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ABSTRACT: We compute the unpolarized quark and gluon transverse-momentum depen-
dent fragmentation functions (TMDFFs) at next-to-next-to-next-to-leading order (N3LO)
in perturbative QCD. The calculation is based on a relation between the TMDFF and the
limit of the semi-inclusive deep inelastic scattering cross section where all final-state radi-
ation becomes collinear to the detected hadron. The required cross section is obtained by
analytically continuing our recent computation of the Drell-Yan and Higgs boson produc-
tion cross section at N3LO expanded around the limit of all final-state radiation becoming
collinear to one of the initial states. Our results agree with a recent independent calculation
by Luo et al.
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1 Introduction

Highly energetic scattering processes allow us to test our understanding of fundamental
interactions with incredible precision. It is the asymptotic freedom of strong interactions
of QCD that allows us to contrast our first principle understanding of the interactions with
experimental data. The interacting elementary particles of QCD - quarks and gluons - are
however concealed in our observations as they form hadronic bound states as the strong
interactions confine at long distances. The gateway that bridges the world of partonic
interactions, where observables are calculable in perturbative QCD, to the observation in
real-life detectors is provided by factorisation theorems. Factorisation theorems split the
long range, confining part of a scattering process from the short range collision process of
quarks and gluons. The long range part of this factorisation theorems is typically expressed
in terms of parton distribution functions (PDFs) and fragmentation functions (FFs). PDFs
and FFs are independent of the particularities of the scattering process and are universal,
such that they can be measured and used in many different experiments and observables.

Longitudinal FFs are the simplest example of FFs, as they only describe the probability
of a quark or a gluon to convert to a hadron that carries a given momentum fraction of
the fragmenting parton [1-4]. This notion is expanded by transverse-momentum dependent
FFs (TMDFFs) [5-12], which encode the probability of a hadron to arise from a fragmenting
parton with a certain fraction of the partons longitudinal momentum and a small transverse
momentum relative to the parton.

TMDFFs are important ingredients for describing high-energy scattering processes in-
volving hadronic final states at low transverse momentum, for example hadron production
at eTe™ colliders [13-16] or semi-inclusive deep-inelastic scattering (SIDIS) [17-23]. Fur-
thermore, they play an important role in the description of energy correlation functions in
electron-positron annihilation [24, 25] and transverse-momentum dependent event shapes
involving jets at hadron colliders [26] and in SIDIS [27, 28]. TMDFFs will also be a corner-
stone of the theoretical description of many measurements at the EIC [29] and proposed
future colliders such as the ILC or FCC-ee. For a review on TMDFFs see for example
ref. [30] and references therein.

TMDFFs are intrinsically nonperturbative objects, as they relate the dynamics of
partons and hadrons, and as such have been extracted from various experiments [30-38].
However, for transverse momenta g7 that are much larger than the confinement scale Aqcp,
an operator product expansion in Agcp/gr allows one to express each TMDFF in terms
of a standard longitudinal FF and a gp-dependent matching kernel. The matching kernels
are calculable order by order in perturbation theory and are currently known at next-to-
next-to-leading order (NNLO) [39-41] in perturbative QCD. In the regime of perturbative
qr, they can be used for example in extractions of longitudinal FFs from differential mea-
surements of suitable observables, see for example refs. [42-45].

In this article we present the calculation of the matching kernels for all unpolarized
quark and gluon TMDFFs at N3LO. TMD parton distribution functions (TMDPDFs),
the initial-state counterparts of TMDFFs, are already known at this order [46, 47]. Our
calculation relies on a recently developed method to expand hadron collider cross sections



around the limit where final state QCD radiation is collinear to an incoming parton [48].
We demonstrate explicitly how partonic cross sections for the production of electro-weak
gauge bosons can be related to DIS cross sections via analytic continuation. We apply
this analytic continuation to the collinear limit of the partonic cross section of gluon-
fusion Higgs boson production and Drell-Yan production to obtain their DIS counter part.
The collinear limit of these production cross sections was recently computed by us for
the calculation of the N3LO TMDPDFs [46] and N-jettiness beam function [49]. We then
establish an analytic relation among the TMDFF matching kernels and the newly obtained
collinear limit of the DIS cross sections. With this we are finally able to extract the desired
perturbative TMDFF matching kernels.

The paper is structured as follow. In section 2, we setup the kinematics for SIDIS
retaining full information on the momentum of the final state hadron. In section 3, we
show how to use crossing symmetry and analytic continuation to obtain results for fully
differential partonic cross sections in SIDIS from analogous cross sections in proton-proton
collision. In section 4, we study the behaviour of the partonic cross section when taking
the radiation to be collinear either to the struck proton or to the final state hadron. In
section 5, we make use of the framework developed in the previous sections to extract
the TMDFFs at N3LO by imposing a transverse-momentum measurement to the leading
collinear expansion of the cross section. We conclude in section 6.

2 Setup

In this section we introduce our notation for the description of semi-inclusive deep inelastic
scattering (SIDIS), reviewing both the scattering process and providing the definitions of
all required kinematic variables and the associated final-state phase space. Finally, we
define the transverse momentum observables of interest in this article.

2.1 Semi Inclusive Deep Inelastic Scattering

We study cross sections for the production of a hadron H in DIS alongside additional
radiation, which we indicate as a multiparticle state X. In particular, we focus on the
hadronic part of the DIS cross section that is initiated by the scattering of a proton with
momentum P; and an electro-weak boson h with the space-like momentum g,

P(P)) + h(q) » H(—P>) + X(—k). (2.1)

Here, we take all momenta to be incoming. This process is schematically depicted in figure 1
for the example of a virtual photon as the electro-weak gauge boson. In this article, we
will consider DIS with either a virtual photon or a Higgs boson as the electro-weak gauge
boson.

We are interested in SIDIS, where we measure an observable O that depends on the
final-state hadronic momenta. For perturbative O > Aqcp, the cross section differential
in O can be factorized as

do R dn; ; rzg,zp,O
CTPLhHEX _ 50N fi(w) @ Nith—j+X (@B, TF )®xF A3 () (2.2)
[2¥}



Figure 1. Schematic picture of the DIS process in eq. (2.1), producing a final-state hadron H in
the scattering of an electroweak boson, here a photon, off the incoming proton.

Here, the overall normalization & is the Born cross section and the sum runs over parton
flavors 4, j. Ineq. (2.2), Ni+nh—j+x is a perturbatively calculable partonic coefficient function
encoding the underlying partonic process @ + h — j + X, which is convolved with the
nonperturbative parton distribution function (PDF) f; and fragmentation function (FF)
dp/;- The PDF fi(z) encodes the probability to extract the parton with flavor i and
momentum fraction = from the proton, while the FF dp/;(y) describes the fragmentation
of a parton of flavor j into a hadron of type H which carries the momentum fraction y of
the parent parton. We define the hadronic invariants

2
q 2P -q
_ - _ . 2.3
B 2P -q’ o q> 23)
In analogy, we introduce the partonic variables z and ,
2
q 2p2-q
— : (=-" (2.4)
2p1-q q

The convolution integrals abbreviated by ®,, and ®, in eq. (2.2) can now be written
explicitly as

dopihosmex _ / dz / wB dnipn—jrx(2,¢,0) TR
- (ZE 2.
dzpdO OZ - d¢do dH/J( ¢ ) (25)

where the partonic coefﬁment function is given by

diynsjrx 1 N Wy - g
1do’ :ao2|q2|z/ @1 (¢ + ) 5[0 = Olp2 w3, 2,0, ) Moo

(2.6)

Here we introduced the normalization factor N; related to the helicity and color average of
the incoming particle, which for an incoming quark or gluon takes the value

1 1
Ng:2(1—e)(ng—1)’ Nq:Tnc'

In eq. (2.6), the sum runs over the number m of additional partons in the final state besides

(2.7)

the parton of flavor j that fragments into the hadron H, and ®1.,, is the associated m + 1-
parton phase space. The § functions implement the measurements of ( and O, and the
squared matrix element |/\/li+h_>j+m|2 corresponds to the partonic process of producing
the m + 1 partons in the collision of a parton of flavor ¢ with the hard probe h.



2.2 Kinematics and Final State Phase Space

We are interested in observables differential in the four momentum P, of the final state
hadron H, while we are inclusive over all additional final-state radiation. A convenient set
of variables to describe the kinematics of the corresponding partonic process is given by

2p1 -k 2k (m - pa)k?

b w b - .
2p1 - p2 2 2p1 - p2 (2p1 - k)(2p2 - k)

s=(p1+p2)?, w=-— (2.8)

Here, k is the sum of all m final state momenta of the particles produced in addition to

the parton with momentum ps,
m—+2

k=Y pi. (2.9)
=3

The differential m + 1-parton phase space is given by

m+2 m—+2 dd
APy = (2m)%0° <p1 +q+ Z pz‘) H (QW)Z (2m)6+(p7) - (2.10)

1=2 1=2

It can be parameterized using the variables in eq. (2.8) as

d®i 4, Qoo

dw;dwedz - 4(2m)3-2¢ (qzwle)l_E(l - wl)_3+26(1 @)~ wr — wp + wyune)
%) <z _lzwn—wed wlwﬁ) AP, (k) (2.11)
1-— w1

where

m+2 m+2 ddp
A0, (k) = (27)6" (k- - Zpi) 1 (s 2 6. (2.12)

i=3 i=3
The kinematic variables are defined in the following domains,

€ [0,1], wy < 0, wy > 0, ¢ < 0. (2.13)

We can now express the desired partonic coefficient function defined in eq. (2.6) in terms
of the partonic coefficient function differential in the above variables,

i1y il in s
Dhithoj+X /dwldwgdx 0[¢ — (w1, wa, )] ]O — O(w1, wa, )] DithjtX

d¢do dwidwedz ’
ANt h—j+x / d®y1im 2
_ Misnosioml?. 2.14
dwidwedz 69 2\q ] Z dwldwgda: thsgtm| ( )

The second line is the central object in this work, from which all desired observables can
be easily projected out. It can be expanded as

. o )

Al hsjt X as\¢ A

o = — ) T 2.15

dwdwsdx Z ( T ) dwydwydx ( )
d (Zm’n)(w wa, T, q%)

— Y E Qs 1—me, —1—ne 772] 1, W2, 2,4

—7)2-]-5(10) )+ ( ) Z (—wn)” W2 dwidwedz '

n,m=1



Here, we have expanded 7);1 54+ x in the strong coupling constant o /7, and denote the
coeflicients as nfj for brevity. In the second line we have split off the terms 775 which arise
purely from Born contributions and virtual corrections. The remaining functions nl-(f’m’n)
are separately holomorphic in the vicinity of w; = 0 and ws = 0.

The benefit of using the variables defined in eq. (2.8) is that together with ¢? they fully
specify the momentum po and thus are sufficient to express in ;4 ;4 x differential in po.

For example, the Lorentz-invariant momentum fractions defined in eq. (2.4) are given by

(=

2.3 Transverse Momenta

1 —woy 1 — w1 — wo + wiwax
z= )
1 —w; —wy +wiwez’ 1—wy

(2.16)

In SIDS, two particular definitions of transverse momentum play a key role. These two
different definitions of transverse momentum are most naturally measured in two different
inertial frames. We define the infinite momentum frame (also referred to as Breit frame)
and the hadron frame as follows:

Infinite Momentum Frame Hadron Frame
q=(0,0,Q) q= (4" qr.q:)
B B (2.17)
P1:E1(170>1) P1:E1(1,0,1)
Py = (\/P3 + Pir, Por, P2 ) Py = Ey(1,0,-1)

Here, F1 and Es represent the energies of the initial and final state hadrons, respectively.
The explicit vectors in the above table are Euclidean vectors. The momentum component
|gr| of the momentum ¢ is orthogonal to the plane spanned by the momenta P; and P,
of the hadrons and is most naturally measured in the hadron frame. The momentum
component |]32T| of the momentum P is orthogonal to the plane spanned by the momenta
q and P; and is most naturally measured in the infinite momentum frame. We express
both transverse momenta in terms of Lorentz invariant quantities by

- S22 2r

Q? S zp
2
2= (1495 2.1
il = @ (14 %2 (2.18)
Here,
S=(P+PR)?=""E (2.19)
rp ¢

is the invariant mass of the dihadron system. Inserting the parametrisation in terms of wq,
wy and z as defined in eq. (2.8), the two transverse momenta of interest can be expressed
in a Lorentz-invariant fashion as
S 5 Pwiwa (1 — z)(1 — wy — wy + wiwax)
|P 2T| =TF 2 2 )
(1 —w1)*(1 — wg)
2
R g wiwa(l — )
|7r|* = (2.20)

1—w1—w2+w1w2x'




Below, we will be mostly interested in the limit that \ﬁQT\2, or equivalently |gr|?, becomes
small. We will approach this limit by considering the limit wy — 0, for which one obtains
the simple relation

5 Pwiws(1l — )

lim : \ﬁgT\2 = $%|§T|2 =zt

2.21
wo—0 1-— w1 ( )

3 Crossing from Production to DIS Cross Sections

In the previous section, we introduced the SIDIS process P(P1)+h(q) — H(—Ps)+ X (—k)
for the scattering off an electroweak boson h off the proton P, thereby producing a detected
final-state hadron H in association with additional hadronic radiation. The associated
cross section is related by a factorization theorem to the partonic process i(p1) + h(q) —
j(—=p2) + X(—k), which we describe by the partonic coefficient function 7;; where we are
fully differential in p; and ps, but integrate over k.

We now want to relate, i.e. cross, this partonic configuration to the one where both
partons are in the initial state and produce an outgoing electroweak boson h, which we
hence refer to as “production”. Concretely, we study the crossing relation

p(p1) + h(q) = p(—=p2) + X(—k) — p(p1) +p(p2) — h(—q) + X(=k), (3.1)

where, as always, we choose all momenta as ingoing.
Recently, we have studied this production process refs. [48, 50, 51]. In particular, in
ref. [48] we showed that the corresponding partonic coefficient function is given by

production production
LA S T [ o My, P (32
dQ2dw;dwedzr 69 dwldwgdx J "

where the differential phase space for h + n partons is given by

2 1—¢ e
Wy (ELs)  (-2)
dwidwedz (4m)2=<(1 —¢)

Olz(1 — 2)] 0(w:) O(ws) dDy (k). (3.3)

Here, all variables are identical to the ones introduced in section 2.2 for SIDIS. In particular,
note that the squared matrix elements are identical in the DIS and production case up to
the crossing of momenta ps and ¢. Furthermore, in both cases, production and DIS, the
final state radiation is integrated over the phase space d®,,. The dependence of the cross
sections on the momenta py and ¢ is fully retained.

In order to relate the partonic coefficient function of DIS to production, or vice versa,
we need to understand the analytic structure of the partonic coefficient function. Crossing
p2 and ¢ changes the sign of the numerical value of the invariants s and w1, and consequently
it is important to understand the analytic branch structure of the partonic coefficient
functions at s = 0 and w; = 0. Since s is the only variable with explicit mass dimension
in our choice of independent variables, it immediately follows that the partonic coefficient

—ne

function at O(aZ) depends on s only through the multiplicative factor s~"¢. The analytic



Figure 2. Schematic picture of the interference of a I-loop Feynman diagram with a complex-
conjugate k-loop Feynman diagram.

dependence on w; was already hinted at in eq. (2.15), but needs to be investigated in more
detail.

The partonic coefficient function comprises of amplitudes interfering with complex
conjugate amplitudes, integrated over the m-parton phase space. This can be further split
into interference of [-loop Feynman diagrams with conjugate k-loop Feynman diagrams, as
illustrated in figure 2. Similar to the decomposition of the partonic coefficient function in
eq. (2.15), the analytic structure of the depicted interference diagram can be decomposed
as

l k
/d@m R(AAL) = (swiwg) ™™ x { Z Z f(il’”’jl’h)(wl,wg,x)

11,52=0 j1,j2=0

X §R{ [(—s)(“”?*l)e(swl)*ile(swg)*iz’e} [(—s)UﬁjQk)e(swl)jle(swg)j”]*}} . (3.4)

Here, the functions f(il’”’jl’j?)(wl, wa, z) do not contain any branch cuts at s =0, w; =0
or we = 0. When performing a computation of analytic partonic coefficient functions, it
is easy and often useful to keep track of the individual functions f(1:72:71:92) (wy, wy, ).
The second line in eq. (3.4) differs between DIS and production kinematics due to the
different signs of s and wj. Explicit phases occur in a given loop amplitude depending on
the kinematic configuration of the external momenta. The phases are easily determined by
equipping the Lorentz-invariant scalar products s, sw; and swo with a definite Feynman
prescription,

(pi+p)* —  (pi+p;)?+i0. (3.5)

Crossing from DIS to production kinematics then requires us to analytically continue the
second line of eq. (3.4). As an example, we consider the case i1 = is = k = j; = jo =0,

&e[(—s—w)—ﬂ s cos(zm)ére[(sﬂ'())—ﬂ. (3.6)

DIS production



The same analytic structure as outlined above for the interference of two Feynman diagrams
naturally holds for the entire partonic coefficient function as well,

d (m+l+k) l k dn(m+l+k’i1’i2’jl’j2)
1] — —me 1]
A0 dwrduyds — Swiw2) X { PIEDD dQ2dw, dwydz

11,52=0 j1,j2=0

x R [ (=)D sy ) T ) | [(—s)(ﬁﬂék>€(sw1)ﬁ€(sw2)ﬁﬁ]*}} . (3.7)

(ml+k,iv,i2,51,52)
j
analytic continuation between DIS and production kinematics. The above was observed

Once the universal functions 7 are identified, it is easy to perform the
and explicitly verified for the computation of the ingredients of Higgs and DY production
up to N3LO in refs. [52-56] and holds in particular for the interference of amplitudes for
massless QCD corrections for the processes under consideration. We note that it is of course
also possible to relate DIS or production kinematics to partonic cross sections where only
the electroweak gauge boson is in the initial state and all partons are in the final state, for
example et e~ annihilation.

In addition to the analytic continuation from DIS to production kinematics there are
some other, trivial differences in the partonic coefficient functions. First, the overall nor-

malisation factor N; and J\/;?mdumon differ, which can be trivially accounted for. Second,

production
(I)thm
matic variables. However, this difference is accounted for by a simple multiplicative factor

the phase space measure d®,,, and d differ by factors depending on the kine-
that does not require any additional analytic continuation. With this we have identified all
differences between DIS and production kinematics in bare, partonic coefficient functions
and can relate one to the other as long as the required analytic information is retained in
the computation of one of them.

Analytic continuation of processes and universal anomalous dimensions, such as split-
ting functions appearing in the evolution of parton densities and fragmentation function
have a long history [57-71]. The fact that our setup is differential in all four momenta that
are crossed from one kinematic configuration to another allows us to frame crossing purely
in terms of analytic continuation.

4 Collinear limit of partonic coefficient functions

In this section we briefly review the method introduced in ref. [48] to expand cross sections
in the kinematic limit where all final-state radiation becomes collinear to the parton with
momentum p; or p2. In order to illustrate this, it is instructive to decompose the momentum
k into its components along these directions,

K = phiky + phka + Y (4.1)

Here, the k| component is chosen orthogonal to p; and ps. In order to illustrate the
collinear limit with respect to either massless parton we introduce an auxiliary rescaling



parameter A and indicate the collinear limit by

p1—collinear : kW = phEy A+ N2phke + MK
pa—collinear : kKt — )\2pfk'1 +  phks + AE . (4.2)

The respective limit is then achieved by taking A — 0. The variables wy, wo and x defined
in eq. (2.8) were chosen such that the action of either collinear rescaling transformation
in eq. (4.2) on the partonic coeflicient function simply amounts to a rescaling of wy .
Specifically, in the pi-collinear limit only w; is rescaled, while in the ps-collinear limit only
wsy is rescaled, while the other variables are not affected,

p1—collinear : wy —> )\2w1 ,  Wo — ws, r—x,

po—collinear : wy — wi , we — Nwy, T —x. (4.3)

An expansion of our partonic coefficient function in the p; o-collinear limit is thus equivalent
to an expansion in wy 2. More details on how such an expansion can be performed for multi-
loop partonic coefficient functions can be found in ref. [48].

A key difference between the p1- and ps-collinear limit is that the former corresponds to
a collinear initial-state singularity, which were already discussed in refs. [46, 48, 49], while
the latter corresponds to collinear final-state singularity. Here, we only only briefly look at
the impact of the pj-collinear limit on the more familiar variables given in egs. (2.16) and
(2.18),

|ﬁ2T|2 _ |CTT‘2 _ q2w1w2(1 — $)

2

p1—collinear :
Th 1 — wo

, (=1, z—1—w,. (4.4)
Note, that the pi-collinear limit of the phase space is identical for DIS and production
kinematics up to the domain of the variables,

lim d®i 1, T d®p i

— _—. 4.
p1—coll dwidwodr  p1 1_r(1})u dwydwsedx (4.5)

Furthermore, in the strict p;-collinear limit, which is defined by only retaining momentum
modes in loop integrals where the loop momentum itself is collinear to p; [48], none of the
partonic coefficient functions require any analytic continuation when crossing between DIS
and production kinematics. Thus, up to overall normalization factors the strict p;-collinear
limit agrees between production and DIS kinematics. Of course, this is an immediate
consequence of the universality of collinear dynamics of QCD and the factorization of
collinear initial-state singularities.

The limit of all final-state radiation becoming collinear to the momentum ps corre-
sponds to collinear final-state singularities, which were not discussed in ref. [48] and are
the main focus of this article. In this limit, the familiar variables in egs. (2.16) and (2.18)

become
Pyr|? 2 1— 1
pa2—collinear : | 2§| = |gr|? = w, ¢— , z—1. (4.6)
Th 1—wy 1—wy
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Note, that ¢ in the ps-collinear limit behaves reciprocal to z in the p;-collinear limit, which
is a consequence of their definition in eq. (2.4). In contrast to the pj-collinear limit, in the
pa-collinear limit the phase space for DIS and production kinematics differ slightly by

. dq)1+m —342
1 — ~(1-— t2e
P2 1_rg)u dwidwodz ( wi)

dq)h—f—m

_—. 4.
p2—coll dwldwgdx ( 7)

Furthermore, in order to cross from production to DIS kinematics it is necessary to ana-
lytically continue parts of the partonic coefficient function, as outlined in section 3.

5 Calculation of the TMD Fragmentation Functions

In this section we calculate the TMDFFs at N3LO from a perturbative calculation of the
SIDIS process P(P1) + h(q) — H(—P) + X(—k). We will briefly review the required
factorization for SIDIS in the limit of small transverse momentum in section 5.1, before
showing in section 5.2 how it relates to the kinematic limit where the final-state momenta
P, and k are collinear to each other. In section 5.3, we discuss our results for the TMDFFs.

In this section, it will be useful to introduce lightcone coordinates, which we define in
terms of two lightlike reference vectors

n* =(1,0,0,1),  @*=(1,0,0,—1), (5.1)

which obey n? = 72 = 0 and n-7 = 2. Any four momentum p* can then be decomposed as

S o - ot
PrEp gt =070 p1), (5:2)
where p~ =7 -p and pT = n - p. We will always denote transverse vectors in Minkowski
space as p‘i = (0, pr,0) where pr is a Euclidean two vector, such that pi = —ﬁgT = —pQT.

5.1 SIDIS factorization at small transverse momentum

We consider the unpolarized SIDIS process in eq. (2.1) in a frame where the incoming
proton P and outgoing hadron H are aligned along the lightcone vectors in eq. (5.1), i.e.

_nt nt
Pl'= P, TR PQ":P;F?. (5.3)

In this frame, the momentum ¢* of the electroweak boson h is given by
H=(q,q" ith —-Q*°=¢"=q"¢ —qj 5.4
= .q¢"q) wi Q"=q=q¢q —ar. (5.4)

In particular, it has a nonvanishing transverse momentum ¢r. Note, that the above coor-
dinates correspond to the hadron frame introduced in sec. 2.3.

The factorization of the SIDIS cross section in the limit of small transverse momentum,
gr < Q, was first derived in [11] and elaborated on in refs. [72, 73]. We follow the notation
established in the treatment of TMD factorization within Soft-Collinear Effective Theory

- 11 -



(SCET) [74-77] in the formalism of the rapidity renormalization group equation [78, 79].
For Drell-Yan like processes, the factorized cross section is given by

d A2y o - . s .
7d55F ZZL_TT = 0o x% ;Hij(q2,u)/(27l_)7;€qu'bTBi (mB, br, 1, wla)DH/j (JZF, br, 1, 5}))
x Sylbr. ) x [1+0(ad/Q?)], (5.5)

see appendix A for more details. In eq. (5.5), d¢ is the same Born cross section as before,
the sum runs over all parton flavors ¢, 7 contributing to the Born process ¢ + h — j, and
the hard function H;; encodes virtual corrections to the Born process. As is common,
the factorization in eq. (5.5) is expressed in Fourier space, with l_;T Fourier conjugate to
@r. The TMD beam and fragmentation functions B;(z g, br) and D m/5(TF, br) encode the
effect of radiation collinear to the incoming proton and outgoing hadron, respectively, and
are defined below. They depend on ET and the momentum fractions xp r as defined in
eq. (2.3). The soft function Sq(bT) encodes the transverse recoil due to soft radiation, and
is independent of the quark flavors i and j. Eq. (5.5) depends not only on the common
renormalization scale i, which we take as usual as the MS scale, but also on the scale v
that arises from the regularization of so-called rapidity divergences [5, 73, 78-85], for which
we employ the exponential regulator of ref. [79]. The momentum fractions w,p in eq. (5.5)
are defined as the lightcone components
P+
we =P, wp=——2, = Wawp ~ Q2. (5.6)
TF
They are closely related to the Collins-Soper scale (4 o wib [5, 6].
For gluon-induced processes, the factorized cross section reads

do
dzp d?qr

R d25T b - U\ =, - v
= G z% 2Hpgp,0,(q2”u)/(27r)2e qr bTBgo' (ng, br, u, a)D%‘/’g (:L"p, br, u, @)

% 8, (bp, 1, v) x [1 n O(q%/qfﬂ . (5.7)

The only difference to eq. (5.7) is the Lorentz structure of Bf? and f);f/g, which arises due
to the helicity structure of the gluon field, One can decompose the gluon TMDFF as
v oWy

o g = -
DZ/Q(:L’F,Z)T) = 7DH/g(xFabT) + (7 + b%

> N}{/g(xF,ET), (58)

where we suppressed the scales for brevity. The decomposition of BQPU has the same struc-
ture as eq. (5.8). We will only consider Higgs production, where due to the scalar nature
of the Higgs boson

HP7P7 (%, ) = H(q?, w9’ 977 (5.9)
and thus we only require the combination

2H oo By Dy, = H(BgDpyg + ByDiy ) (5.10)
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where we suppressed all arguments for brevity. Since this structure is very similar to the
combination in eq. (5.5), in the following we will always use the form in eq. (5.5), with
the implicit understanding that the BjDj term has to be added for Higgs production.
Furthermore, since By = O(a;) and D; = O(as), their NNLO results are sufficient to
describe Higgs production at N3LO. They have already been calculated in ref. [39], and we

will not consider them in our calculation of the N3LO TMDFFs.
Before proceeding, we remark that the beam and fragmentation functions are often
combined with the soft function to obtain manifestly v-independent TMD PDFs and FFs,
NP (s, br, o) = Bilws, brop, —)V/Sbro ),

a

. > - - v
DIE%D(QSF,bT,M,Cb> :DH/j(vabT’:uaaTb) S(anua V)v (511)

where (.5 = wib. To calculate the TMDEFF itself, it is more useful to separate the soft
function, but we will provide results in both conventions. Note, that while there is an
established notation distinguishing TMD beam functions B; and TMDPDFs fi, so far no
such notation exists for the TMD FF. To make clear which function we refer to, we will
label the TMDFF including the soft function by an explicit superscript “TMD”.

The TMDFFs in egs. (5.5) and (5.7) are well-defined QCD hadronic matrix ele-
ments [86]. Using SCET notation, the bare fragmentation functions are defined as

~ — . 1 1 db+ iP*b*/(QxF) —
Dyg(wp,br,e,7) = 1N, WZ/Me Tr (07 xa ()| HX) (HX|[xn(0)[0) ,

Pijlorbrem) =~ 2/ PTG 0[B%, (D) HX) (HXIB, 0)]0) - (512)

Here, we make explicit that we regulate UV divergences by working in d = 4—2¢ dimensions
and regulate rapidity divergences using the exponential regulator of ref. [79]. In eq. (5.12),
the sum is over all additional hadronic final states X, the trace is over color and spin,
and P is the momentum of the hadron H. The fields x5 and B | are collinear quark and
gluon fields in SCET, with the pair of fields in each equation separated by b* = (0,07, ).
The matrix elements in eq. (5.12) are defined in the hadron frame as specified in eq. (5.3),
i.e. the outgoing hadron H defines the lightcone direction n*, and ET is transverse to it.

For perturbative by 2 AQéD, the TMDFF can be matched perturbatively onto the
collinear FF. For the renormalized TMDFF, this relation reads [72, 73]

DH/] (xF,bTaMa Z/ dh/] Z, 1) CM ( ;,gT,M, %)
2 —
_Z/ *dh/y ,u) © Cj/(z,bT,u,é), (5.13)
%

where the matching coefficients éjj/ are perturbatively calculable. In the second line in
eq. (5.13) we have replaced z — zp/z, which will be more convenient for our extraction
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of éjj/. Corrections to eq. (5.13) are suppressed as O(brAqcep). With this we may rewrite
the TMDEFF of eq. (5.13) in terms of the Mellin convolution

fUFDH/J (xp,bT,,u, ) Z/C]] (wF,bT,M, 7) Qup dpyjr (TR, 1)

5 - v
= Z |:$2chj/ (:L‘F, bT, My Wb):| ®$F dh/j’ (JTF, ,u). (5.14)
jl

Above, we implicitly defined the perturbative matching kernel
_ - v ~ - v

ij/ (CabT7M7 7) = Czcjj' (C,bT,/,L, 7) (515)
Wy Wy

The TMDFFs in eq. (5.12) are defined in a coordinate system where Py’ = Pyrat/2
defines the lightcone direction and has vanishing transverse momentum, and hence b is
Fourier-conjugate to the transverse momentum of the parton that initiates the fragmenta-
tion process. Alternatively we may consider the transverse momentum of the final state
hadron Pop which is naturally defined in the infinite momentum frame, see sec. 2.3, and
following ref. [40] we denotes this definition of the TMDFF Fp /- Since the two transverse
momenta in these two frames are related as Pry = —zpqr, see eq. (2.21), the two TMDFFs
are related by

Fuyj(xr, Py) = Dyyi(zF, —Py JzF),
]:—H/j(va br/zr) = xl}i?_2DH/j($Fa —br). (5.16)
The first relation is an immediate consequence of eq. (2.21). The second equation imme-

diately follows upon Fourier transform in d — 2 dimensions.
In ref. [40], the matching relation for the F 1/j Was written as

~ 140 br v
]:H/j(xFa 7/’67 Z/ dH/] ) §3 (Ca?a“aE)) (517)
and thus our kernels K are identical to their kernels with rescaled arguments,
- - 1% . 5140] ET 1%
IC]]’ <C7 bT7 M, ;b) = Cj’j <C7 ?7 My a) . (518)
5.2 TMD fragmentation functions from the collinear limit

The TMDFF can be obtained from the collinear limit of SIDIS following the same strategy
applied in refs. [46, 48] to calculate the TMDPDF from the collinear limit of proton-proton
scattering. We start from the cross section differential in the transverse momentum ¢r,
which in the limit of small ¢r < @ is given by the factorization theorem in eq. (5.5),

do dQET —ibr-qr B b b Y
m O'OSUF z]:Hz] q°, 1) (27'()26 B; (CL‘B, T [ >DH/9 (xF, T, s )

x Sylbr, uv) x |1+ 0(a4/Q?)], (5.19)
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The key insight is that the hard, beam, fragmentation and soft function in eq. (5.19)
encode different dynamics. The hard function H arises from hard virtual corrections to
the Born process, while B, D and S are constructed such that they only arise from pi-
collinear, po-collinear and soft momenta in loop integral and real emissions, respectively.
It follows that by calculating the strict po-collinear limit, defined such that both loop
and real momenta are expanded in the ps-collinear limit, only the fragmentation function
contributes to eq. (5.19),

im g2 Z/ d4-2 bT T Bt fy (2 ) Dy (e, br)
strict p2—coll. dl‘Fdd 2qT 0oF \4B H/i\tF, 0T

= G % Zﬁ B)Dpy; (xF,qT) (5.20)

Here we used that the hard and soft functions are normalized to unity at tree level, while
the TMD beam function reduces to the PDF itself. Note that eq. (5.20) is to be understood
at the bare level, as only combining it with all other limits will cancel all appearing infrared
divergences, and thus ¢r and br are treated in d — 2 dimensions. We also used that both
photon and Higgs exchange are flavor diagonal to fix j = i.

We want to relate eq. (5.20) to the SIDIS cross section defined in collinear factorization.
Combining egs. (2.5) and (2.14), we obtain

dopihomix . l/q dZ]/IdC rB TR
OPthoHeX Z a2 ) dyy, (FE 5.21
dzpdg2 ”O; on 2 $FCf<z)H/](C) (5.21)
dﬁi+h—>j+X 2 2
X /dwldwgd:): dw; dinde 0[¢ — (w1, we, )] 8[g7 — q7 (w1, wa, x)]

where the expressions for ¢ and ¢% are given by eqgs. (2.16) and (2.20). In the limit that all
final state radiation becomes collinear to Ps, i.e. wo — 0, all required variables becomes

1- 1
pa—collinear : & — QZW ? Cos

.z 1. (5.22)

1—w1 1—w1

Note that in this limit, the partonic coefficient function scales as §(1 — z), see eq. (2.11),

and thus renders the convolution in z trivial. Furthermore, we fix w; = —(1 — () /¢, and
obtain

. dopinsmix TR

1 4, (*5) 5.23

strict ggn—coll dxpqu UO Z fz IIJB C?’ H/j C ( )

A h s x

dwedz §[g3 — Q*(1 — 1— lim IR
X / W2 [QT Q ( C)w2( $)] strict po coll. dwldedaj

Comparing egs. (5.20) and (5.23), we can immediately read off the relation between the
perturbative matching kernel and take the Fourier transform with respect to ¢r,

dd72q_’T 7o
D 1 X 7b d / e—le-qT 524
H/( F,0T Z oy C H/] ) Qd73(q%)d/2_2/2 ( )
1 di;
x /dedxd[q% N Q2(1 n C)wQ(l - x)] Strlctlioz coll. C ﬁ
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The perturbative matching kernel as defined in eqs. (5.13) — (5.15) is then given by
~ . - dd_QJT T o
jCnaive ’ b — —ibr-gr 5.25
i (&) / Qa_s(q3) 222" (525

. 1 dijpsjryx
% /dedx 0 [q% B Q2(1 B C)w2(1 B l.)] stricthpgl—coll. ? d1]111dju]2dx ’

The superscript “naive” in eq. (5.25) indicates that this is not yet the final result for the
(bare) matching coefficient.

First, we note that we still have to regulate rapidity divergences that arise as wy — 0, or
equivalently ¢ — 1. In our approach, this regulator must only act on the total momentum
k. The only known regulator in the literature that fulfills this constraint is the exponential
regulator [79], which amounts to inserting a factor exp[27e~7#k"] into the integral. In our
parameterization, this regulating factor reads

T@‘”Eq%
wp(1 = )1 =)l

where in the last step we neglect the w; term that is not required to regulate the ws — 0

exp(2re P kY) = exp[—Te 7 (wipy + wap] )] — exp [— (5.26)

limit and use the momentum fraction wy of eq. (5.6). Since eq. (5.26) vanishes exponentially
as ( — 1 and « — 1, it regulates all rapidity divergences in the ps-collinear sector. We
identify the rapidity regularisation scale as

v= 1 , (5.27)
T
as 7 has inverse mass dimensions.

Secondly, the TMDEFF is defined as the purely collinear limit of the cross section, but
the above matrix element still contains overlap with the soft factor. Its subtraction is
referred to as zero-bin subtraction [87]. In the case of the exponential regulator, this is
equivalent to dividing by the bare soft function. The soft function was calculated at N3LO
in ref. [88] and confirmed by us in ref. [46] from which we take its bare expression.

With the above manipulations, we obtain the actual bare matching coefficient as

. . d9—2g, e—i@rbr 1
K;j (g, br.e, — ) — / dr e / da dws 5[5 — Q*(1 — Q)ws(1 — )] (5.28)
0

Wh

Qa—3(q7)?72/2
— T e VEG2 1 .
x lim ieXp{ wy © EqT(lfC)(lfx)] : A7 hos it x
7—0 <2 S(bT, €, 7') strict pa—coll. dwidwsedx wy=—1=¢ ’

¢

where we already take the limit 7 — 0 which must be taken before ¢ — 0.
The last step is to relate the above partonic coefficient function to its counterpart in
production kinematics. As outlined in section 3, the two are related by

dishosjrx _ g0 Ni dlighojix

dw; dwydz /\[il;,YOdUCtion dw;dwsydz

(5.29)

analyt.cont.

To perform the analytic continuation in the above equation the necessary information on
the original partonic coefficient function must however be retained as explained in section 3.
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Since all other ingredients in eq. (5.28) agree with the corresponding calculation of the
matching kernel Z;; of the TMDPDF in ref. [46, 48], the relation between the two can be
written compactly as

Kjjr (C, br. €, w%) = Cl?e/\ﬂjﬁlffmlfjj' <2 br €, L) (5.30)
ij

Wh analyt.cont.

It only remains to absorb all leftover UV and IR singularities into suitable counterterms,
which we perform in the MS scheme. This yields the renormalized matching kernel as

dz' - I
SICUNEEDY / T (20 Q2o (SBre ) 63)

where the factor ZA% (11, €) implements the UV renormalization of the strong coupling con-
stant, I';;» absorbs all IR poles and corresponds to the redefinition of the bare fragmentatlon
function dp/; in terms of its renormalized counterpart, and the TMDFF counterterm Zi B
absorbs all leftover UV divergences. I';;» can be obtained from the time-like splitting func-
tions, while Z}S can be predicted from the renormalization group equation governing the
TMDFF. These steps are identical to the ones for the TMDPDF, and all required details
can be found in appendix A of ref. [48], up to replacing the spacelike splitting functions
P;; by their timelike counterparts PT [61-63, 67].
The perturbative matching kernel for the manifestly v independent TMD FF of eq. (5.11)

is simply obtained by

KT (¢ Brom) = Kig (¢ Brop wlb) S(or, 1, ) . (5.32)

5.3 Results

We expand the renormalized matching kernels perturbatively as

Ky (z,ET,u,w1b> Z (O‘) Z Z/C“mn) JLELL. (5.33)

n=0m=0
The logarithms in eq. (5.33) are defined as

2 ,,2
b Ly=In—. (5.34)

Ly=1In
de~E "’ Wp

The logarithmic structure of eq. (5.33) is entirely governed by the renormalization group
equations of the TMDFF, which we have verified as an important check of our results. The
key new result of this article is the nonlogarithmic boundary term in eq. (5.33),

K0(2) = RGP0 (2). (5.35)

These coefficients have already been calculated at NNLO in refs. [39-41, 89], with which we
find perfect agreement, while our result at N®LO is new. As in the case of the TMDPDF,
we find that it can be entirely expressed in terms of harmonic poly logarithms (HPLs) [90]
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Figure 3. The N3LO TMD fragmentation function boundary term I@S) (z) as a function of z. The
matching kernels in all channels entering the quark fragmentation (left) and the gluon fragmentation
(right) are displayed. For illustration purposes the kernels have been rescaled as indicated.

up to weight five. We provide the full result for eq. (5.33), and the corresponding result
including the soft factor as defined in eq. (5.32), in the ancillary files of this submission.
We also provide the expansion of the kernels both in z as well as in Z = 1 — z up to 40
orders in the expansion. These expansions can be patched together to obtain a fast and
precise numerical evaluation of the kernels.

We have performed several checks on ours results. First, in eq. (5.31), we have used
counterterms predicted from known anomalous dimensions, rather than simply absorbing
all appearing divergences in counterterms. As consequence, divergences up to 1/e5 had
to cancel in the process. In this manner, we also confirm the result of ref.(Q[)67] for the

to the previous results of ref. [63], but otherwise agree with previous determinations of the

timelike splitting functions at three loops, which noted a discrepancy for Pq:g’ compared
timelike splitting functions [61-63].

We have also checked that the TMDFF obeys the same eikonal limit as the TMD-
PDF [41, 91, 92],

=25 r01—2),

@)
lim K07 (2) = o

z—1

(5.36)

where 73 is the three-loop coefficient of the rapidity anomalous dimension in the appropriate
color representation r. Explicit expressions for it can be found in Eq. (9) in ref. [88].

Concerning the partonic coefficient function 7;;, we had already verified in refs. [46, 49]
that the inclusive integral over all final state kinematics for the soft limit of the coefficient
function yields the first term in the threshold expansion of the corresponding inclusive
cross section [93-97]. Furthermore, in refs. [50, 98] a threshold expansion of the differential
perturbative coefficient function for Higgs boson production was performed. We checked
that the first four terms in the threshold expansion of the collinear limit of the limit of 7);;
used here matches the collinear expansion of the threshold expansion of refs. [50, 98].

In figure 3 we illustrate our results by showing the three-loop matching kernel ICS’) (2)
in all quark channels (left) and gluon channels (right). The different channels have been
rescaled as indicated in the figure to account for their different magnitudes.
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For completeness, in appendix B we present the ¢ — 0 limit of the kernels, both for the
quark and the gluon TMD fragmentation functions. These results are interesting for the
study of the high energy behavior of TMDFFs, similar to studies of the small-z behavior
of TMDPDFs in refs. [39, 46, 99-102]. Note that the timelike TMDFF shows a double-
logarithmic series in In ¢, such that the N®LO coefficient contains up to a2 In® ¢, in contrast
to the single-logarithmic series observed for the spacelike TMDPDF, where one encounters
at most a2 In? ¢ at this order.

6 Conclusions

We have computed the perturbative matching kernel relating transverse-momentum de-
pendent fragmentation functions (TMDFFs) with longitudinal fragmentation functions at
N3LO in QCD, obtaining analytic results for all partonic channels contributing to the
quark and unpolarized gluon TMDFF. These results for this matching kernel, defined in
eq. (5.15), are provided as ancillary files together with the arXiv submission of this article.

Our calculation is based on a simple extension of a framework recently developed by
us, that allows to expand differential hadronic cross sections efficiently in the collinear
limit [48]. This method was developed in detail in ref. [48] for the collinear expansion of
differential hadron collider production cross sections. We have demonstrated explicitly how
they are related to DIS cross sections via analytic continuation. By analytically continuing
our recent computation of the collinear limit of the gluon fusion Higgs boson and DY
production cross section to DIS kinematics, we have obtained the TMDFFs in similar
fashion as the N-jettiness beam functions and TMDPDF's calculated in refs. [46, 48, 49].
Our new results demonstrate once more the potency of this method obtaining universal
ingredients arising in the infrared and collinear limits of QCD to an unprecedented level of
precision in perturbation theory.

An important check on our calculation lies in the cancellation of all infrared and ultra-
violet poles against suitable counterterms. Since these counterterms can be fully predicted
using known anomalous dimension, this provides a highly nontrivial check. In particular, it
involves the cancellation of infrared divergences against the QCD mass factorisation coun-
terterm comprised of time-like splitting functions. Thus, as a by product, our calculation
confirms the recent results for the NNLO timelike splitting function ref. [61-63, 67], in
particular the correct result in the gg channel first obtained in ref. [67].

There are several phenomenological applications of our results. Firstly, the TMDFFs
obtained in this paper constitute the last missing ingredient to describe the singular struc-
ture of the transverse momentum distribution of QCD radiation in color-singlet decays at
N3LO. They also enable the resummation of transverse momentum distributions at N3LL/
accuracy, both in e*e™ annihilation and Higgs decay to quarks or gluons as well as in SIDIS.
In particular they allow for the calculation of the jet functions for the Energy-Energy Cor-
relator (EEC) and the Transverse EEC jet functions in the back-to-back limit [24, 26] at
N3LO. For the case of the EEC this allows to push the resummation accuracy to N3LL/
which constitutes the most accurate resummation carried for an event shape to date. We
carry out this calculation in ref. [25].
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Our method to expand cross sections around the collinear limit in the final state can
be used to calculate higher order terms in the collinear expansion. Such higher order terms
would allow one to study the structure of factorization beyond leading power for IRC safe
observables in eTe™ annihilation and Higgs decay [103-118] as well as the appearance of
subleading power rapidity divergences [85, 119, 120]. Furthermore, they would provide
data to validate the resummation of power suppressed logarithms [117, 121]. It would also
be interesting to explore the application of the methods developed here and in ref. [48] to
TMDFFs involving a jet measurement [44, 122, 123].

Note: While this article was under completion, an independent calculation was made
available on the arXiv in ref. [124] based on the method proposed in ref. [67]. The authors
of ref. [124] provided an important cross check on intermediary results for genuine two loop
contributions in the Ky, channel that allowed us to track an error in a routine related to
the analytic continuation of the partonic coefficient functions. The initial discrepancy was
a non-logarithmically enhanced finite and rational term proportional to (C4 — Cp)(2(3 in
the Kyq and ICyy channel. After this was resolved, we find perfect agreement among all
analytic results.
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A SIDIS Factorization at small transverse momentum

In this appendix we provide more information on the factorization theorem for SIDIS at
small gr. For concreteness, we focus on the unpolarized photon process

P(P) + ~(q) = H(—P2) + X(—k). (A1)

The extension to a scattering with a scalar Higgs boson is trivial. The corresponding matrix
element is given by

Mpqrrix = eula) (HX|JH|P) (A2)

where €,(q) is the polarization vector of the incoming photon, and J# the QCD current it
couples to. The resulting cross section for this process is given by

r 3P

do = bt}
7T 4P, - q 2F,

(_g#V)WIW(q? Py, P2) ) (A'?’)
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where following ref. [73] we have defined the hadronic tensor as

WH(q, Py, Py) =Y 6"(Pi+q+ Pa+ k) (PlJ*H|HX) (HX|J|P) (A.4)
X

and the —g,,, in eq. (A.3) arises from averaging over the photon polarizations. Working in
the Breit frame as specified by eq. (2.17), the hadron momentum P, can be parameterized
as

Py = (VB + (2r @22, Py, - 2E)

2
. P2
- (% A %) oY), (A5)

where ﬁgT is the Euclidean transverse momentum of the outgoing hadron, and zp =
—2P, - q/q* was defined in eq. (2.3). This immediately yields

3ﬁ ZP' P2
Cry _ & Prdry +0<2T> . (A.6)

2Fy  2xp Q?
Suppressing the power corrections and using eq. (2.3), we obtain the differential cross
section as

do T TR
——— = ——=Wi(q, P, P). (A.7)
dSL'Fd2P2T 4(]2 TR pAT
The factorized hadronic tensor is typically given in the frame where the outgoing
hadron has no transverse momentum, but the photon momentum ¢* acquires a transverse

component gr. At small transverse momentum, the two are related by (see e.g. eq. (2.21))
Pyr = —xpir. (A.8)
The cross section differential in small g thus follows from eq. (A.7) as

do TXBTE

depd?qr 4 —¢°

(=Wig, Pr, P») . (A.9)

The factorized hadronic tensor is given by [73]

WH(q, Py, P2) = 8ncemar B _(—g"" ) H (g% 11%) (A.10)
f
o d*br i br FIMD (o B e VDT (0 B )
(271')2 f B, 0T, 4, Ga H/f \XF> Ty My Gb) 5

where e is the electromagnetic coupling constant, and (. are the Collins-Soper scales
such that (,(, = Q*. Compared to the formulation in ref. [73], we have defined the scalar
hard function normalized such that Hff(qz, p?) = Q?c[l + O(aw)], where Qf is the charge
of the quark the photon couples to. The overall factor of zp in eq. (A.10) compensates for
the factor of 1/xp in the definition of the TMDFF, see eq. (5.12). Also note that ref. [73]
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uses a different variable z for the momentum fraction of the outgoing hadron, which at
small gy reduces to

PP 2
—_ Tl -z @) A1l

) Pig TT <Q2> (8.11)
The TMDPDF f and TMDFF D in eq. (A.10) are defined with absorbing the soft factor.
For our purpose, it will be more convenient to disentangle the soft from the collinear sectors,
which is easily achieved by using eq. (5.11). Together with egs. (A.10) and (A.9), we obtain
the desired result

depdlqr (2m) OéemQsz:Hff(q ) (A.12)
42
X/(27T)TQ qubTBf(xB’anuaV/wa)DH/f(‘TFvbTaV/wb) (bTapﬁ )

B High-energy limit of the TMD fragmentation function kernels

In this appendix, we provide the asymptotic behaviour in the high-energy limit of the
boundary term, i.e. the L, and L, independent term in 5T—space, of the TMDFFs kernels.
Here we report only the new results for the small-z limit of the O(a?) kernels, normalized
by (%)3. In the high-energy limit, the kernels are enhanced by a double logarithmic series.
This is peculiar of the timelike nature of the TMDFF kernels, as their spacelike analog,
the TMD beam function kernels, are only single logarithmically enhanced in the small-z
limit [39, 46]. Note that also splitting functions are single logarithmically enhanced in
the spacelike case, while they obey a double logarithmic series at small-z in the timelike
case [61-63, 67, 125, 126]. Therefore, this different behavior in the high-energy limit be-
tween spacelike and timelike TMD functions is similar to the small-x behavior of timelike
vs spacelike splitting functions. The high-energy limit z — 0 of the kernels IC( )( ) and
l@é‘?])(z) contributing to the gluon TMD fragmentation function is given by

8008 176 896
llg(l)le( ¥ (2) = 320%10g° (2) + log™(2) {70,4 T —Ciny — CACan}
. 57302 256\ , 2576 14624 128
+ logS(z) 0134 - 74 CA ng + CA ——CaCprny — CFni
81 27 81
352 14792 128, 11408\ 368
+ logg(z) [Ci (——Cz + 416¢5 + T) + Cfmf (*Cz 31 ) C nf
128 . 18536 736
— CaCFny (7(2 + T) + *C??’ﬂf CF f}
5 (19984, 5632§3 | 344864) 1504¢> | 1280 46280
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For the quark channels, the high-energy limit z — 0 of the kernels l@g’) (z) contributing

to the quark TMD fragmentation function is given by
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The expressions for the high energy limit z — 0 up to O(z%0), as well as that for the
threshold limit z — 1 up to O((1 — 2)4°), can be found for all channels in electronic form
in the ancillary files of this work.

References
[1] H. Georgi and H. D. Politzer, Quark Decay Functions and Heavy Hadron Production in
QCD, Nucl. Phys. B136 (1978) 445.

[2] R. K. Ellis, H. Georgi, M. Machacek, H. D. Politzer and G. G. Ross, Perturbation Theory
and the Parton Model in QCD, Nucl. Phys. B152 (1979) 285.

[3] J. C. Collins and D. E. Soper, Parton Distribution and Decay Functions, Nucl. Phys. B 194
(1982) 445.

[4] J. C. Collins, D. E. Soper and G. F. Sterman, Factorization of Hard Processes in QCD,
Adv. Ser. Direct. High Energy Phys. 5 (1989) 1 [hep-ph/0409313].

[5] J. C. Collins and D. E. Soper, Back-To-Back Jets in QCD, Nucl. Phys. B193 (1981) 381.

[6] J. C. Collins and D. E. Soper, Back-To-Back Jets: Fourier Transform from B to
K-Transverse, Nucl. Phys. B197 (1982) 446.

[7] J. C. Collins, Fragmentation of transversely polarized quarks probed in transverse
momentum distributions, Nucl. Phys. B 396 (1993) 161 [hep-ph/9208213].

[8] P. Mulders and R. Tangerman, The Complete tree level result up to order 1/Q for polarized
deep inelastic leptoproduction, Nucl. Phys. B 461 (1996) 197 [hep-ph/9510301].

[9] D. Boer and P. Mulders, Time reversal odd distribution functions in leptoproduction, Phys.
Rev. D 57 (1998) 5780 [hep-ph/9711485].

[10] D. Boer, R. Jakob and P. Mulders, Leading asymmetries in two hadron production in e+ e-
annihilation at the Z pole, Phys. Lett. B 424 (1998) 143 [hep-ph/9711488].

[11] X.-d. Ji, J.-p. Ma and F. Yuan, QCD factorization for semi-inclusive deep-inelastic
scattering at low transverse momentum, Phys. Rev. D 71 (2005) 034005 [hep-ph/0404183].

[12] J. Collins, Foundations of perturbative QCD, vol. 32. Cambridge University Press, 11, 2013.

[13] D. Neill, I. Scimemi and W. J. Waalewijn, Jet azes and universal
transverse-momentum-dependent fragmentation, JHEP 04 (2017) 020 [1612.04817].

[14] D. Gutierrez-Reyes, I. Scimemi, W. J. Waalewijn and L. Zoppi, Transverse momentum
dependent distributions with jets, Phys. Rev. Lett. 121 (2018) 162001 [1807.07573].

[15] D. Gutierrez-Reyes, I. Scimemi, W. J. Waalewijn and L. Zoppi, Transverse momentum
dependent distributions in eTe™ and semi-inclusive deep-inelastic scattering using jets,
JHEP 10 (2019) 031 [1904.04259].

[16] D. Gutierrez-Reyes, Y. Makris, V. Vaidya, I. Scimemi and L. Zoppi, Probing
Transverse-Momentum Distributions With Groomed Jets, JHEP 08 (2019) 161
[1907.05896].

— 24 —


https://doi.org/10.1016/0550-3213(78)90269-9
https://doi.org/10.1016/0550-3213(79)90105-6
https://doi.org/10.1016/0550-3213(82)90021-9
https://doi.org/10.1016/0550-3213(82)90021-9
https://doi.org/10.1142/9789814503266_0001
https://arxiv.org/abs/hep-ph/0409313
https://doi.org/10.1016/0550-3213(81)90339-4
https://doi.org/10.1016/0550-3213(82)90453-9
https://doi.org/10.1016/0550-3213(93)90262-N
https://arxiv.org/abs/hep-ph/9208213
https://doi.org/10.1016/0550-3213(95)00632-X
https://arxiv.org/abs/hep-ph/9510301
https://doi.org/10.1103/PhysRevD.57.5780
https://doi.org/10.1103/PhysRevD.57.5780
https://arxiv.org/abs/hep-ph/9711485
https://doi.org/10.1016/S0370-2693(98)00136-1
https://arxiv.org/abs/hep-ph/9711488
https://doi.org/10.1103/PhysRevD.71.034005
https://arxiv.org/abs/hep-ph/0404183
https://doi.org/10.1007/JHEP04(2017)020
https://arxiv.org/abs/1612.04817
https://doi.org/10.1103/PhysRevLett.121.162001
https://arxiv.org/abs/1807.07573
https://doi.org/10.1007/JHEP10(2019)031
https://arxiv.org/abs/1904.04259
https://doi.org/10.1007/JHEP08(2019)161
https://arxiv.org/abs/1907.05896

[17]

[18]

[19]

[20]

[21]

[24]

[25]

[26]

[27]

[28]

EUROPEAN MUON collaboration, J. Ashman et al., Forward produced hadrons in mu p and

mu d scattering and investigation of the charge structure of the nucleon, Z. Phys. C52
(1991) 361.

ZEUS collaboration, M. Derrick et al., Inclusive charged particle distributions in deep
inelastic scattering events at HERA, Z. Phys. C70 (1996) 1 [hep-ex/9511010].

H1 collaboration, C. Adloff et al., Measurement of charged particle transverse momentum
spectra in deep inelastic scattering, Nucl. Phys. B485 (1997) 3 [hep-ex/9610006].

H1 collaboration, F. D. Aaron et al., Measurement of the Proton Structure Function
Fr(x,Q?) at Low z, Phys. Lett. B665 (2008) 139 [0805.2809].

HERMES collaboration, A. Airapetian et al., Multiplicities of charged pions and kaons
from semi-inclusive deep-inelastic scattering by the proton and the deuteron, Phys. Reuv.
D87 (2013) 074029 [1212.5407].

COMPASS collaboration, C. Adolph et al., Hadron Transverse Momentum Distributions in
Muon Deep Inelastic Scattering at 160 GeV /e, Eur. Phys. J. C73 (2013) 2531 [1305.7317].

COMPASS collaboration, M. Aghasyan et al., Transverse-momentum-dependent
Multiplicities of Charged Hadrons in Muon-Deuteron Deep Inelastic Scattering, Phys. Rev.
D97 (2018) 032006 [1709.07374].

I. Moult and H. X. Zhu, Simplicity from Recoil: The Three-Loop Soft Function and
Factorization for the Energy-Energy Correlation, JHEP 08 (2018) 160 [1801.02627].

M. A. Ebert, B. Mistlberger and G. Vita, The Energy-Energy Correlation in the
back-to-back limit at N*LO and N*LL' (to appear), .

A. Gao, H. T. Li, I. Moult and H. X. Zhu, Precision QCD FEvent Shapes at Hadron
Colliders: The Transverse Energy-Energy Correlator in the Back-to-Back Limit, Phys. Rev.
Lett. 123 (2019) 062001 [1901.04497].

H. T. Li, I. Vitev and Y. J. Zhu, Transverse-Energy-Energy Correlations in Deep Inelastic
Scattering, JHEP 11 (2020) 051 [2006.02437].

A. Ali, G. Li, W. Wang and Z.-P. Xing, Transverse energy—energy correlations of jets in the
electron—proton deep inelastic scattering at HERA, Eur. Phys. J. C80 (2020) 1096
[2008.00271].

A. Accardi et al., Electron Ion Collider: The Next QCD Frontier, Eur. Phys. J. A52 (2016)
268 [1212.1701].

A. Metz and A. Vossen, Parton Fragmentation Functions, Prog. Part. Nucl. Phys. 91
(2016) 136 [1607.02521].

P. Sun and F. Yuan, Transverse momentum dependent evolution: Matching semi-inclusive
deep inelastic scattering processes to Drell-Yan and W/Z boson production, Phys. Rev. D
88 (2013) 114012 [1308.5003].

M. G. Echevarria, A. Idilbi, Z.-B. Kang and I. Vitev, QCD FEwvolution of the Sivers
Asymmetry, Phys. Rev. D 89 (2014) 074013 [1401.5078].

A. Bacchetta, F. Delcarro, C. Pisano, M. Radici and A. Signori, Extraction of partonic
transverse momentum distributions from semi-inclusive deep-inelastic scattering, Drell-Yan
and Z-boson production, JHEP 06 (2017) 081 [1703.10157].

— 95—


https://doi.org/10.1007/BF01559431
https://doi.org/10.1007/BF01559431
https://doi.org/10.1007/s002880050075
https://arxiv.org/abs/hep-ex/9511010
https://doi.org/10.1016/S0550-3213(96)00675-X
https://arxiv.org/abs/hep-ex/9610006
https://doi.org/10.1016/j.physletb.2008.05.070
https://arxiv.org/abs/0805.2809
https://doi.org/10.1103/PhysRevD.87.074029
https://doi.org/10.1103/PhysRevD.87.074029
https://arxiv.org/abs/1212.5407
https://doi.org/10.1140/epjc/s10052-013-2531-6, 10.1140/epjc/s10052-014-3255-y
https://arxiv.org/abs/1305.7317
https://doi.org/10.1103/PhysRevD.97.032006
https://doi.org/10.1103/PhysRevD.97.032006
https://arxiv.org/abs/1709.07374
https://doi.org/10.1007/JHEP08(2018)160
https://arxiv.org/abs/1801.02627
https://doi.org/10.1103/PhysRevLett.123.062001
https://doi.org/10.1103/PhysRevLett.123.062001
https://arxiv.org/abs/1901.04497
https://doi.org/10.1007/JHEP11(2020)051
https://arxiv.org/abs/2006.02437
https://doi.org/10.1140/epjc/s10052-020-08614-3
https://arxiv.org/abs/2008.00271
https://doi.org/10.1140/epja/i2016-16268-9
https://doi.org/10.1140/epja/i2016-16268-9
https://arxiv.org/abs/1212.1701
https://doi.org/10.1016/j.ppnp.2016.08.003
https://doi.org/10.1016/j.ppnp.2016.08.003
https://arxiv.org/abs/1607.02521
https://doi.org/10.1103/PhysRevD.88.114012
https://doi.org/10.1103/PhysRevD.88.114012
https://arxiv.org/abs/1308.5003
https://doi.org/10.1103/PhysRevD.89.074013
https://arxiv.org/abs/1401.5078
https://doi.org/10.1007/JHEP06(2017)081, 10.1007/JHEP06(2019)051
https://arxiv.org/abs/1703.10157

[34] NNPDF collaboration, V. Bertone, S. Carrazza, N. P. Hartland, E. R. Nocera and J. Rojo,
A determination of the fragmentation functions of pions, kaons, and protons with faithful
uncertainties, Eur. Phys. J. C 77 (2017) 516 [1706.07049].

[35] NNPDF collaboration, V. Bertone, N. Hartland, E. Nocera, J. Rojo and L. Rottoli,
Charged hadron fragmentation functions from collider data, Eur. Phys. J. C 78 (2018) 651
[1807.03310].

[36] V. Bertone, I. Scimemi and A. Vladimirov, Eztraction of unpolarized quark transverse
momentum dependent parton distributions from Drell-Yan/Z-boson production, JHEP 06
(2019) 028 [1902.08474].

[37] D. Callos, Z.-B. Kang and J. Terry, Extracting the transverse momentum dependent
polarizing fragmentation functions, Phys. Rev. D 102 (2020) 096007 [2003.04828].

[38] H.-W. Lin, W. Melnitchouk, A. Prokudin, N. Sato and H. Shows, First Monte Carlo Global
Analysis of Nucleon Transversity with Lattice QCD Constraints, Phys. Rev. Lett. 120
(2018) 152502 [1710.09858].

[39] M.-X. Luo, T.-Z. Yang, H. X. Zhu and Y. J. Zhu, Transverse Parton Distribution and
Fragmentation Functions at NNLO: the Gluon Case, JHEP 01 (2020) 040 [1909.13820].

[40] M.-X. Luo, X. Wang, X. Xu, L. L. Yang, T.-Z. Yang and H. X. Zhu, Transverse Parton
Distribution and Fragmentation Functions at NNLO: the Quark Case, JHEP 10 (2019) 083
[1908.03831].

[41] M. G. Echevarria, I. Scimemi and A. Vladimirov, Unpolarized Transverse Momentum
Dependent Parton Distribution and Fragmentation Functions at next-to-next-to-leading
order, JHEP 09 (2016) 004 [1604.07869].

[42] A. Jain, M. Procura and W. J. Waalewijn, Fully-Unintegrated Parton Distribution and
Fragmentation Functions at Perturbative kr, JHEP 04 (2012) 132 [1110.0839].

[43] BELLE collaboration, R. Seidl et al., Transverse momentum dependent production cross
sections of charged pions, kaons and protons produced in inclusive eTe™ annihilation at
Vs = 10.58 GeV, Phys. Rev. D 99 (2019) 112006 [1902.01552].

[44] Y. Makris, F. Ringer and W. J. Waalewijn, Joint thrust and TMD resummation in
electron-positron and electron-proton collisions, 2009.11871.

[45] M. Boglione and A. Simonelli, Factorization of ete™ — H X cross section, differential in
zn, Pr and thrust, in the 2-jet limit, 2011.07366.

[46] M. A. Ebert, B. Mistlberger and G. Vita, Transverse momentum dependent PDFs at N®LO,
JHEP 09 (2020) 146 [2006.05329].

[47) M.-x. Luo, T.-Z. Yang, H. X. Zhu and Y. J. Zhu, Quark Transverse Parton Distribution at
the Next-to-Next-to-Next-to-Leading Order, Phys. Rev. Lett. 124 (2020) 092001
[1912.05778].

[48] M. A. Ebert, B. Mistlberger and G. Vita, Collinear expansion for color singlet cross
sections, JHEP 09 (2020) 181 [2006.03055].

[49] M. A. Ebert, B. Mistlberger and G. Vita, N-jettiness beam functions at NNLO, JHEP 09
(2020) 143 [2006.03056].

[50] F. Dulat, B. Mistlberger and A. Pelloni, Differential Higgs production at N>LO beyond
threshold, JHEP 01 (2018) 145 [1710.03016].

— 96 —


https://doi.org/10.1140/epjc/s10052-017-5088-y
https://arxiv.org/abs/1706.07049
https://doi.org/10.1140/epjc/s10052-018-6130-4
https://arxiv.org/abs/1807.03310
https://doi.org/10.1007/JHEP06(2019)028
https://doi.org/10.1007/JHEP06(2019)028
https://arxiv.org/abs/1902.08474
https://doi.org/10.1103/PhysRevD.102.096007
https://arxiv.org/abs/2003.04828
https://doi.org/10.1103/PhysRevLett.120.152502
https://doi.org/10.1103/PhysRevLett.120.152502
https://arxiv.org/abs/1710.09858
https://doi.org/10.1007/JHEP01(2020)040
https://arxiv.org/abs/1909.13820
https://doi.org/10.1007/JHEP10(2019)083
https://arxiv.org/abs/1908.03831
https://doi.org/10.1007/JHEP09(2016)004
https://arxiv.org/abs/1604.07869
https://doi.org/10.1007/JHEP04(2012)132
https://arxiv.org/abs/1110.0839
https://doi.org/10.1103/PhysRevD.99.112006
https://arxiv.org/abs/1902.01552
https://arxiv.org/abs/2009.11871
https://arxiv.org/abs/2011.07366
https://doi.org/10.1007/JHEP09(2020)146
https://arxiv.org/abs/2006.05329
https://doi.org/10.1103/PhysRevLett.124.092001
https://arxiv.org/abs/1912.05778
https://doi.org/10.1007/JHEP09(2020)181
https://arxiv.org/abs/2006.03055
https://doi.org/10.1007/JHEP09(2020)143
https://doi.org/10.1007/JHEP09(2020)143
https://arxiv.org/abs/2006.03056
https://doi.org/10.1007/JHEP01(2018)145
https://arxiv.org/abs/1710.03016

[61] F. Dulat, S. Lionetti, B. Mistlberger, A. Pelloni and C. Specchia, Higgs-differential cross
section at NNLO in dimensional regularisation, JHEP 07 (2017) 017 [1704.08220].

[52] F. Dulat, S. Lionetti, B. Mistlberger, A. Pelloni and C. Specchia, Higgs-differential cross
section at NNLO in dimensional regularisation, JHEP 07 (2017) 017 [1704.08220].

[63] C. Anastasiou, C. Duhr, F. Dulat, F. Herzog and B. Mistlberger, Real-virtual contributions
to the inclusive Higgs cross-section at N*LO, JHEP 12 (2013) 088 [1311.1425].

[54] F. Dulat and B. Mistlberger, Real-Virtual- Virtual contributions to the inclusive Higgs cross
section at N3LO, 1411.3586.

[65] C. Anastasiou, C. Duhr, F. Dulat, E. Furlan, F. Herzog and B. Mistlberger, Soft expansion
of double-real-virtual corrections to Higgs production at N°LO, JHEP 08 (2015) 051
[1505.04110].

[56] C. Anastasiou, C. Duhr, F. Dulat and B. Mistlberger, Soft triple-real radiation for Higgs
production at N3LO, JHEP 07 (2013) 003 [1302.4379].

[57] S. D. Drell, D. J. Levy and T.-M. Yan, A Theory of Deep Inelastic Lepton-Nucleon
Scattering and Lepton Pair Annihilation Processes. 1., Phys. Rev. 187 (1969) 2159.

[68] M. Stratmann and W. Vogelsang, Next-to-leading order evolution of polarized and
unpolarized fragmentation functions, Nucl. Phys. B496 (1997) 41 [hep-ph/9612250].

[59] J. Blumlein, V. Ravindran and W. L. van Neerven, On the Drell-Levy- Yan relation to
O(a?), Nucl. Phys. B586 (2000) 349 [hep-ph/0004172].

[60] D. Mueller, B. Pire, L. Szymanowski and J. Wagner, On timelike and spacelike hard
exclusive reactions, Phys. Rev. D86 (2012) 031502 [1203.4392].

[61] A. Mitov, S. Moch and A. Vogt, Next-to-Next-to-Leading Order Evolution of Non-Singlet
Fragmentation Functions, Phys. Lett. B638 (2006) 61 [hep-ph/0604053].

[62] S. Moch and A. Vogt, On third-order timelike splitting functions and top-mediated Higgs
decay into hadrons, Phys. Lett. B659 (2008) 290 [0709.3899].

[63] A. A. Almasy, S. Moch and A. Vogt, On the Next-to-Next-to-Leading Order Evolution of
Flavour-Singlet Fragmentation Functions, Nucl. Phys. B854 (2012) 133 [1107.2263].

[64] Yu. L. Dokshitzer, G. Marchesini and G. P. Salam, Revisiting parton evolution and the
large-z limit, Phys. Lett. B634 (2006) 504 [hep-ph/0511302].

[65] B. Basso and G. P. Korchemsky, Anomalous dimensions of high-spin operators beyond the
leading order, Nucl. Phys. BTT5 (2007) 1 [hep-th/0612247].

. Neill and F. Ringer, Soft Fragmentation on the Celestial Sphere,
66] D. Neill and F. Ri Soft Fi ; he Celestial Sph JHEP 06 (2020) 086
[2003.02275].

[67] H. Chen, T.-Z. Yang, H. X. Zhu and Y. J. Zhu, Analytic Continuation and Reciprocity
Relation for Collinear Splitting in QCD, 2006.10534.

[68] M. Kologlu, P. Kravchuk, D. Simmons-Duffin and A. Zhiboedov, The light-ray OPE and
conformal colliders, 1905.01311.

[69] G. P. Korchemsky, Energy correlations in the end-point region, JHEP 01 (2020) 008
[1905.01444].

[70] L. J. Dixon, I. Moult and H. X. Zhu, Collinear limit of the energy-energy correlator, Phys.
Rev. D100 (2019) 014009 [1905.01310].

— 97 -


https://doi.org/10.1007/JHEP07(2017)017
https://arxiv.org/abs/1704.08220
https://doi.org/10.1007/JHEP07(2017)017
https://arxiv.org/abs/1704.08220
https://doi.org/10.1007/JHEP12(2013)088
https://arxiv.org/abs/1311.1425
https://arxiv.org/abs/1411.3586
https://doi.org/10.1007/JHEP08(2015)051
https://arxiv.org/abs/1505.04110
https://doi.org/10.1007/JHEP07(2013)003
https://arxiv.org/abs/1302.4379
https://doi.org/10.1103/PhysRev.187.2159
https://doi.org/10.1016/S0550-3213(97)00182-X
https://arxiv.org/abs/hep-ph/9612250
https://doi.org/10.1016/S0550-3213(00)00422-3
https://arxiv.org/abs/hep-ph/0004172
https://doi.org/10.1103/PhysRevD.86.031502
https://arxiv.org/abs/1203.4392
https://doi.org/10.1016/j.physletb.2006.05.005
https://arxiv.org/abs/hep-ph/0604053
https://doi.org/10.1016/j.physletb.2007.10.069
https://arxiv.org/abs/0709.3899
https://doi.org/10.1016/j.nuclphysb.2011.08.028
https://arxiv.org/abs/1107.2263
https://doi.org/10.1016/j.physletb.2006.02.023
https://arxiv.org/abs/hep-ph/0511302
https://doi.org/10.1016/j.nuclphysb.2007.03.044
https://arxiv.org/abs/hep-th/0612247
https://doi.org/10.1007/JHEP06(2020)086
https://arxiv.org/abs/2003.02275
https://arxiv.org/abs/2006.10534
https://arxiv.org/abs/1905.01311
https://doi.org/10.1007/JHEP01(2020)008
https://arxiv.org/abs/1905.01444
https://doi.org/10.1103/PhysRevD.100.014009
https://doi.org/10.1103/PhysRevD.100.014009
https://arxiv.org/abs/1905.01310

[71]

[72]

[73]

[74]

[75]

[76]

[77]

78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[36]

[87]

[38]

[89]

H. Chen, I. Moult, X. Zhang and H. X. Zhu, Rethinking jets with energy correlators: Tracks,
resummation, and analytic continuation, Phys. Rev. D 102 (2020) 054012 [2004.11381].

S. Aybat and T. C. Rogers, TMD Parton Distribution and Fragmentation Functions with
QCD Evolution, Phys. Rev. D 83 (2011) 114042 [1101.5057].

J. Collins, Foundations of perturbative QCD, Camb. Monogr. Part. Phys. Nucl. Phys.
Cosmol. 32 (2011) 1.

C. W. Bauer, S. Fleming and M. E. Luke, Summing Sudakov logarithms in B — Xy in
effective field theory, Phys. Rev. D63 (2000) 014006 [hep-ph/0005275].

C. W. Bauer, S. Fleming, D. Pirjol and I. W. Stewart, An Effective field theory for collinear
and soft gluons: Heavy to light decays, Phys. Rev. D63 (2001) 114020 [hep-ph/0011336].

C. W. Bauer and I. W. Stewart, Invariant operators in collinear effective theory, Phys. Lett.
B516 (2001) 134 [hep-ph/0107001].

C. W. Bauer, D. Pirjol and I. W. Stewart, Soft collinear factorization in effective field
theory, Phys. Rev. D65 (2002) 054022 [hep-ph/0109045].

J.-Y. Chiu, A. Jain, D. Neill and 1. Z. Rothstein, A Formalism for the Systematic Treatment
of Rapidity Logarithms in Quantum Field Theory, JHEP 05 (2012) 084 [1202.0814].

Y. Li, D. Neill and H. X. Zhu, An exponential requlator for rapidity divergences, Nucl. Phys.
B960 (2020) 115193 [1604.00392].

T. Becher and M. Neubert, Drell-Yan Production at Small qr, Transverse Parton
Distributions and the Collinear Anomaly, Eur. Phys. J. C71 (2011) 1665 [1007.4005].

T. Becher and G. Bell, Analytic Regularization in Soft-Collinear Effective Theory, Phys.
Lett. B713 (2012) 41 [1112.3907).

M. G. Echevarria, A. Idilbi and I. Scimemi, Factorization Theorem For Drell-Yan At Low
qr And Transverse Momentum Distributions On-The-Light-Cone, JHEP 07 (2012) 002
[1111.4996].

J.-y. Chiu, A. Jain, D. Neill and 1. Z. Rothstein, The Rapidity Renormalization Group,
Phys. Rev. Lett. 108 (2012) 151601 [1104.0881].

I. Z. Rothstein and I. W. Stewart, An Effective Field Theory for Forward Scattering and
Factorization Violation, JHEP 08 (2016) 025 [1601.04695].

M. A. Ebert, I. Moult, I. W. Stewart, F. J. Tackmann, G. Vita and H. X. Zhu, Subleading
power rapidity divergences and power corrections for qr, JHEP 04 (2019) 123 [1812.08189].

P. Mulders and J. Rodrigues, Transverse momentum dependence in gluon distribution and
fragmentation functions, Phys. Rev. D 63 (2001) 094021 [hep-ph/0009343].

A. V. Manohar and I. W. Stewart, The Zero-Bin and Mode Factorization in Quantum Field
Theory, Phys. Rev. D76 (2007) 074002 [hep-ph/0605001].

Y. Li and H. X. Zhu, Bootstrapping Rapidity Anomalous Dimensions for
Transverse-Momentum Resummation, Phys. Rev. Lett. 118 (2017) 022004 [1604.01404].

M. G. Echevarria, I. Scimemi and A. Vladimirov, Transverse momentum dependent
fragmentation function at next-to-next-to-leading order, Phys. Rev. D 93 (2016) 011502
[1509.06392].

~ 98 —


https://doi.org/10.1103/PhysRevD.102.054012
https://arxiv.org/abs/2004.11381
https://doi.org/10.1103/PhysRevD.83.114042
https://arxiv.org/abs/1101.5057
https://doi.org/10.1103/PhysRevD.63.014006
https://arxiv.org/abs/hep-ph/0005275
https://doi.org/10.1103/PhysRevD.63.114020
https://arxiv.org/abs/hep-ph/0011336
https://doi.org/10.1016/S0370-2693(01)00902-9
https://doi.org/10.1016/S0370-2693(01)00902-9
https://arxiv.org/abs/hep-ph/0107001
https://doi.org/10.1103/PhysRevD.65.054022
https://arxiv.org/abs/hep-ph/0109045
https://doi.org/10.1007/JHEP05(2012)084
https://arxiv.org/abs/1202.0814
https://doi.org/10.1016/j.nuclphysb.2020.115193
https://doi.org/10.1016/j.nuclphysb.2020.115193
https://arxiv.org/abs/1604.00392
https://doi.org/10.1140/epjc/s10052-011-1665-7
https://arxiv.org/abs/1007.4005
https://doi.org/10.1016/j.physletb.2012.05.016
https://doi.org/10.1016/j.physletb.2012.05.016
https://arxiv.org/abs/1112.3907
https://doi.org/10.1007/JHEP07(2012)002
https://arxiv.org/abs/1111.4996
https://doi.org/10.1103/PhysRevLett.108.151601
https://arxiv.org/abs/1104.0881
https://doi.org/10.1007/JHEP08(2016)025
https://arxiv.org/abs/1601.04695
https://doi.org/10.1007/JHEP04(2019)123
https://arxiv.org/abs/1812.08189
https://doi.org/10.1103/PhysRevD.63.094021
https://arxiv.org/abs/hep-ph/0009343
https://doi.org/10.1103/PhysRevD.76.074002
https://arxiv.org/abs/hep-ph/0605001
https://doi.org/10.1103/PhysRevLett.118.022004
https://arxiv.org/abs/1604.01404
https://doi.org/10.1103/PhysRevD.93.011502
https://arxiv.org/abs/1509.06392

[90] E. Remiddi and J. A. M. Vermaseren, Harmonic polylogarithms, Int. J. Mod. Phys. A15
(2000) 725 [hep-ph/9905237].

[91] G. Lustermans, W. J. Waalewijn and L. Zeune, Joint transverse momentum and threshold
resummation beyond NLL, Phys. Lett. BT62 (2016) 447 [1605.02740].

[92] G. Billis, M. A. Ebert, J. K. L. Michel and F. J. Tackmann, A Toolboz for qr and
0-Jettiness Subtractions at N°LO, 1909.00811.

[93] C. Anastasiou, C. Duhr, F. Dulat, E. Furlan, T. Gehrmann, F. Herzog et al., Higgs Boson
Gluon Fusion Production Beyond Threshold in N°LO QCD, JHEP 03 (2015) 091
[1411.3584].

[94] C. Anastasiou, C. Duhr, F. Dulat, E. Furlan, T. Gehrmann, F. Herzog et al., Higgs boson
gluon—fusion production at threshold in N°LO QCD, Phys. Lett. BT37 (2014) 325
[1403.4616].

[95] C. Anastasiou, C. Duhr, F. Dulat, F. Herzog and B. Mistlberger, Higgs Boson Gluon-Fusion
Production in QCD at Three Loops, Phys. Rev. Lett. 114 (2015) 212001 [1503.06056].

[96] B. Mistlberger, Higgs boson production at hadron colliders at N*LO in QCD, JHEP 05
(2018) 028 [1802.00833].

[97] C. Duhr, F. Dulat and B. Mistlberger, Drell-Yan Cross Section to Third Order in the
Strong Coupling Constant, Phys. Rev. Lett. 125 (2020) 172001 [2001.07717].

[98] F. Dulat, B. Mistlberger and A. Pelloni, Precision predictions at N°LO for the Higgs boson
rapidity distribution at the LHC, Phys. Rev. D99 (2019) 034004 [1810.09462].

[99] I. Balitsky and A. Tarasov, Rapidity evolution of gluon TMD from low to moderate x, JHEP
10 (2015) 017 [1505.02151].

[100] S. Marzani, Combining Qr and small-x resummations, Phys. Rev. D 93 (2016) 054047
[1511.06039].

[101] I. Balitsky and A. Tarasov, Gluon TMD in particle production from low to moderate x,
JHEP 06 (2016) 164 [1603.06548].

[102] B.-W. Xiao, F. Yuan and J. Zhou, Transverse Momentum Dependent Parton Distributions
at Small-z, Nucl. Phys. B 921 (2017) 104 [1703.06163|.

[103] M. Beneke, A. P. Chapovsky, M. Diehl and T. Feldmann, Soft collinear effective theory and
heavy to light currents beyond leading power, Nucl. Phys. B643 (2002) 431
[hep-ph/0206152].

[104] D. Pirjol and I. W. Stewart, A Complete basis for power suppressed collinear ultrasoft
operators, Phys. Rev. D67 (2003) 094005 [hep-ph/0211251].

[105] M. Beneke and T. Feldmann, Multipole expanded soft collinear effective theory with
nonAbelian gauge symmetry, Phys. Lett. B553 (2003) 267 [hep-ph/0211358].

[106] C. W. Bauer, D. Pirjol and I. W. Stewart, On Power suppressed operators and gauge
invariance in SCET, Phys. Rev. D68 (2003) 034021 [hep-ph/0303156].

[107] S. M. Freedman, Subleading Corrections To Thrust Using Effective Field Theory,
1303.1558.

[108] S. M. Freedman and R. Goerke, Renormalization of Subleading Dijet Operators in
Soft-Collinear Effective Theory, Phys. Rev. D90 (2014) 114010 [1408.6240].

~ 99 —


https://doi.org/10.1142/S0217751X00000367
https://doi.org/10.1142/S0217751X00000367
https://arxiv.org/abs/hep-ph/9905237
https://doi.org/10.1016/j.physletb.2016.09.060
https://arxiv.org/abs/1605.02740
https://arxiv.org/abs/1909.00811
https://doi.org/10.1007/JHEP03(2015)091
https://arxiv.org/abs/1411.3584
https://doi.org/10.1016/j.physletb.2014.08.067
https://arxiv.org/abs/1403.4616
https://doi.org/10.1103/PhysRevLett.114.212001
https://arxiv.org/abs/1503.06056
https://doi.org/10.1007/JHEP05(2018)028
https://doi.org/10.1007/JHEP05(2018)028
https://arxiv.org/abs/1802.00833
https://doi.org/10.1103/PhysRevLett.125.172001
https://arxiv.org/abs/2001.07717
https://doi.org/10.1103/PhysRevD.99.034004
https://arxiv.org/abs/1810.09462
https://doi.org/10.1007/JHEP10(2015)017
https://doi.org/10.1007/JHEP10(2015)017
https://arxiv.org/abs/1505.02151
https://doi.org/10.1103/PhysRevD.93.054047
https://arxiv.org/abs/1511.06039
https://doi.org/10.1007/JHEP06(2016)164
https://arxiv.org/abs/1603.06548
https://doi.org/10.1016/j.nuclphysb.2017.05.012
https://arxiv.org/abs/1703.06163
https://doi.org/10.1016/S0550-3213(02)00687-9
https://arxiv.org/abs/hep-ph/0206152
https://doi.org/10.1103/PhysRevD.69.019903, 10.1103/PhysRevD.67.094005
https://arxiv.org/abs/hep-ph/0211251
https://doi.org/10.1016/S0370-2693(02)03204-5
https://arxiv.org/abs/hep-ph/0211358
https://doi.org/10.1103/PhysRevD.68.034021
https://arxiv.org/abs/hep-ph/0303156
https://arxiv.org/abs/1303.1558
https://doi.org/10.1103/PhysRevD.90.114010
https://arxiv.org/abs/1408.6240

[109] 1. Moult, L. Rothen, I. W. Stewart, F. J. Tackmann and H. X. Zhu, Subleading Power
Corrections for N-Jettiness Subtractions, Phys. Rev. D95 (2017) 074023 [1612.00450].

[110] I. Moult, L. Rothen, I. W. Stewart, F. J. Tackmann and H. X. Zhu, N -jettiness
subtractions for gg — H at subleading power, Phys. Rev. D97 (2018) 014013 [1710.03227].

[111] R. Goerke and M. Inglis-Whalen, Renormalization of dijet operators at order 1/Q? in
soft-collinear effective theory, JHEP 05 (2018) 023 [1711.09147].

[112] I. Balitsky and A. Tarasov, Power corrections to TMD factorization for Z-boson production,
JHEP 05 (2018) 150 [1712.09389].

[113] 1. Feige, D. W. Kolodrubetz, I. Moult and I. W. Stewart, A Complete Basis of Helicity
Operators for Subleading Factorization, JHEP 11 (2017) 142 [1703.03411].

[114] 1. Moult, I. W. Stewart and G. Vita, A subleading operator basis and matching for gg — H,
JHEP 07 (2017) 067 [1703.03408].

[115] C.-H. Chang, I. W. Stewart and G. Vita, A Subleading Power Operator Basis for the Scalar
Quark Current, JHEP 04 (2018) 041 [1712.04343].

[116] M. Beneke, M. Garny, R. Szafron and J. Wang, Anomalous dimension of subleading-power
N-jet operators. Part II, JHEP 11 (2018) 112 [1808.04742].

[117] 1. Moult, I. W. Stewart, G. Vita and H. X. Zhu, First Subleading Power Resummation for
Event Shapes, JHEP 08 (2018) 013 [1804.04665].

[118] I. Moult, I. W. Stewart and G. Vita, Subleading Power Factorization with Radiative
Functions, JHEP 11 (2019) 153 [1905.07411].

[119] I. Moult, M. P. Solon, I. W. Stewart and G. Vita, Fermionic Glauber Operators and Quark
Reggeization, JHEP 02 (2018) 134 [1709.09174].

[120] 1. Moult, G. Vita and K. Yan, Subleading power resummation of rapidity logarithms: the
energy-energy correlator in N' = 4 SYM, JHEP 07 (2020) 005 [1912.02188].

[121] 1. Moult, I. W. Stewart, G. Vita and H. X. Zhu, The Soft Quark Sudakov, JHEP 05 (2020)
089 [1910.14038].

122] Z.-B. Kang, K. Lee and F. Zhao, Polarized jet fragmentation functions, Phys. Lett. B 809
g J g
(2020) 135756 [2005.02398].

[123] M. Arratia, Y. Makris, D. Neill, F. Ringer and N. Sato, Asymmetric jet clustering in
deep-inelastic scattering, 2006.10751.

[124] M.-x. Luo, T.-Z. Yang, H. X. Zhu and Y. J. Zhu, Unpolarized Quark and Gluon TMD PDFs
and FFs at N°LO, 2012.03256

[125] S. Moch, J. A. M. Vermaseren and A. Vogt, The Three loop splitting functions in QCD:
The Nonsinglet case, Nucl. Phys. B688 (2004) 101 [hep-ph/0403192].

[126] A. Vogt, S. Moch and J. A. M. Vermaseren, The Three-loop splitting functions in QCD:
The Singlet case, Nucl. Phys. B691 (2004) 129 [hep-ph/0404111].

— 30 —


https://doi.org/10.1103/PhysRevD.95.074023
https://arxiv.org/abs/1612.00450
https://doi.org/10.1103/PhysRevD.97.014013
https://arxiv.org/abs/1710.03227
https://doi.org/10.1007/JHEP05(2018)023
https://arxiv.org/abs/1711.09147
https://doi.org/10.1007/JHEP05(2018)150
https://arxiv.org/abs/1712.09389
https://doi.org/10.1007/JHEP11(2017)142
https://arxiv.org/abs/1703.03411
https://doi.org/10.1007/JHEP07(2017)067
https://arxiv.org/abs/1703.03408
https://doi.org/10.1007/JHEP04(2018)041
https://arxiv.org/abs/1712.04343
https://doi.org/10.1007/JHEP11(2018)112
https://arxiv.org/abs/1808.04742
https://doi.org/10.1007/JHEP08(2018)013
https://arxiv.org/abs/1804.04665
https://doi.org/10.1007/JHEP11(2019)153
https://arxiv.org/abs/1905.07411
https://doi.org/10.1007/JHEP02(2018)134
https://arxiv.org/abs/1709.09174
https://doi.org/10.1007/JHEP07(2020)005
https://arxiv.org/abs/1912.02188
https://arxiv.org/abs/1910.14038
https://doi.org/10.1016/j.physletb.2020.135756
https://doi.org/10.1016/j.physletb.2020.135756
https://arxiv.org/abs/2005.02398
https://arxiv.org/abs/2006.10751
https://arxiv.org/abs/2012.03256
https://doi.org/10.1016/j.nuclphysb.2004.03.030
https://arxiv.org/abs/hep-ph/0403192
https://doi.org/10.1016/j.nuclphysb.2004.04.024
https://arxiv.org/abs/hep-ph/0404111

	1 Introduction
	2 Setup
	2.1 Semi Inclusive Deep Inelastic Scattering
	2.2 Kinematics and Final State Phase Space
	2.3 Transverse Momenta

	3 Crossing from Production to DIS Cross Sections
	4 Collinear limit of partonic coefficient functions
	5 Calculation of the TMD Fragmentation Functions
	5.1 SIDIS factorization at small transverse momentum
	5.2 TMD fragmentation functions from the collinear limit
	5.3 Results

	6 Conclusions
	A SIDIS Factorization at small transverse momentum
	B High-energy limit of the TMD fragmentation function kernels
	References

