑
i,j

fi(xB)⊗xB
dη̂i+h→j+X(xB, xF ,O)

dxFdO ⊗xF dH/j(xF ) . (2.2)
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Figure 1. Schematic picture of the DIS process in eq. (2.1), producing a final-state hadron H in

the scattering of an electroweak boson, here a photon, off the incoming proton.

Here, the overall normalization σ̂0 is the Born cross section and the sum runs over parton

flavors i, j. In eq. (2.2), η̂i+h→j+X is a perturbatively calculable partonic coefficient function

encoding the underlying partonic process i + h → j + X, which is convolved with the

nonperturbative parton distribution function (PDF) fi and fragmentation function (FF)

dH/j . The PDF fi(x) encodes the probability to extract the parton with flavor i and

momentum fraction x from the proton, while the FF dH/j(y) describes the fragmentation

of a parton of flavor j into a hadron of type H which carries the momentum fraction y of

the parent parton. We define the hadronic invariants

xB = − q2

2P1 · q
, xF = −2P2 · q

q2
. (2.3)

In analogy, we introduce the partonic variables z and ζ,

z = − q2

2p1 · q
, ζ = −2p2 · q

q2
. (2.4)

The convolution integrals abbreviated by ⊗xB and ⊗xF in eq. (2.2) can now be written

explicitly as

dσP+h→H+X

dxFdO = σ̂0

∑
i,j

∫ 1

xB

dz

z

∫ 1

xF

dζ

ζ
fi

(xB
z

)dη̂i+h→j+X(z, ζ,O)

dζdO dH/j

(xF
ζ

)
, (2.5)

where the partonic coefficient function is given by

dη̂i+h→j+X
dζdO =

1

σ̂0

Ni
2|q2|

∞∑
m=0

∫
dΦ1+m δ

(
ζ +

2p2 · q
q2

)
δ
[
O − Ô

(
p2, xB, z, xF , ζ

)]
|Mi+h→j+m|2 .

(2.6)

Here we introduced the normalization factor Ni related to the helicity and color average of

the incoming particle, which for an incoming quark or gluon takes the value

Ng =
1

2(1− ε)(n2
c − 1)

, Nq =
1

2nc
. (2.7)

In eq. (2.6), the sum runs over the number m of additional partons in the final state besides

the parton of flavor j that fragments into the hadron H, and Φ1+m is the associated m+1-

parton phase space. The δ functions implement the measurements of ζ and O, and the

squared matrix element |Mi+h→j+m|2 corresponds to the partonic process of producing

the m+ 1 partons in the collision of a parton of flavor i with the hard probe h.
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2.2 Kinematics and Final State Phase Space

We are interested in observables differential in the four momentum P2 of the final state

hadron H, while we are inclusive over all additional final-state radiation. A convenient set

of variables to describe the kinematics of the corresponding partonic process is given by

s = (p1 + p2)2 , w1 = − 2p1 · k
2p1 · p2

, w2 = − 2p2 · k
2p1 · p2

, x =
(2p1 · p2)k2

(2p1 · k)(2p2 · k)
. (2.8)

Here, k is the sum of all m final state momenta of the particles produced in addition to

the parton with momentum p2,

k =

m+2∑
i=3

pi . (2.9)

The differential m+ 1-parton phase space is given by

dΦ1+m = (2π)dδd

(
p1 + q +

m+2∑
i=2

pi

)
m+2∏
i=2

ddpi
(2π)d

(2π)δ+(p2
i ) . (2.10)

It can be parameterized using the variables in eq. (2.8) as

dΦ1+m

dw1dw2dx
=

Ω2−2ε

4(2π)3−2ε
(q2w1w2)1−ε(1− w1)−3+2ε(1− x)−ε(1− w1 − w2 + w1w2x)−1+ε

× δ
(
z − 1− w1 − w2 + w1w2x

1− w1

)
dΦm(k) , (2.11)

where

dΦm(k) = (2π)dδd

(
k −

m+2∑
i=3

pi

)
m+2∏
i=3

ddpi
(2π)d

(2π)δ+(p2
i ). (2.12)

The kinematic variables are defined in the following domains,

x ∈ [0, 1], w1 < 0, w2 > 0, q2 < 0. (2.13)

We can now express the desired partonic coefficient function defined in eq. (2.6) in terms

of the partonic coefficient function differential in the above variables,

dη̂i+h→j+X
dζdO =

∫
dw1dw2dx δ[ζ − ζ(w1, w2, x)] δ[O −O(w1, w2, x)]

dη̂i+h→j+X
dw1dw2dx

,

dη̂i+h→j+X
dw1dw2dx

=
1

σ̂0

Ni
2|q2|

∞∑
m=0

∫
dΦ1+m

dw1dw2dx
|Mi+h→j+m|2 . (2.14)

The second line is the central object in this work, from which all desired observables can

be easily projected out. It can be expanded as

dη̂i+h→j+X
dw1dw2dx

=

∞∑
`=0

(αs
π

)` dη
(`)
ij

dw1dw2dx
(2.15)

= ηVijδ(w1)δ(w2)δ(x) +
∞∑
`=1

(αs
π

)` ∑̀
n,m=1

(−w1)−1−mεw−1−nε
2

dη
(`,m,n)
ij (w1, w2, x, q

2)

dw1dw2dx
.
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Here, we have expanded η̂i+h→j+X in the strong coupling constant αs/π, and denote the

coefficients as η`ij for brevity. In the second line we have split off the terms ηVij which arise

purely from Born contributions and virtual corrections. The remaining functions η
(`,m,n)
ij

are separately holomorphic in the vicinity of w1 = 0 and w2 = 0.

The benefit of using the variables defined in eq. (2.8) is that together with q2 they fully

specify the momentum p2 and thus are sufficient to express in η̂i+h→j+X differential in p2.

For example, the Lorentz-invariant momentum fractions defined in eq. (2.4) are given by

ζ =
1− w2

1− w1 − w2 + w1w2x
, z =

1− w1 − w2 + w1w2x

1− w1
. (2.16)

2.3 Transverse Momenta

In SIDS, two particular definitions of transverse momentum play a key role. These two

different definitions of transverse momentum are most naturally measured in two different

inertial frames. We define the infinite momentum frame (also referred to as Breit frame)

and the hadron frame as follows:

Infinite Momentum Frame Hadron Frame

q = (0,~0, Q) q = (q0, ~qT , qz)

P1 = E1(1,~0, 1) P1 = E1(1,~0, 1)

P2 =
(√

P 2
2z + P 2

2T ,
~P2T , P2z

)
P2 = E2(1,~0,−1)

. (2.17)

Here, E1 and E2 represent the energies of the initial and final state hadrons, respectively.

The explicit vectors in the above table are Euclidean vectors. The momentum component

|~qT | of the momentum q is orthogonal to the plane spanned by the momenta P1 and P2

of the hadrons and is most naturally measured in the hadron frame. The momentum

component |~P2T | of the momentum P2 is orthogonal to the plane spanned by the momenta

q and P1 and is most naturally measured in the infinite momentum frame. We express

both transverse momenta in terms of Lorentz invariant quantities by

|~P2T |2 =
S2x2

B

Q2

(
1 +

Q2

S

xF
xB

)
,

|~qT |2 = Q2

(
1 +

Q2

S

xF
xB

)
. (2.18)

Here,

S = (P1 + P2)2 =
z

xB

xF
ζ
s (2.19)

is the invariant mass of the dihadron system. Inserting the parametrisation in terms of w1,

w2 and x as defined in eq. (2.8), the two transverse momenta of interest can be expressed

in a Lorentz-invariant fashion as

|~P2T |2 = x2
F

q2w1w2(1− x)(1− w1 − w2 + w1w2x)

(1− w1)2(1− w2)2
,

|~qT |2 =
q2w1w2(1− x)

1− w1 − w2 + w1w2x
. (2.20)
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Below, we will be mostly interested in the limit that |~P2T |2, or equivalently |~qT |2, becomes

small. We will approach this limit by considering the limit w2 → 0, for which one obtains

the simple relation

lim
w2→0

: |~P2T |2 = x2
F |~qT |2 = x2

F

q2w1w2(1− x)

1− w1
. (2.21)

3 Crossing from Production to DIS Cross Sections

In the previous section, we introduced the SIDIS process P (P1)+h(q)→ H(−P2)+X(−k)

for the scattering off an electroweak boson h off the proton P , thereby producing a detected

final-state hadron H in association with additional hadronic radiation. The associated

cross section is related by a factorization theorem to the partonic process i(p1) + h(q) →
j(−p2) + X(−k), which we describe by the partonic coefficient function ηij where we are

fully differential in p1 and p2, but integrate over k.

We now want to relate, i.e. cross, this partonic configuration to the one where both

partons are in the initial state and produce an outgoing electroweak boson h, which we

hence refer to as “production”. Concretely, we study the crossing relation

p(p1) + h(q)→ p(−p2) +X(−k) ←→ p(p1) + p(p2)→ h(−q) +X(−k) , (3.1)

where, as always, we choose all momenta as ingoing.

Recently, we have studied this production process refs. [48, 50, 51]. In particular, in

ref. [48] we showed that the corresponding partonic coefficient function is given by

dηproduction
ij

dQ2dw1dw2dx
=

1

σ̂0

N production
ij

2Q2

∑
Xn

∫
dΦh+n

dw1dw2dx
|Mij→h+Xn |2 , (3.2)

where the differential phase space for h+ n partons is given by

dΦh+m

dw1dw2dx
=

(
w1w2q2

1−w1−w2+w1w2x

)1−ε
(1− x)−ε

(4π)2−εΓ(1− ε) θ[x(1− x)] θ(w1) θ(w2) dΦm(k) . (3.3)

Here, all variables are identical to the ones introduced in section 2.2 for SIDIS. In particular,

note that the squared matrix elements are identical in the DIS and production case up to

the crossing of momenta p2 and q. Furthermore, in both cases, production and DIS, the

final state radiation is integrated over the phase space dΦm. The dependence of the cross

sections on the momenta p2 and q is fully retained.

In order to relate the partonic coefficient function of DIS to production, or vice versa,

we need to understand the analytic structure of the partonic coefficient function. Crossing

p2 and q changes the sign of the numerical value of the invariants s and w1, and consequently

it is important to understand the analytic branch structure of the partonic coefficient

functions at s = 0 and w1 = 0. Since s is the only variable with explicit mass dimension

in our choice of independent variables, it immediately follows that the partonic coefficient

function at O(αns ) depends on s only through the multiplicative factor s−nε. The analytic
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p3
<latexit sha1_base64="o4nZ68qYcK0np11Ttx2Ns6alTxc=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0m0oMeiF48V7Qe0oWy2m3bpZhN2J0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6xEnC/YgOlQgFo2ilh6R/2S9X3Ko7B1klXk4qkKPRL3/1BjFLI66QSWpM13MT9DOqUTDJp6VeanhC2ZgOeddSRSNu/Gx+6pScWWVAwljbUkjm6u+JjEbGTKLAdkYUR2bZm4n/ed0Uw2s/EypJkSu2WBSmkmBMZn+TgdCcoZxYQpkW9lbCRlRThjadkg3BW355lbQuqp5b9e5rlfpNHkcRTuAUzsGDK6jDHTSgCQyG8Ayv8OZI58V5dz4WrQUnnzmGP3A+fwACiI2a</latexit><latexit sha1_base64="o4nZ68qYcK0np11Ttx2Ns6alTxc=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0m0oMeiF48V7Qe0oWy2m3bpZhN2J0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6xEnC/YgOlQgFo2ilh6R/2S9X3Ko7B1klXk4qkKPRL3/1BjFLI66QSWpM13MT9DOqUTDJp6VeanhC2ZgOeddSRSNu/Gx+6pScWWVAwljbUkjm6u+JjEbGTKLAdkYUR2bZm4n/ed0Uw2s/EypJkSu2WBSmkmBMZn+TgdCcoZxYQpkW9lbCRlRThjadkg3BW355lbQuqp5b9e5rlfpNHkcRTuAUzsGDK6jDHTSgCQyG8Ayv8OZI58V5dz4WrQUnnzmGP3A+fwACiI2a</latexit><latexit sha1_base64="o4nZ68qYcK0np11Ttx2Ns6alTxc=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0m0oMeiF48V7Qe0oWy2m3bpZhN2J0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6xEnC/YgOlQgFo2ilh6R/2S9X3Ko7B1klXk4qkKPRL3/1BjFLI66QSWpM13MT9DOqUTDJp6VeanhC2ZgOeddSRSNu/Gx+6pScWWVAwljbUkjm6u+JjEbGTKLAdkYUR2bZm4n/ed0Uw2s/EypJkSu2WBSmkmBMZn+TgdCcoZxYQpkW9lbCRlRThjadkg3BW355lbQuqp5b9e5rlfpNHkcRTuAUzsGDK6jDHTSgCQyG8Ayv8OZI58V5dz4WrQUnnzmGP3A+fwACiI2a</latexit><latexit sha1_base64="o4nZ68qYcK0np11Ttx2Ns6alTxc=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0m0oMeiF48V7Qe0oWy2m3bpZhN2J0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6xEnC/YgOlQgFo2ilh6R/2S9X3Ko7B1klXk4qkKPRL3/1BjFLI66QSWpM13MT9DOqUTDJp6VeanhC2ZgOeddSRSNu/Gx+6pScWWVAwljbUkjm6u+JjEbGTKLAdkYUR2bZm4n/ed0Uw2s/EypJkSu2WBSmkmBMZn+TgdCcoZxYQpkW9lbCRlRThjadkg3BW355lbQuqp5b9e5rlfpNHkcRTuAUzsGDK6jDHTSgCQyG8Ayv8OZI58V5dz4WrQUnnzmGP3A+fwACiI2a</latexit>

pm
<latexit sha1_base64="V1WJzDT4J2tV9B+W4wkmQyy8t98=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKeyKoMegF48RzQOSJcxOZpMhM7PLTK8QQj7BiwdFvPpF3vwbJ8keNLGgoajqprsrSqWw6PvfXmFtfWNzq7hd2tnd2z8oHx41bZIZxhsskYlpR9RyKTRvoEDJ26nhVEWSt6LR7cxvPXFjRaIfcZzyUNGBFrFgFJ30kPZUr1zxq/4cZJUEOalAjnqv/NXtJyxTXCOT1NpO4KcYTqhBwSSflrqZ5SllIzrgHUc1VdyGk/mpU3LmlD6JE+NKI5mrvycmVFk7VpHrVBSHdtmbif95nQzj63AidJoh12yxKM4kwYTM/iZ9YThDOXaEMiPcrYQNqaEMXTolF0Kw/PIqaV5UA78a3F9Wajd5HEU4gVM4hwCuoAZ3UIcGMBjAM7zCmye9F+/d+1i0Frx85hj+wPv8AVpwjdQ=</latexit><latexit sha1_base64="V1WJzDT4J2tV9B+W4wkmQyy8t98=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKeyKoMegF48RzQOSJcxOZpMhM7PLTK8QQj7BiwdFvPpF3vwbJ8keNLGgoajqprsrSqWw6PvfXmFtfWNzq7hd2tnd2z8oHx41bZIZxhsskYlpR9RyKTRvoEDJ26nhVEWSt6LR7cxvPXFjRaIfcZzyUNGBFrFgFJ30kPZUr1zxq/4cZJUEOalAjnqv/NXtJyxTXCOT1NpO4KcYTqhBwSSflrqZ5SllIzrgHUc1VdyGk/mpU3LmlD6JE+NKI5mrvycmVFk7VpHrVBSHdtmbif95nQzj63AidJoh12yxKM4kwYTM/iZ9YThDOXaEMiPcrYQNqaEMXTolF0Kw/PIqaV5UA78a3F9Wajd5HEU4gVM4hwCuoAZ3UIcGMBjAM7zCmye9F+/d+1i0Frx85hj+wPv8AVpwjdQ=</latexit><latexit sha1_base64="V1WJzDT4J2tV9B+W4wkmQyy8t98=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKeyKoMegF48RzQOSJcxOZpMhM7PLTK8QQj7BiwdFvPpF3vwbJ8keNLGgoajqprsrSqWw6PvfXmFtfWNzq7hd2tnd2z8oHx41bZIZxhsskYlpR9RyKTRvoEDJ26nhVEWSt6LR7cxvPXFjRaIfcZzyUNGBFrFgFJ30kPZUr1zxq/4cZJUEOalAjnqv/NXtJyxTXCOT1NpO4KcYTqhBwSSflrqZ5SllIzrgHUc1VdyGk/mpU3LmlD6JE+NKI5mrvycmVFk7VpHrVBSHdtmbif95nQzj63AidJoh12yxKM4kwYTM/iZ9YThDOXaEMiPcrYQNqaEMXTolF0Kw/PIqaV5UA78a3F9Wajd5HEU4gVM4hwCuoAZ3UIcGMBjAM7zCmye9F+/d+1i0Frx85hj+wPv8AVpwjdQ=</latexit><latexit sha1_base64="V1WJzDT4J2tV9B+W4wkmQyy8t98=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKeyKoMegF48RzQOSJcxOZpMhM7PLTK8QQj7BiwdFvPpF3vwbJ8keNLGgoajqprsrSqWw6PvfXmFtfWNzq7hd2tnd2z8oHx41bZIZxhsskYlpR9RyKTRvoEDJ26nhVEWSt6LR7cxvPXFjRaIfcZzyUNGBFrFgFJ30kPZUr1zxq/4cZJUEOalAjnqv/NXtJyxTXCOT1NpO4KcYTqhBwSSflrqZ5SllIzrgHUc1VdyGk/mpU3LmlD6JE+NKI5mrvycmVFk7VpHrVBSHdtmbif95nQzj63AidJoh12yxKM4kwYTM/iZ9YThDOXaEMiPcrYQNqaEMXTolF0Kw/PIqaV5UA78a3F9Wajd5HEU4gVM4hwCuoAZ3UIcGMBjAM7zCmye9F+/d+1i0Frx85hj+wPv8AVpwjdQ=</latexit>

p1
<latexit sha1_base64="PG232OQihDmkgBlqogfqqH3oHi0=">AAAB6nicbVBNS8NAEJ3Ur1q/oh69LBbBU0lE0GPRi8eK9gPaUDbbSbt0swm7G6GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvTAXXxvO+ndLa+sbmVnm7srO7t3/gHh61dJIphk2WiER1QqpRcIlNw43ATqqQxqHAdji+nfntJ1SaJ/LRTFIMYjqUPOKMGis9pH2/71a9mjcHWSV+QapQoNF3v3qDhGUxSsME1brre6kJcqoMZwKnlV6mMaVsTIfYtVTSGHWQz0+dkjOrDEiUKFvSkLn6eyKnsdaTOLSdMTUjvezNxP+8bmai6yDnMs0MSrZYFGWCmITM/iYDrpAZMbGEMsXtrYSNqKLM2HQqNgR/+eVV0rqo+V7Nv7+s1m+KOMpwAqdwDj5cQR3uoAFNYDCEZ3iFN0c4L86787FoLTnFzDH8gfP5A/9xjZg=</latexit><latexit sha1_base64="PG232OQihDmkgBlqogfqqH3oHi0=">AAAB6nicbVBNS8NAEJ3Ur1q/oh69LBbBU0lE0GPRi8eK9gPaUDbbSbt0swm7G6GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvTAXXxvO+ndLa+sbmVnm7srO7t3/gHh61dJIphk2WiER1QqpRcIlNw43ATqqQxqHAdji+nfntJ1SaJ/LRTFIMYjqUPOKMGis9pH2/71a9mjcHWSV+QapQoNF3v3qDhGUxSsME1brre6kJcqoMZwKnlV6mMaVsTIfYtVTSGHWQz0+dkjOrDEiUKFvSkLn6eyKnsdaTOLSdMTUjvezNxP+8bmai6yDnMs0MSrZYFGWCmITM/iYDrpAZMbGEMsXtrYSNqKLM2HQqNgR/+eVV0rqo+V7Nv7+s1m+KOMpwAqdwDj5cQR3uoAFNYDCEZ3iFN0c4L86787FoLTnFzDH8gfP5A/9xjZg=</latexit><latexit sha1_base64="PG232OQihDmkgBlqogfqqH3oHi0=">AAAB6nicbVBNS8NAEJ3Ur1q/oh69LBbBU0lE0GPRi8eK9gPaUDbbSbt0swm7G6GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvTAXXxvO+ndLa+sbmVnm7srO7t3/gHh61dJIphk2WiER1QqpRcIlNw43ATqqQxqHAdji+nfntJ1SaJ/LRTFIMYjqUPOKMGis9pH2/71a9mjcHWSV+QapQoNF3v3qDhGUxSsME1brre6kJcqoMZwKnlV6mMaVsTIfYtVTSGHWQz0+dkjOrDEiUKFvSkLn6eyKnsdaTOLSdMTUjvezNxP+8bmai6yDnMs0MSrZYFGWCmITM/iYDrpAZMbGEMsXtrYSNqKLM2HQqNgR/+eVV0rqo+V7Nv7+s1m+KOMpwAqdwDj5cQR3uoAFNYDCEZ3iFN0c4L86787FoLTnFzDH8gfP5A/9xjZg=</latexit><latexit sha1_base64="PG232OQihDmkgBlqogfqqH3oHi0=">AAAB6nicbVBNS8NAEJ3Ur1q/oh69LBbBU0lE0GPRi8eK9gPaUDbbSbt0swm7G6GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvTAXXxvO+ndLa+sbmVnm7srO7t3/gHh61dJIphk2WiER1QqpRcIlNw43ATqqQxqHAdji+nfntJ1SaJ/LRTFIMYjqUPOKMGis9pH2/71a9mjcHWSV+QapQoNF3v3qDhGUxSsME1brre6kJcqoMZwKnlV6mMaVsTIfYtVTSGHWQz0+dkjOrDEiUKFvSkLn6eyKnsdaTOLSdMTUjvezNxP+8bmai6yDnMs0MSrZYFGWCmITM/iYDrpAZMbGEMsXtrYSNqKLM2HQqNgR/+eVV0rqo+V7Nv7+s1m+KOMpwAqdwDj5cQR3uoAFNYDCEZ3iFN0c4L86787FoLTnFzDH8gfP5A/9xjZg=</latexit>

p2
<latexit sha1_base64="DjS1oOAr1VR/VatzfCTqK/ymJgE=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKUI9FLx4r2g9oQ9lsJ+3SzSbsboQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ7dzvPKHSPJaPZpqgH9GR5CFn1FjpIRnUBuWKW3UXIOvEy0kFcjQH5a/+MGZphNIwQbXueW5i/Iwqw5nAWamfakwom9AR9iyVNELtZ4tTZ+TCKkMSxsqWNGSh/p7IaKT1NApsZ0TNWK96c/E/r5ea8NrPuExSg5ItF4WpICYm87/JkCtkRkwtoUxxeythY6ooMzadkg3BW315nbRrVc+tevdXlcZNHkcRzuAcLsGDOjTgDprQAgYjeIZXeHOE8+K8Ox/L1oKTz5zCHzifPwEEjZk=</latexit><latexit sha1_base64="DjS1oOAr1VR/VatzfCTqK/ymJgE=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKUI9FLx4r2g9oQ9lsJ+3SzSbsboQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ7dzvPKHSPJaPZpqgH9GR5CFn1FjpIRnUBuWKW3UXIOvEy0kFcjQH5a/+MGZphNIwQbXueW5i/Iwqw5nAWamfakwom9AR9iyVNELtZ4tTZ+TCKkMSxsqWNGSh/p7IaKT1NApsZ0TNWK96c/E/r5ea8NrPuExSg5ItF4WpICYm87/JkCtkRkwtoUxxeythY6ooMzadkg3BW315nbRrVc+tevdXlcZNHkcRzuAcLsGDOjTgDprQAgYjeIZXeHOE8+K8Ox/L1oKTz5zCHzifPwEEjZk=</latexit><latexit sha1_base64="DjS1oOAr1VR/VatzfCTqK/ymJgE=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKUI9FLx4r2g9oQ9lsJ+3SzSbsboQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ7dzvPKHSPJaPZpqgH9GR5CFn1FjpIRnUBuWKW3UXIOvEy0kFcjQH5a/+MGZphNIwQbXueW5i/Iwqw5nAWamfakwom9AR9iyVNELtZ4tTZ+TCKkMSxsqWNGSh/p7IaKT1NApsZ0TNWK96c/E/r5ea8NrPuExSg5ItF4WpICYm87/JkCtkRkwtoUxxeythY6ooMzadkg3BW315nbRrVc+tevdXlcZNHkcRzuAcLsGDOjTgDprQAgYjeIZXeHOE8+K8Ox/L1oKTz5zCHzifPwEEjZk=</latexit><latexit sha1_base64="DjS1oOAr1VR/VatzfCTqK/ymJgE=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKUI9FLx4r2g9oQ9lsJ+3SzSbsboQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ7dzvPKHSPJaPZpqgH9GR5CFn1FjpIRnUBuWKW3UXIOvEy0kFcjQH5a/+MGZphNIwQbXueW5i/Iwqw5nAWamfakwom9AR9iyVNELtZ4tTZ+TCKkMSxsqWNGSh/p7IaKT1NApsZ0TNWK96c/E/r5ea8NrPuExSg5ItF4WpICYm87/JkCtkRkwtoUxxeythY6ooMzadkg3BW315nbRrVc+tevdXlcZNHkcRzuAcLsGDOjTgDprQAgYjeIZXeHOE8+K8Ox/L1oKTz5zCHzifPwEEjZk=</latexit>

p2
<latexit sha1_base64="DjS1oOAr1VR/VatzfCTqK/ymJgE=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKUI9FLx4r2g9oQ9lsJ+3SzSbsboQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ7dzvPKHSPJaPZpqgH9GR5CFn1FjpIRnUBuWKW3UXIOvEy0kFcjQH5a/+MGZphNIwQbXueW5i/Iwqw5nAWamfakwom9AR9iyVNELtZ4tTZ+TCKkMSxsqWNGSh/p7IaKT1NApsZ0TNWK96c/E/r5ea8NrPuExSg5ItF4WpICYm87/JkCtkRkwtoUxxeythY6ooMzadkg3BW315nbRrVc+tevdXlcZNHkcRzuAcLsGDOjTgDprQAgYjeIZXeHOE8+K8Ox/L1oKTz5zCHzifPwEEjZk=</latexit><latexit sha1_base64="DjS1oOAr1VR/VatzfCTqK/ymJgE=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKUI9FLx4r2g9oQ9lsJ+3SzSbsboQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ7dzvPKHSPJaPZpqgH9GR5CFn1FjpIRnUBuWKW3UXIOvEy0kFcjQH5a/+MGZphNIwQbXueW5i/Iwqw5nAWamfakwom9AR9iyVNELtZ4tTZ+TCKkMSxsqWNGSh/p7IaKT1NApsZ0TNWK96c/E/r5ea8NrPuExSg5ItF4WpICYm87/JkCtkRkwtoUxxeythY6ooMzadkg3BW315nbRrVc+tevdXlcZNHkcRzuAcLsGDOjTgDprQAgYjeIZXeHOE8+K8Ox/L1oKTz5zCHzifPwEEjZk=</latexit><latexit sha1_base64="DjS1oOAr1VR/VatzfCTqK/ymJgE=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKUI9FLx4r2g9oQ9lsJ+3SzSbsboQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ7dzvPKHSPJaPZpqgH9GR5CFn1FjpIRnUBuWKW3UXIOvEy0kFcjQH5a/+MGZphNIwQbXueW5i/Iwqw5nAWamfakwom9AR9iyVNELtZ4tTZ+TCKkMSxsqWNGSh/p7IaKT1NApsZ0TNWK96c/E/r5ea8NrPuExSg5ItF4WpICYm87/JkCtkRkwtoUxxeythY6ooMzadkg3BW315nbRrVc+tevdXlcZNHkcRzuAcLsGDOjTgDprQAgYjeIZXeHOE8+K8Ox/L1oKTz5zCHzifPwEEjZk=</latexit><latexit sha1_base64="DjS1oOAr1VR/VatzfCTqK/ymJgE=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKUI9FLx4r2g9oQ9lsJ+3SzSbsboQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ7dzvPKHSPJaPZpqgH9GR5CFn1FjpIRnUBuWKW3UXIOvEy0kFcjQH5a/+MGZphNIwQbXueW5i/Iwqw5nAWamfakwom9AR9iyVNELtZ4tTZ+TCKkMSxsqWNGSh/p7IaKT1NApsZ0TNWK96c/E/r5ea8NrPuExSg5ItF4WpICYm87/JkCtkRkwtoUxxeythY6ooMzadkg3BW315nbRrVc+tevdXlcZNHkcRzuAcLsGDOjTgDprQAgYjeIZXeHOE8+K8Ox/L1oKTz5zCHzifPwEEjZk=</latexit>
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Figure 2. Schematic picture of the interference of a l-loop Feynman diagram with a complex-

conjugate k-loop Feynman diagram.

dependence on w1 was already hinted at in eq. (2.15), but needs to be investigated in more

detail.

The partonic coefficient function comprises of amplitudes interfering with complex

conjugate amplitudes, integrated over the m-parton phase space. This can be further split

into interference of l-loop Feynman diagrams with conjugate k-loop Feynman diagrams, as

illustrated in figure 2. Similar to the decomposition of the partonic coefficient function in

eq. (2.15), the analytic structure of the depicted interference diagram can be decomposed

as∫
dΦm<(AlA∗k) = (sw1w2)−mε ×

{
l∑

i1,i2=0

k∑
j1,j2=0

f (i1,i2,j1,j2)(w1, w2, x)

×<
{[

(−s)(i1+i2−l)ε(sw1)−i1ε(sw2)−i2ε
][

(−s)(j1+j2−k)ε(sw1)−j1ε(sw2)−j2ε
]∗}}

. (3.4)

Here, the functions f (i1,i2,j1,j2)(w1, w2, x) do not contain any branch cuts at s = 0, w1 = 0

or w2 = 0. When performing a computation of analytic partonic coefficient functions, it

is easy and often useful to keep track of the individual functions f (i1,i2,j1,j2)(w1, w2, x).

The second line in eq. (3.4) differs between DIS and production kinematics due to the

different signs of s and w1. Explicit phases occur in a given loop amplitude depending on

the kinematic configuration of the external momenta. The phases are easily determined by

equipping the Lorentz-invariant scalar products s, sw1 and sw2 with a definite Feynman

prescription,

(pi + pj)
2 → (pi + pj)

2 + i0. (3.5)

Crossing from DIS to production kinematics then requires us to analytically continue the

second line of eq. (3.4). As an example, we consider the case i1 = i2 = k = j1 = j2 = 0,

<
[
(−s− i0)−lε

]
︸ ︷︷ ︸

DIS

←→ cos(lπε)<
[
(s+ i0)−lε

]
︸ ︷︷ ︸

production

. (3.6)
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The same analytic structure as outlined above for the interference of two Feynman diagrams

naturally holds for the entire partonic coefficient function as well,

dη
(m+l+k)
ij

dQ2dw1dw2dx
= (sw1w2)−mε ×

{
l∑

i1,i2=0

k∑
j1,j2=0

dη
(m+l+k,i1,i2,j1,j2)
ij

dQ2dw1dw2dx

×<
{[

(−s)(i1+i2−l)ε(sw1)−i1ε(sw2)−i2ε
][

(−s)(j1+j2−k)ε(sw1)−j1ε(sw2)−j2ε
]∗}}

. (3.7)

Once the universal functions η
(m+l+k,i1,i2,j1,j2)
ij are identified, it is easy to perform the

analytic continuation between DIS and production kinematics. The above was observed

and explicitly verified for the computation of the ingredients of Higgs and DY production

up to N3LO in refs. [52–56] and holds in particular for the interference of amplitudes for

massless QCD corrections for the processes under consideration. We note that it is of course

also possible to relate DIS or production kinematics to partonic cross sections where only

the electroweak gauge boson is in the initial state and all partons are in the final state, for

example e+ e− annihilation.

In addition to the analytic continuation from DIS to production kinematics there are

some other, trivial differences in the partonic coefficient functions. First, the overall nor-

malisation factor Ni and N production
ij differ, which can be trivially accounted for. Second,

the phase space measure dΦ1+m and dΦproduction
h+m

differ by factors depending on the kine-

matic variables. However, this difference is accounted for by a simple multiplicative factor

that does not require any additional analytic continuation. With this we have identified all

differences between DIS and production kinematics in bare, partonic coefficient functions

and can relate one to the other as long as the required analytic information is retained in

the computation of one of them.

Analytic continuation of processes and universal anomalous dimensions, such as split-

ting functions appearing in the evolution of parton densities and fragmentation function

have a long history [57–71]. The fact that our setup is differential in all four momenta that

are crossed from one kinematic configuration to another allows us to frame crossing purely

in terms of analytic continuation.

4 Collinear limit of partonic coefficient functions

In this section we briefly review the method introduced in ref. [48] to expand cross sections

in the kinematic limit where all final-state radiation becomes collinear to the parton with

momentum p1 or p2. In order to illustrate this, it is instructive to decompose the momentum

k into its components along these directions,

kµ = pµ1k1 + pµ2k2 + kµ⊥. (4.1)

Here, the k⊥ component is chosen orthogonal to p1 and p2. In order to illustrate the

collinear limit with respect to either massless parton we introduce an auxiliary rescaling
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parameter λ and indicate the collinear limit by

p1−collinear : kµ → pµ1k1 + λ2pµ2k2 + λkµ⊥ ,

p2−collinear : kµ → λ2pµ1k1 + pµ2k2 + λkµ⊥ . (4.2)

The respective limit is then achieved by taking λ→ 0. The variables w1, w2 and x defined

in eq. (2.8) were chosen such that the action of either collinear rescaling transformation

in eq. (4.2) on the partonic coefficient function simply amounts to a rescaling of w1,2.

Specifically, in the p1-collinear limit only w1 is rescaled, while in the p2-collinear limit only

w2 is rescaled, while the other variables are not affected,

p1−collinear : w1 → λ2w1 , w2 → w2 , x→ x ,

p2−collinear : w1 → w1 , w2 → λ2w2 , x→ x . (4.3)

An expansion of our partonic coefficient function in the p1,2-collinear limit is thus equivalent

to an expansion in w1,2. More details on how such an expansion can be performed for multi-

loop partonic coefficient functions can be found in ref. [48].

A key difference between the p1- and p2-collinear limit is that the former corresponds to

a collinear initial-state singularity, which were already discussed in refs. [46, 48, 49], while

the latter corresponds to collinear final-state singularity. Here, we only only briefly look at

the impact of the p1-collinear limit on the more familiar variables given in eqs. (2.16) and

(2.18),

p1−collinear :
|~P2T |2
x2
F

= |~qT |2 =
q2w1w2(1− x)

1− w2
, ζ → 1 , z → 1− w2 . (4.4)

Note, that the p1-collinear limit of the phase space is identical for DIS and production

kinematics up to the domain of the variables,

lim
p1−coll

dΦ1+m

dw1dw2dx
∼ lim

p1−coll

dΦh+m

dw1dw2dx
. (4.5)

Furthermore, in the strict p1-collinear limit, which is defined by only retaining momentum

modes in loop integrals where the loop momentum itself is collinear to p1 [48], none of the

partonic coefficient functions require any analytic continuation when crossing between DIS

and production kinematics. Thus, up to overall normalization factors the strict p1-collinear

limit agrees between production and DIS kinematics. Of course, this is an immediate

consequence of the universality of collinear dynamics of QCD and the factorization of

collinear initial-state singularities.

The limit of all final-state radiation becoming collinear to the momentum p2 corre-

sponds to collinear final-state singularities, which were not discussed in ref. [48] and are

the main focus of this article. In this limit, the familiar variables in eqs. (2.16) and (2.18)

become

p2−collinear :
|~P2T |2
x2
F

= |~qT |2 =
q2w1w2(1− x)

1− w1
, ζ → 1

1− w1
, z → 1 . (4.6)
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Note, that ζ in the p2-collinear limit behaves reciprocal to z in the p1-collinear limit, which

is a consequence of their definition in eq. (2.4). In contrast to the p1-collinear limit, in the

p2-collinear limit the phase space for DIS and production kinematics differ slightly by

lim
p2−coll

dΦ1+m

dw1dw2dx
∼ (1− w1)−3+2ε lim

p2−coll

dΦh+m

dw1dw2dx
. (4.7)

Furthermore, in order to cross from production to DIS kinematics it is necessary to ana-

lytically continue parts of the partonic coefficient function, as outlined in section 3.

5 Calculation of the TMD Fragmentation Functions

In this section we calculate the TMDFFs at N3LO from a perturbative calculation of the

SIDIS process P (P1) + h(q) → H(−P2) + X(−k). We will briefly review the required

factorization for SIDIS in the limit of small transverse momentum in section 5.1, before

showing in section 5.2 how it relates to the kinematic limit where the final-state momenta

P2 and k are collinear to each other. In section 5.3, we discuss our results for the TMDFFs.

In this section, it will be useful to introduce lightcone coordinates, which we define in

terms of two lightlike reference vectors

nµ = (1, 0, 0, 1) , n̄µ = (1, 0, 0,−1) , (5.1)

which obey n2 = n̄2 = 0 and n·n̄ = 2. Any four momentum pµ can then be decomposed as

pµ = p−
nµ

2
+ p+ n̄

µ

2
+ pµ⊥ ≡ (p−, p+, p⊥) , (5.2)

where p− ≡ n̄ · p and p+ ≡ n · p. We will always denote transverse vectors in Minkowski

space as pµ⊥ = (0, ~pT , 0) where ~pT is a Euclidean two vector, such that p2
⊥ = −~p2

T ≡ −p2
T .

5.1 SIDIS factorization at small transverse momentum

We consider the unpolarized SIDIS process in eq. (2.1) in a frame where the incoming

proton P and outgoing hadron H are aligned along the lightcone vectors in eq. (5.1), i.e.

Pµ1 = P−1
nµ

2
, Pµ2 = P+

2

n̄µ

2
. (5.3)

In this frame, the momentum qµ of the electroweak boson h is given by

qµ = (q−, q+, q⊥) with −Q2 = q2 = q+q− − q2
T . (5.4)

In particular, it has a nonvanishing transverse momentum ~qT . Note, that the above coor-

dinates correspond to the hadron frame introduced in sec. 2.3.

The factorization of the SIDIS cross section in the limit of small transverse momentum,

qT � Q, was first derived in [11] and elaborated on in refs. [72, 73]. We follow the notation

established in the treatment of TMD factorization within Soft-Collinear Effective Theory
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(SCET) [74–77] in the formalism of the rapidity renormalization group equation [78, 79].

For Drell-Yan like processes, the factorized cross section is given by

dσ

dxF d2~qT
= σ̂0 x

2
F

∑
i,j

Hij(q
2, µ)

∫
d2~bT
(2π)2

ei~qT ·~bT B̃i

(
xB,~bT , µ,

ν

ωa

)
D̃H/j

(
xF ,~bT , µ,

ν

ωb

)
× S̃q(bT , µ, ν)×

[
1 +O

(
q2
T /Q

2
)]
, (5.5)

see appendix A for more details. In eq. (5.5), σ̂0 is the same Born cross section as before,

the sum runs over all parton flavors i, j contributing to the Born process i + h → j, and

the hard function Hij encodes virtual corrections to the Born process. As is common,

the factorization in eq. (5.5) is expressed in Fourier space, with ~bT Fourier conjugate to

~qT . The TMD beam and fragmentation functions B̃i(xB,~bT ) and D̃H/j(xF ,~bT ) encode the

effect of radiation collinear to the incoming proton and outgoing hadron, respectively, and

are defined below. They depend on ~bT and the momentum fractions xB,F as defined in

eq. (2.3). The soft function S̃q(bT ) encodes the transverse recoil due to soft radiation, and

is independent of the quark flavors i and j. Eq. (5.5) depends not only on the common

renormalization scale µ, which we take as usual as the MS scale, but also on the scale ν

that arises from the regularization of so-called rapidity divergences [5, 73, 78–85], for which

we employ the exponential regulator of ref. [79]. The momentum fractions ωa,b in eq. (5.5)

are defined as the lightcone components

ωa = xBP
−
1 , ωb = −P

+
2

xF
, ⇒ ωaωb ≈ Q2 . (5.6)

They are closely related to the Collins-Soper scale ζa,b ∝ ω2
a,b [5, 6].

For gluon-induced processes, the factorized cross section reads

dσ

dxF d2~qT
= σ̂0 x

2
F 2Hρσρ′σ′(q

2, µ)

∫
d2~bT
(2π)2

ei~qT ·~bT B̃ρσ
g

(
xB,~bT , µ,

ν

Q

)
D̃ρ′σ′

H/g

(
xF ,~bT , µ,

ν

Q

)
× S̃g(bT , µ, ν)×

[
1 +O

(
q2
T /Q

2
)]
. (5.7)

The only difference to eq. (5.7) is the Lorentz structure of B̃ρσ
g and D̃ρσ

H/g, which arises due

to the helicity structure of the gluon field, One can decompose the gluon TMDFF as

D̃ρσ
H/g(xF ,

~bT ) =
gρσ⊥
2
D̃H/g(xF ,~bT ) +

(gρσ⊥
2

+
bµ⊥b

ν
⊥

b2T

)
D̃′H/g(xF ,

~bT ) , (5.8)

where we suppressed the scales for brevity. The decomposition of B̃ρσ
g has the same struc-

ture as eq. (5.8). We will only consider Higgs production, where due to the scalar nature

of the Higgs boson

Hρσρ′σ′(q2, µ) = H(q2, µ)gρρ
′

⊥ gσσ
′

⊥ , (5.9)

and thus we only require the combination

2Hρσρ′σ′B̃
ρσ
g D̃ρ′σ′

H/g = H
(
B̃gD̃H/g + B̃′gD̃

′
H/g

)
, (5.10)
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where we suppressed all arguments for brevity. Since this structure is very similar to the

combination in eq. (5.5), in the following we will always use the form in eq. (5.5), with

the implicit understanding that the B′gD
′
g term has to be added for Higgs production.

Furthermore, since B′g = O(αs) and D′g = O(αs), their NNLO results are sufficient to

describe Higgs production at N3LO. They have already been calculated in ref. [39], and we

will not consider them in our calculation of the N3LO TMDFFs.

Before proceeding, we remark that the beam and fragmentation functions are often

combined with the soft function to obtain manifestly ν-independent TMD PDFs and FFs,

f̃TMD
i (xB,~bT , µ, ζa) = B̃i(xB,~bT , µ,

ν

ωa
)
√
S(bT , µ, ν) ,

D̃TMD
H/j

(
xF ,~bT , µ, ζb

)
= D̃H/j

(
xF ,~bT , µ,

ν

ωb

)√
S(bT , µ, ν) , (5.11)

where ζa,b = ω2
a,b. To calculate the TMDFF itself, it is more useful to separate the soft

function, but we will provide results in both conventions. Note, that while there is an

established notation distinguishing TMD beam functions B̃i and TMDPDFs f̃i, so far no

such notation exists for the TMD FF. To make clear which function we refer to, we will

label the TMDFF including the soft function by an explicit superscript “TMD”.

The TMDFFs in eqs. (5.5) and (5.7) are well-defined QCD hadronic matrix ele-

ments [86]. Using SCET notation, the bare fragmentation functions are defined as

D̃H/q(xF ,~bT , ε, τ) =
1

4Nc

1

xF

∑
X

∫
db+

4π
eiP+b−/(2xF )Tr 〈0|/nχn̄(b)|HX〉 〈HX|χ̄n̄(0)|0〉 ,

D̃µν
H/g(xF ,

~bT , ε, τ) = −P
+

x2
F

∑
X

∫
db+

4π
eiP+b−/(2xF ) 〈0|Bµn̄⊥(b)|HX〉 〈HX|Bνn̄⊥(0)|0〉 . (5.12)

Here, we make explicit that we regulate UV divergences by working in d = 4−2ε dimensions

and regulate rapidity divergences using the exponential regulator of ref. [79]. In eq. (5.12),

the sum is over all additional hadronic final states X, the trace is over color and spin,

and P is the momentum of the hadron H. The fields χn̄ and Bµn̄⊥ are collinear quark and

gluon fields in SCET, with the pair of fields in each equation separated by bµ = (0, b+, b⊥).

The matrix elements in eq. (5.12) are defined in the hadron frame as specified in eq. (5.3),

i.e. the outgoing hadron H defines the lightcone direction n̄µ, and ~bT is transverse to it.

For perturbative bT & Λ−1
QCD, the TMDFF can be matched perturbatively onto the

collinear FF. For the renormalized TMDFF, this relation reads [72, 73]

D̃H/j

(
xF ,~bT , µ,

ν

ωb

)
=
∑
j′

∫ 1

xF

dz

z3
dh/j′(z, µ) C̃jj′

(xF
z
,~bT , µ,

ν

Q

)
=
∑
j′

∫ 1

xF

dz

z
dh/j′

(xF
z
, µ
) z2

x2
F

C̃jj′(z,~bT , µ,
ν

Q
) , (5.13)

where the matching coefficients C̃jj′ are perturbatively calculable. In the second line in

eq. (5.13) we have replaced z → xF /z, which will be more convenient for our extraction
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of C̃jj′ . Corrections to eq. (5.13) are suppressed as O(bTΛQCD). With this we may rewrite

the TMDFF of eq. (5.13) in terms of the Mellin convolution

x2
F D̃H/j

(
xF ,~bT , µ,

ν

ωb

)
=
∑
j′

K̃jj′
(
xF ,~bT , µ,

ν

ωb

)
⊗xF dh/j′(xF , µ)

=
∑
j′

[
x2
F C̃jj′

(
xF ,~bT , µ,

ν

ωb

)]
⊗xF dh/j′(xF , µ). (5.14)

Above, we implicitly defined the perturbative matching kernel

K̃jj′
(
ζ,~bT , µ,

ν

ωb

)
= ζ2C̃jj′

(
ζ,~bT , µ,

ν

ωb

)
. (5.15)

The TMDFFs in eq. (5.12) are defined in a coordinate system where Pµ2 = P+
2 n̄

µ/2

defines the lightcone direction and has vanishing transverse momentum, and hence b⊥ is

Fourier-conjugate to the transverse momentum of the parton that initiates the fragmenta-

tion process. Alternatively we may consider the transverse momentum of the final state

hadron P2T which is naturally defined in the infinite momentum frame, see sec. 2.3, and

following ref. [40] we denotes this definition of the TMDFF F̃H/j . Since the two transverse

momenta in these two frames are related as ~PT2 = −xF ~qT , see eq. (2.21), the two TMDFFs

are related by

FH/j(xF , ~P2⊥) = DH/j(xF ,−~P2⊥/xF ) ,

F̃H/j(xF ,~bT /xF ) = xd−2
F D̃H/j(xF ,−~bT ) . (5.16)

The first relation is an immediate consequence of eq. (2.21). The second equation imme-

diately follows upon Fourier transform in d− 2 dimensions.

In ref. [40], the matching relation for the F̃H/j was written as

F̃H/j
(
xF ,

~bT
ζ
, µ,

ν

ω

)
=
∑
j′

∫ 1

xF

dζ

ζ
dH/j

(xF
ζ

)
C̃[40]
j′j

(
ζ,
~bT
ζ
, µ,

ν

ω

)
, (5.17)

and thus our kernels K̃ are identical to their kernels with rescaled arguments,

K̃jj′
(
ζ,~bT , µ,

ν

ωb

)
= C̃[40]

j′j

(
ζ,
~bT
ζ
, µ,

ν

ω

)
. (5.18)

5.2 TMD fragmentation functions from the collinear limit

The TMDFF can be obtained from the collinear limit of SIDIS following the same strategy

applied in refs. [46, 48] to calculate the TMDPDF from the collinear limit of proton-proton

scattering. We start from the cross section differential in the transverse momentum ~qT ,

which in the limit of small qT � Q is given by the factorization theorem in eq. (5.5),

dσ

dxF d2~q⊥
= σ̂0x

2
F

∑
i,j

Hij(q
2, µ)

∫
d2~bT
(2π)2

e−i~bT ·~qT B̃i

(
xB,~bT , µ,

ν

ωa

)
D̃H/j

(
xF ,~bT , µ,

ν

ωb

)
× S̃q(bT , µ, ν)×

[
1 +O

(
q2
T /Q

2
)]
, (5.19)
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The key insight is that the hard, beam, fragmentation and soft function in eq. (5.19)

encode different dynamics. The hard function H arises from hard virtual corrections to

the Born process, while B̃, D̃ and S̃ are constructed such that they only arise from p1-

collinear, p2-collinear and soft momenta in loop integral and real emissions, respectively.

It follows that by calculating the strict p2-collinear limit, defined such that both loop

and real momenta are expanded in the p2-collinear limit, only the fragmentation function

contributes to eq. (5.19),

lim
strict p2−coll.

dσ

dxF dd−2~qT
= σ̂0 x

2
F

∑
i

∫
dd−2~bT
(2π)d−2

ei~bT ·~qT fi(xB)D̃H/̄i(xF ,
~bT )

= σ̂0 x
2
F

∑
i

fi(xB)DH/̄i

(
xF , ~qT

)
. (5.20)

Here we used that the hard and soft functions are normalized to unity at tree level, while

the TMD beam function reduces to the PDF itself. Note that eq. (5.20) is to be understood

at the bare level, as only combining it with all other limits will cancel all appearing infrared

divergences, and thus ~qT and ~bT are treated in d− 2 dimensions. We also used that both

photon and Higgs exchange are flavor diagonal to fix j = ī.

We want to relate eq. (5.20) to the SIDIS cross section defined in collinear factorization.

Combining eqs. (2.5) and (2.14), we obtain

dσP+h→H+X

dxFdq2
T

= σ̂0

∑
i,j

∫ 1

xB

dz

z

∫ 1

xF

dζ

ζ
fi

(xB
z

)
dH/j

(xF
ζ

)
(5.21)

×
∫

dw1dw2dx
dη̂i+h→j+X
dw1dw2dx

δ[ζ − ζ(w1, w2, x)] δ[q2
T − q2

T (w1, w2, x)] ,

where the expressions for ζ and q2
T are given by eqs. (2.16) and (2.20). In the limit that all

final state radiation becomes collinear to P2, i.e. w2 → 0, all required variables becomes

p2−collinear : q2
T → q2w1w2(1− x)

1− w1
, ζ → 1

1− w1
, z → 1 . (5.22)

Note that in this limit, the partonic coefficient function scales as δ(1 − z), see eq. (2.11),

and thus renders the convolution in z trivial. Furthermore, we fix w1 = −(1 − ζ)/ζ, and

obtain

lim
strict p2−coll.

dσP+h→H+X

dxFdq2
T

= σ̂0

∑
i,j

fi(xB)

∫ 1

xF

dζ

ζ3
dH/j

(xF
ζ

)
(5.23)

×
∫

dw2dx δ
[
q2
T −Q2(1− ζ)w2(1− x)

]
lim

strict p2−coll.

dη̂i+h→j+X
dw1dw2dx

.

Comparing eqs. (5.20) and (5.23), we can immediately read off the relation between the

perturbative matching kernel and take the Fourier transform with respect to ~qT ,

D̃H/i(xF ,~bT ) =
1

x2
F

∑
j

∫ 1

xF

dζ

ζ
dH/j

(xF
ζ

)∫ dd−2~qT
Ωd−3(q2

T )d/2−2/2
e−i~bT ·~qT (5.24)

×
∫

dw2dx δ
[
q2
T −Q2(1− ζ)w2(1− x)

]
lim

strict p2−coll.

1

ζ2

dη̂ī+h→j+X
dw1dw2dx

.
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The perturbative matching kernel as defined in eqs. (5.13) – (5.15) is then given by

K̃naive
jj′ (ζ,~bT ) =

∫
dd−2~qT

Ωd−3(q2
T )d/2−2/2

e−i~bT ·~qT (5.25)

×
∫

dw2dx δ
[
q2
T −Q2(1− ζ)w2(1− x)

]
lim

strict p2−coll.

1

ζ2

dη̂j̄+h→j′+X
dw1dw2dx

.

The superscript “naive” in eq. (5.25) indicates that this is not yet the final result for the

(bare) matching coefficient.

First, we note that we still have to regulate rapidity divergences that arise as w2 → 0, or

equivalently ζ → 1. In our approach, this regulator must only act on the total momentum

k. The only known regulator in the literature that fulfills this constraint is the exponential

regulator [79], which amounts to inserting a factor exp[2τe−γEk0] into the integral. In our

parameterization, this regulating factor reads

exp(2τe−γEk0) = exp[−τe−γE (w1p
+
2 + w2p

−
1 )]→ exp

[
− τe−γEq2

T

ωb(1− ζ)(1− x)

]
, (5.26)

where in the last step we neglect the w1 term that is not required to regulate the w2 → 0

limit and use the momentum fraction ωb of eq. (5.6). Since eq. (5.26) vanishes exponentially

as ζ → 1 and x → 1, it regulates all rapidity divergences in the p2-collinear sector. We

identify the rapidity regularisation scale as

ν =
1

τ
, (5.27)

as τ has inverse mass dimensions.

Secondly, the TMDFF is defined as the purely collinear limit of the cross section, but

the above matrix element still contains overlap with the soft factor. Its subtraction is

referred to as zero-bin subtraction [87]. In the case of the exponential regulator, this is

equivalent to dividing by the bare soft function. The soft function was calculated at N3LO

in ref. [88] and confirmed by us in ref. [46] from which we take its bare expression.

With the above manipulations, we obtain the actual bare matching coefficient as

K̃jj′
(
ζ,~bT , ε,

ν

ωb

)
=

∫
dd−2~qT e

−i~qT ·~bT

Ωd−3(q2
T )d/2−2/2

∫ 1

0
dx dw2 δ

[
q2
T −Q2(1− ζ)w2(1− x)

]
(5.28)

× lim
τ→0

1

ζ2

exp
[
− τ
ωb
e−γEq2

T
1

(1−ζ)(1−x)

]
S(bT , ε, τ)

lim
strict p2−coll.

dη̂j̄+h→j′+X
dw1dw2dx

∣∣∣∣
w1=− 1−ζ

ζ

,

where we already take the limit τ → 0 which must be taken before ε→ 0.

The last step is to relate the above partonic coefficient function to its counterpart in

production kinematics. As outlined in section 3, the two are related by

dη̂i+h→j+X
dw1dw2dx

= ζ3−2ε Ni
N production
ij

dη̂i+h→j+X
dw1dw2dx

∣∣∣∣
analyt.cont.

. (5.29)

To perform the analytic continuation in the above equation the necessary information on

the original partonic coefficient function must however be retained as explained in section 3.
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Since all other ingredients in eq. (5.28) agree with the corresponding calculation of the

matching kernel Iij of the TMDPDF in ref. [46, 48], the relation between the two can be

written compactly as

K̃jj′
(
ζ,~bT , ε,

ν

ωb

)
= ζ1−2ε Ni

N production
ij

Ĩjj′
(1

ζ
,~bT , ε,

ν

ωb

)∣∣∣∣
analyt.cont.

. (5.30)

It only remains to absorb all leftover UV and IR singularities into suitable counterterms,

which we perform in the MS scheme. This yields the renormalized matching kernel as

K̃ij
(
ζ,~bT , µ,

ν

ωb

)
=
∑
j′

∫ 1

ζ

dz′

z′
Γjj′(z

′)Z̃iB(µ, τ,Q)Ẑαs(µ)K̃ij′
(
z′

ζ
,~bT , ε,

ν

ωb

)
, (5.31)

where the factor Ẑαs(µ, ε) implements the UV renormalization of the strong coupling con-

stant, Γjj′ absorbs all IR poles and corresponds to the redefinition of the bare fragmentation

function dH/j in terms of its renormalized counterpart, and the TMDFF counterterm Z̃iB
absorbs all leftover UV divergences. Γjj′ can be obtained from the time-like splitting func-

tions, while Z̃iB can be predicted from the renormalization group equation governing the

TMDFF. These steps are identical to the ones for the TMDPDF, and all required details

can be found in appendix A of ref. [48], up to replacing the spacelike splitting functions

Pij by their timelike counterparts P Tij [61–63, 67].

The perturbative matching kernel for the manifestly ν independent TMD FF of eq. (5.11)

is simply obtained by

K̃TMD
jj′

(
ζ,~bT , µ

)
= K̃jj′

(
ζ,~bT , µ,

ν

ωb

)√
S(bT , µ, ν) . (5.32)

5.3 Results

We expand the renormalized matching kernels perturbatively as

K̃jj′
(
z,~bT , µ,

ν

ωb

)
=
∞∑
`=0

(αs
π

)` 2∑̀
n=0

∑̀
m=0

K̃(`,m,n)
jj′ (z)LnbL

m
ω . (5.33)

The logarithms in eq. (5.33) are defined as

Lb = ln
b2Tµ

2

4e−2γE
, Lω = ln

ν

ωb
. (5.34)

The logarithmic structure of eq. (5.33) is entirely governed by the renormalization group

equations of the TMDFF, which we have verified as an important check of our results. The

key new result of this article is the nonlogarithmic boundary term in eq. (5.33),

K̃(`)
jj′(z) ≡ K̃

(`,0,0)
jj′ (z) . (5.35)

These coefficients have already been calculated at NNLO in refs. [39–41, 89], with which we

find perfect agreement, while our result at N3LO is new. As in the case of the TMDPDF,

we find that it can be entirely expressed in terms of harmonic poly logarithms (HPLs) [90]
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Figure 3. The N3LO TMD fragmentation function boundary term K̃(3)
ij (z) as a function of z. The

matching kernels in all channels entering the quark fragmentation (left) and the gluon fragmentation

(right) are displayed. For illustration purposes the kernels have been rescaled as indicated.

up to weight five. We provide the full result for eq. (5.33), and the corresponding result

including the soft factor as defined in eq. (5.32), in the ancillary files of this submission.

We also provide the expansion of the kernels both in z as well as in z̄ = 1 − z up to 40

orders in the expansion. These expansions can be patched together to obtain a fast and

precise numerical evaluation of the kernels.

We have performed several checks on ours results. First, in eq. (5.31), we have used

counterterms predicted from known anomalous dimensions, rather than simply absorbing

all appearing divergences in counterterms. As consequence, divergences up to 1/ε6 had

to cancel in the process. In this manner, we also confirm the result of ref. [67] for the

timelike splitting functions at three loops, which noted a discrepancy for P
T,(2)
qg compared

to the previous results of ref. [63], but otherwise agree with previous determinations of the

timelike splitting functions [61–63].

We have also checked that the TMDFF obeys the same eikonal limit as the TMD-

PDF [41, 91, 92],

lim
z→1
K̃(3)
ij (z) =

γr2
64
δij L0(1− z) , (5.36)

where γr2 is the three-loop coefficient of the rapidity anomalous dimension in the appropriate

color representation r. Explicit expressions for it can be found in Eq. (9) in ref. [88].

Concerning the partonic coefficient function η̂ij , we had already verified in refs. [46, 49]

that the inclusive integral over all final state kinematics for the soft limit of the coefficient

function yields the first term in the threshold expansion of the corresponding inclusive

cross section [93–97]. Furthermore, in refs. [50, 98] a threshold expansion of the differential

perturbative coefficient function for Higgs boson production was performed. We checked

that the first four terms in the threshold expansion of the collinear limit of the limit of η̂ij
used here matches the collinear expansion of the threshold expansion of refs. [50, 98].

In figure 3 we illustrate our results by showing the three-loop matching kernel K(3)
ij (z)

in all quark channels (left) and gluon channels (right). The different channels have been

rescaled as indicated in the figure to account for their different magnitudes.

– 18 –



For completeness, in appendix B we present the ζ → 0 limit of the kernels, both for the

quark and the gluon TMD fragmentation functions. These results are interesting for the

study of the high energy behavior of TMDFFs, similar to studies of the small-x behavior

of TMDPDFs in refs. [39, 46, 99–102]. Note that the timelike TMDFF shows a double-

logarithmic series in ln ζ, such that the N3LO coefficient contains up to α3
s ln5 ζ, in contrast

to the single-logarithmic series observed for the spacelike TMDPDF, where one encounters

at most α3
s ln2 ζ at this order.

6 Conclusions

We have computed the perturbative matching kernel relating transverse-momentum de-

pendent fragmentation functions (TMDFFs) with longitudinal fragmentation functions at

N3LO in QCD, obtaining analytic results for all partonic channels contributing to the

quark and unpolarized gluon TMDFF. These results for this matching kernel, defined in

eq. (5.15), are provided as ancillary files together with the arXiv submission of this article.

Our calculation is based on a simple extension of a framework recently developed by

us, that allows to expand differential hadronic cross sections efficiently in the collinear

limit [48]. This method was developed in detail in ref. [48] for the collinear expansion of

differential hadron collider production cross sections. We have demonstrated explicitly how

they are related to DIS cross sections via analytic continuation. By analytically continuing

our recent computation of the collinear limit of the gluon fusion Higgs boson and DY

production cross section to DIS kinematics, we have obtained the TMDFFs in similar

fashion as the N -jettiness beam functions and TMDPDFs calculated in refs. [46, 48, 49].

Our new results demonstrate once more the potency of this method obtaining universal

ingredients arising in the infrared and collinear limits of QCD to an unprecedented level of

precision in perturbation theory.

An important check on our calculation lies in the cancellation of all infrared and ultra-

violet poles against suitable counterterms. Since these counterterms can be fully predicted

using known anomalous dimension, this provides a highly nontrivial check. In particular, it

involves the cancellation of infrared divergences against the QCD mass factorisation coun-

terterm comprised of time-like splitting functions. Thus, as a by product, our calculation

confirms the recent results for the NNLO timelike splitting function ref. [61–63, 67], in

particular the correct result in the qg channel first obtained in ref. [67].

There are several phenomenological applications of our results. Firstly, the TMDFFs

obtained in this paper constitute the last missing ingredient to describe the singular struc-

ture of the transverse momentum distribution of QCD radiation in color-singlet decays at

N3LO. They also enable the resummation of transverse momentum distributions at N3LL′

accuracy, both in e+e− annihilation and Higgs decay to quarks or gluons as well as in SIDIS.

In particular they allow for the calculation of the jet functions for the Energy-Energy Cor-

relator (EEC) and the Transverse EEC jet functions in the back-to-back limit [24, 26] at

N3LO. For the case of the EEC this allows to push the resummation accuracy to N3LL′

which constitutes the most accurate resummation carried for an event shape to date. We

carry out this calculation in ref. [25].
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Our method to expand cross sections around the collinear limit in the final state can

be used to calculate higher order terms in the collinear expansion. Such higher order terms

would allow one to study the structure of factorization beyond leading power for IRC safe

observables in e+e− annihilation and Higgs decay [103–118] as well as the appearance of

subleading power rapidity divergences [85, 119, 120]. Furthermore, they would provide

data to validate the resummation of power suppressed logarithms [117, 121]. It would also

be interesting to explore the application of the methods developed here and in ref. [48] to

TMDFFs involving a jet measurement [44, 122, 123].

Note: While this article was under completion, an independent calculation was made

available on the arXiv in ref. [124] based on the method proposed in ref. [67]. The authors

of ref. [124] provided an important cross check on intermediary results for genuine two loop

contributions in the Kgq channel that allowed us to track an error in a routine related to

the analytic continuation of the partonic coefficient functions. The initial discrepancy was

a non-logarithmically enhanced finite and rational term proportional to (CA − CF )ζ2ζ3 in

the Kgq and Kqg channel. After this was resolved, we find perfect agreement among all

analytic results.
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A SIDIS Factorization at small transverse momentum

In this appendix we provide more information on the factorization theorem for SIDIS at

small qT . For concreteness, we focus on the unpolarized photon process

P (P1) + γ(q)→ H(−P2) + X(−k) . (A.1)

The extension to a scattering with a scalar Higgs boson is trivial. The corresponding matrix

element is given by

MP+q→H+X = εµ(q) 〈HX|Jµ|P 〉 , (A.2)

where εµ(q) is the polarization vector of the incoming photon, and Jµ the QCD current it

couples to. The resulting cross section for this process is given by

dσ =
π

4P1 · q
d3P2

2E2
(−gµν)Wµν(q, P1, P2) , (A.3)
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where following ref. [73] we have defined the hadronic tensor as

Wµν(q, P1, P2) =
∑
X

δ4(P1 + q + P2 + k) 〈P |J∗µ|HX〉 〈HX|Jν |P 〉 , (A.4)

and the −gµν in eq. (A.3) arises from averaging over the photon polarizations. Working in

the Breit frame as specified by eq. (2.17), the hadron momentum P2 can be parameterized

as

Pµ2 =
(√

~P 2
2T + (xFQ/2)2 , ~P2T , −

QxF
2

)
=
(QxF

2
, ~P2T , −

QxF
2

)
+O

(
P 2

2T

Q2

)
, (A.5)

where ~P2T is the Euclidean transverse momentum of the outgoing hadron, and xF =

−2P2 · q/q2 was defined in eq. (2.3). This immediately yields

d3 ~P2

2E2
=

d2 ~P2TdxF
2xF

+O
(
P 2

2T

Q2

)
. (A.6)

Suppressing the power corrections and using eq. (2.3), we obtain the differential cross

section as

dσ

dxFd2 ~P2T

=
π

4q2

xB
xF

Wµ
µ (q, P1, P2) . (A.7)

The factorized hadronic tensor is typically given in the frame where the outgoing

hadron has no transverse momentum, but the photon momentum qµ acquires a transverse

component qT . At small transverse momentum, the two are related by (see e.g. eq. (2.21))

~P2T = −xF ~qT . (A.8)

The cross section differential in small ~qT thus follows from eq. (A.7) as

dσ

dxFd2~qT
=
π

4

xBxF
−q2

(−Wµ
µ )(q, P1, P2) . (A.9)

The factorized hadronic tensor is given by [73]

Wµν(q, P1, P2) = 8παem xF
∑
f

(−gµν⊥ )Hff̄ (q2, µ2) (A.10)

×
∫

d2~bT
(2π)2

ei~qT ·~bT f̃TMD
f (xB,~bT , µ, ζa)D̃

TMD
H/f̄ (xF ,~bT , µ, ζb) ,

where αem is the electromagnetic coupling constant, and ζa,b are the Collins-Soper scales

such that ζaζb = Q4. Compared to the formulation in ref. [73], we have defined the scalar

hard function normalized such that Hff̄ (q2, µ2) = Q2
f [1 +O(αs)], where Qf is the charge

of the quark the photon couples to. The overall factor of xF in eq. (A.10) compensates for

the factor of 1/xF in the definition of the TMDFF, see eq. (5.12). Also note that ref. [73]
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uses a different variable z for the momentum fraction of the outgoing hadron, which at

small qT reduces to

z[73] = −P1 · P2

P1 · q
= xF +O

(
q2
T

Q2

)
. (A.11)

The TMDPDF f̃ and TMDFF D̃ in eq. (A.10) are defined with absorbing the soft factor.

For our purpose, it will be more convenient to disentangle the soft from the collinear sectors,

which is easily achieved by using eq. (5.11). Together with eqs. (A.10) and (A.9), we obtain

the desired result

dσ

dxFd2~qT
= (2π)2αem

xBx
2
F

Q2

∑
f

Hff̄ (q2, µ2) (A.12)

×
∫

d2~bT
(2π)2

ei~qT ·~bT B̃f (xB,~bT , µ, ν/ωa)D̃H/f̄ (xF ,~bT , ν/ωb)S̃q(bT , µ, ν) .

B High-energy limit of the TMD fragmentation function kernels

In this appendix, we provide the asymptotic behaviour in the high-energy limit of the

boundary term, i.e. the Lb and Lω independent term in ~bT -space, of the TMDFFs kernels.

Here we report only the new results for the small-z limit of the O(α3
s) kernels, normalized

by
(
αs
4π

)3
. In the high-energy limit, the kernels are enhanced by a double logarithmic series.

This is peculiar of the timelike nature of the TMDFF kernels, as their spacelike analog,

the TMD beam function kernels, are only single logarithmically enhanced in the small-z

limit [39, 46]. Note that also splitting functions are single logarithmically enhanced in

the spacelike case, while they obey a double logarithmic series at small-z in the timelike

case [61–63, 67, 125, 126]. Therefore, this different behavior in the high-energy limit be-

tween spacelike and timelike TMD functions is similar to the small-x behavior of timelike

vs spacelike splitting functions. The high-energy limit z → 0 of the kernels K̃(3)
gg (z) and

K̃(3)
gq (z) contributing to the gluon TMD fragmentation function is given by

lim
z→0

z K̃(3)
gg (z) = 32C3

Alog
5(z) + log4(z)

[
8008

27
C3
A +

176

27
C2
Anf −

896

27
CACFnf

]
+ log3(z)

[
C3
A

(
57392

81
− 256

3
ζ2

)
+

2576

27
C2
Anf +

64

81
CAn

2
f −

14624

81
CACFnf −

128

81
CFn

2
f

]
+ log2(z)

[
C3
A

(
−352

3
ζ2 + 416ζ3 +

14792

27

)
+ C2

Anf

(
128

3
ζ2 +

11408

81

)
+

368

81
CAn

2
f

− CACFnf

(
128

9
ζ2 +

18536

81

)
+

32

3
C2
Fnf −

736

81
CFn

2
f

]
+ log(z)

[
C3
A

(
19984ζ2

27
+

5632ζ3
9

+ 2104ζ4 −
344864

243

)
− CACFnf

(
1504ζ2
27

+
1280ζ3

9
− 46280

243

)
+ C2

Anf

(
−1808ζ2

27
+

128ζ3
9
− 23456

81

)
+

944

243
CAn

2
f + C2

Fnf

(
512ζ3
9
− 176

3

)
+

4640

243
CFn

2
f

]
+ C3

A

(
448ζ3ζ2 −

34640

81
ζ2 −

14576

9
ζ3 + 3256ζ4 + 4336ζ5 −

1348136

243

)
− CAn

2
f

(
32ζ3
9

+
13064

729

)
+ CFn

2
f

(
64ζ3
9

+
26128

729

)
+ C2

Fnf

(
1376ζ3

9
+

416ζ4
3
− 842

3

)
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+ CACFnf

(
1928ζ2
27

− 776ζ3
3
− 4360ζ4

9
+

424732

729

)
+ C2

Anf

(
−1568

81
ζ2 +

1576

9
ζ3 + 120ζ4 −

115420

729

)
, (B.1)

lim
z→0

zK(3)
gq (z) = −368

27
C2
Alog

4(z) + log3(z)

[
−7328

81
C2
A +

224

81
CAnf +

320

81
CFnf

]
+ log2(z)

[
−C2

A

(
416

9
ζ2 +

580

9

)
+ CACF

(
128

3
ζ2 −

32

3

)
− 832

81
CAnf +

1280

81
CFnf

]
+ log(z)

[
C2
A

(
−2320

27
ζ2 +

128

3
ζ3 +

7180

243

)
+ CACF

(
256

9
ζ2 − 64ζ3 +

500

9

)
+ CAnf

(
284

81
− 128

27
ζ2

)
+ CFnf

(
56

3
− 128ζ2

27

)]
− CAnf

(
128

81
ζ2 +

16

9
ζ3 −

64

27

)
+ CACF

(
1520ζ2
27

+
16ζ3
9
− 48ζ4 +

257

27

)
+ CFnf

(
−512

81
ζ2 +

32ζ3
9

+
2576

729

)
+ C2

A

(
−1184ζ2

27
+

488

9
ζ3 −

1216

9
ζ4 +

76196

243

)
. (B.2)

For the quark channels, the high-energy limit z → 0 of the kernels K̃(3)
qi (z) contributing

to the quark TMD fragmentation function is given by

lim
z→0

z K̃(3)
qq (z) = lim

z→0
z K̃(3)

qq̄ (z) = lim
z→0

z K̃(3)

qq′(z) = lim
z→0

z K̃(3)

qq̄′(z)

= −368

27
CACF log

4(z) + log3(z)

[
128CFnf

27
− 7168CACF

81

]
+ log2(z)

[
CACF

(
−32ζ2

9
− 7316

81

)
+

64C2
F

3
+

32CFnf
9

]
+ log(z)

[
CACF

(
−1808

27
ζ2 +

128

3
ζ3 +

5656

243

)
+ C2

F

(
64

9
ζ2 − 64ζ3 +

644

9

)
+ CFnf

(
1280

81
− 64

9
ζ2

)]
+ CACF

(
−8800

81
ζ2 + 56ζ3 −

736

9
ζ4 +

256078

729

)
+ C2

F

(
3136

27
ζ2 +

16

9
ζ3 −

304

3
ζ4 −

631

27

)
+ CFnf

(
−16

9
ζ2 −

1424

729

)
, (B.3)

lim
z→0

z K̃(3)
qg (z) = 32C2

ACF log
5(z) + log4(z)

[
7816C2

ACF
27

− 16CACFnf
27

− 512C2
Fnf

27

]
+ log3(z)

[
C2
ACF

(
7376

9
− 2560ζ2

9

)
+ CAC

2
F

(
1792ζ2

9
− 1360

9

)
+

1856

81
CACFnf

− 2464

27
C2
Fnf

]
+ log2(z)

[
C3
F

(
−64ζ2 +

128ζ3
3

+
208

3

)
+ C2

ACF

(
1184

3
ζ3 −

1984

3
ζ2 +

8608

9

)
+ CAC

2
F

(
1888ζ2

3
− 64ζ3

3
− 1532

3

)
+ CACFnf

(
448ζ2
9

+
76

81

)
− C2

Fnf

(
128ζ2
3

+
3592

27

)]
+ log(z)

[
C2
ACF

(
3776ζ2

3
+

3136ζ3
3

+ 1408ζ4 −
123892

81

)
− C2

Fnf

(
640ζ2
9

+
224ζ3
3
− 1030

27

)
+ CAC

2
F

(
−1360ζ2

3
− 80ζ3

3
+

488ζ4
3

+
701

9

)
− CACFnf

(
2192ζ2
27

+
160ζ3
3

+
33692

243

)
− C3

F

(
224ζ2
3

+ 336ζ3 −
1600ζ4

3
+

173

3

)]
+ CACFnf

(
5432ζ2
81

+
352ζ3
3

+
344ζ4
9
− 25300

729

)
+ C2

ACF

(
608

3
ζ3ζ2 +

21944

27
ζ2 −

7588

9
ζ3 +

5870

3
ζ4 +

7456

3
ζ5 −

3650707

729

)
+ CAC

2
F

(
992ζ3ζ2 −

48568ζ2
27

− 1764ζ3 +
830

3
ζ4 +

6800

3
ζ5 +

10141

9

)
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+ C3
F

(
−2240

3
ζ3ζ2 + 608ζ2 +

2888

3
ζ3 + 796ζ4 − 416ζ5 −

4715

3

)
− C2

Fnf

(
2992

27
ζ2 +

832

9
ζ3 +

112

3
ζ4 −

37885

729

)
. (B.4)

The expressions for the high energy limit z → 0 up to O(z40), as well as that for the

threshold limit z → 1 up to O((1− z)40), can be found for all channels in electronic form

in the ancillary files of this work.
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