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Abstract

The nature of dark matter (DM) and how it might interact with the particles of the Standard Model
(SM) is an ever-growing mystery. It is possible that the existence of new ‘dark sector’ forces, yet
undiscovered, are the key to solving this fundamental problem. In this paper, we construct a model in
which a dark photon mediates interactions with the SM via kinetic mixing. Unlike traditional models,
in which the dark photon, which couples to a dark charge, QD, mixes with the hypercharge boson,
our model effectively mixes the dark photon directly with the photon after electroweak symmetry is
broken, but remains unmixed until the symmetry breaks. The kinetic mixing is generated at one loop
by fields which satisfy

∑
QDQem = 0, a condition which guarantees a finite result at one loop. In

the literature, this has been traditionally obtained via heavy fermions, which may lie out of the reach
of current accelerators. In this model, by contrast, this process is mediated by scalar ‘portal matter’
fields, which are charged under the SU(2)L×U(1)Y of the standard model as well as the dark gauge
group U(1)D and acquire GeV-scale vevs which give mass to the dark Higgs and dark photon. The
additional scalar fields are relatively light, at or below the weak scale, yet may remain undetected
by current experiments since their couplings to SM fermions come only through percent level mixing
with the SM Higgs. At colliders, these models are typified by relatively low MET due the BSM states
decaying into MET and SM bosons, with MET which is balanced by the decay of the associated
production object. Nevertheless, the higher statistics of HL-LHC may be able to probe the entirety
of the model space.
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1 Introduction

Dark matter (DM) makes up a large portion of the matter budget of the universe, as inferred from CMB
measurements [1], yet it has eluded all attempts at detection to date. As the traditional WIMP parameter
space has been probed more extensively [2–4], null results have prompted model building efforts to turn to
scenarios in which the DM may be lighter than the traditional WIMP candidate (i .e. mDM . O(GeV))
and/or may be part of a more complex dark sector. Models of dark sectors vary in complexity from the
relatively simple addition of a dark gauge group U(1)D to Twin Higgs models which contain ”dark” copies
of the entire Standard Model (SM) [5], but experiments are only sensitive to the “portal” interactions
which connect the SM to the DM sector. As a result, much of the model building and experimental focus
has been on relatively simple models which may constrain the parameter space of more complex theories.
In particular, models featuring a dark photon which kinetically mixes (KM) with the U(1)Y gauge boson
have been the object of intense study due to experimental accessibility and the relatively small set of
parameters which can robustly produce the observed relic density of DM [6,7].

The strength of KM between U(1) gauge bosons depends on the number of loops in the diagrams
responsible for the mixing. A naive estimate of the strength of the KM, ε, arising from a Dirac fermion
with charges (q1, q2) under U(1)1× U(1)2 at the one loop level is [8]

ε =
g1g2

12π2
q1q2ln

(
m2

µ2

)
. (1)

Depending on the field content of the theory and the mass scale separation in the logarithm, this gives
ε ∼ (10−2-10−1)× g1g2 in the absence of any more precise cancellations. Experimental searches for dark
photons with masses mV & O(10 MeV) constrain ε . 10−3, thus in order to further suppress ε it becomes
necessary to induce ε at a higher loop order [9] or to arrange charges of the field content such that the
sum over the field content

∑
i q1,iq2,i = 0, so that ε ∼ ln(m2

i /m
2
j ), which may be small for somewhat

degenerate masses. The benefit of the latter approach is that while the portal coupling ε may become
suppressed beyond the reach of present experiments, the SM charges of the matter in the loop provide a
complementary set of search techniques for these theories at colliders [10–17].

In this paper we will study a model in which the SM gauge group is extended by an additional U(1)D,
with gauge coupling gD, which is broken by a pair of Higgs vevs, vi (with v2

1 +v2
2 = v2

D), at the GeV scale.
In order to produce finite kinetic mixing between U(1)D and U(1)Y , we introduce as “portal matter”
two Higgs doublets η1,2 which have the same SM quantum numbers as the SM Higgs doublet, but are
oppositely charged under the dark gauge group, i .e. QD(η1) = −QD(η2) = 1 while the usual SM Higgs
has QD = 0. In this setup, ε arises from loops of η1,2, and the condition

∑
i YiQD,i = 0 guarantees a finite

value for ε at one loop. Intriguingly, since vSM is the largest vev in the model the additional Higgs fields
have masses at or below the weak scale, so that they are well within reach of present colliders. Section 2 of
the paper discusses the model setup and the particle content of the theory. Section 3 studies constraints
on the parameter space arising from both theory and experiment. Section 4 focuses on collider-oriented
signatures of the portal matter, and Section 5 summarizes the results and conclusions.

2 Model Setup

The goal of this study is to introduce additional scalar fields which are charged under both U(1)Y
and a new gauge group U(1)D which may mediate dark matter interactions with the Standard Model.
In particular, if the additional field content, referred to hereafter as portal matter (PM), has charge
assignments which satisfy the relation

∑
i YiQD,i = 0, then the kinetic mixing between the U(1)Y and

U(1)D fields at one loop will be finite and calculable. In order to break U(1)D, and thus produce a mass
for the dark photon, at least one of the fields charged under the dark gauge group must acquire a vacuum
expectation value, and in a minimal model this may be one of the PM fields. If the PM fields transform
as singlets under SU(2)L, then a vev for any of the PM fields would break U(1)EM as well as U(1)D,
so we consider the case of PM fields which are SU(2)L doublets. In order to maintain

∑
i YiQD,i = 0,
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we must add a minimum of two dark doublets to the theory, an extension of the SM which has been
previously studied in, e.g., the context of the electroweak phase transition [18].

Thus motivated by this minimalist approach, the SM Higgs sector is extended to include two additional
Higgs doublets, η1,2, with “dark” charges which will play the role of PM. These dark doublets have
the same SM quantum numbers as the SM Higgs, but are oppositely charged under U(1)D so that
under SU(2)L×U(1)Y×U(1)D they transform as η1 ∼ (2, 1

2 , 1) and η2 ∼ (2, 1
2 ,−1) thus maintaining the

condition
∑
i YiQD,i = 0. Denoting the SM Higgs by Φ, the Lagrangian for the scalar sector of the theory

becomes

L = (DµΦ)†DµΦ + (Dµη1)†Dµη1 + (Dµη2)†Dµη2 − U, (2)

where the covariant derivative can be written as Dµ = ∂µ − ig(σj/2)W j
µ − ig′Y Bµ − igDQDVµ, with

σ1,2,3 being the Pauli matrices. The addition of the dark doublets η1,2 introduces new terms to the Higgs
potential, U , which is given by

U =µ2Φ†Φ + µ2
1η
†
1η1 + µ2

2η
†
2η2 + λ1(Φ†Φ)2 + λ21(η†1η1)2 + λ22(η†2η2)2 + λ31Φ†Φη†1η1 + λ32Φ†Φη†2η2

+ λ41Φ†η1η
†
1Φ + λ42Φ†η2η

†
2Φ + λ5Φ†η1Φ†η2 + λ∗5η

†
1Φη†2Φ + λ6η

†
1η1η

†
2η2 + λ7η

†
1η2η

†
2η1 .

(3)

Using a relative phase between Φ and η1,2 we can absorb the phase of λ5, so that all of the Higgs potential
parameters are real and contribute no additional explicit CP violation in the model.

From the above it is clear that if neither of η1,2 acquire a vacuum expectation value (vev), then U(1)D
will remain unbroken, and the dark photon, Vµ, will remain massless. One might imagine giving mass
to the dark photon by the addition of a SM singlet which carries only U(1)D; however if this is the only
non-SM vev in the model then one can show that the lightest of the η1,2 components would be stable.
Even if this lightest η1,2 state is electrically neutral, and thus a DM candidate, it will couple directly
to the Z due to the SU(2)L×U(1)Y charges of η1,2. Via this Z coupling this weak-scale DM candidate
would have already been detected in direct detection experiments [2–4], however, so we must consider an
alternative scenario.

If instead only one of η1,2 develop a vev, then tadpoles are induced by the λ5 term, and the potential
is only minimized if λ5 = 0. However, in the absence of λ5 the potential develops a Peccei-Quinn
symmetry [19, 20], analogous to the Peccei-Quinn symmetry of the Two Higgs Doublet Model in the
absence of soft Z2 breaking terms [21]. As a result, when λ5 = 0 there is an additional massless neutral
pseudoscalar mode in the spectrum beyond the two Goldstone modes which are eaten by the Z and V
that one expects from the symmetry breaking pattern, ruling out this scenario.

Due to the constraints outlined above, we are then forced to consider the case where the neutral
components of both η1,2 develop vevs v1,2. We take the vevs to be real, deferring the study of spontaneous
CP violation within this model to future work. In this scenario, no stable particles remain, and U(1)D
is broken as desired. Taking v1,2 ∼ O(GeV) then gives the dark photon a mass near or below the GeV
scale. The SM Higgs acquires its usual vev, v, and gives mass to the SM fermions, while their non-zero
U(1)D charges forbid the PM doublets from coupling to the SM fermions, thus avoiding possible tree-level
flavor-changing neutral currents in the Higgs sector.

We define the real and imaginary parts of the complex fields as

H =

(
H+

h+v+ia√
2

)
η1 =

(
η+

1
χ1+v1+iξ1√

2

)
η2 =

(
η+

2
χ2+v2+iξ2√

2

)
. (4)

In the absence of U(1)D breaking (i.e., v1 = v2 = 0), the dark charge will be a good quantum number,
and the states η0

1 and η0∗
2 will mix, with this mixing mediated by the λ5 term of equation 3. In the

basis of the real fields, this term will mix χ1 with χ2 and ξ1 with −ξ2, up to correction terms of order
v1,2/v ' 10−2. In the absence of CP violation, there are three neutral CP-even scalars, one neutral
CP-odd scalar, and 2 charged scalars remaining in the physical spectrum after spontaneous symmetry
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breaking.

2.1 CP-Odd Sector

In the absence of CP-violation, the CP-odd sector contains a single massive state and two Goldstone
bosons which are eaten by the SM Z and the dark photon, V . The mass matrix is given in the a, ξ1, ξ2
basis by

M2
CPO = v2

−2λ5x1x2 λ5x2 λ5x1

λ5x2 −λ5x2

2x1
−λ5

2

λ5x1 −λ5

2 −λ5x1

2x2

 , (5)

where xi ≡ vi/v. We denote the physical, massive CP-odd state by A, and find

m2
A = −λ5v

2

2

[
t+

1

t
+ 4x1x2

]
, (6)

where t ≡ x1/x2 ' 1. In order to have a positive mass squared, we require the product −λ5v1v2 > 0, and
for the sake of concreteness we will assume v1,2 > 0 and λ5 < 0 in what follows. The physical field A is
an admixture of the pseudoscalar a component of the SM Higgs as well as the pseudoscalar components
of η0

1,2, which we denoted by ξ1,2. Specifically, one finds that A is the admixture

A =
−2x1a+ ξ1 + tξ2√

t2 + 1 + 4x2
1

. (7)

The corresponding Goldstone modes are then linear combinations of the two remaining fields which
are orthogonal to A:

G0
Z = cθG G1 − sθG G2,

G0
V = sθG G1 + cθG G2;

G1 =
a+ 2x2ξ2√

1 + 4x2
2

,

G2 =
2x2a+ (t+ 4x1x2)ξ1 − ξ2√

(1 + 4x2
2)(1 + t2 + 4x2

1)
,

(8)

where sθG = sin θG, etc, with the angle θG given by

sinθG =
−
√
x2

1 + x2
2 + 4x2

1x
2
2

[
g
cw

(1 + 2x2
2)− 8g2

Dx
2
2 + 2 ggDεZVcw

]
g2

c2w
(1− 4x2

2)− ( g
2

c2w
+ 4g2

D)(x2
1 + x2

2)
+O(ε2), (9)

where εZV , discussed further in Sec. 2.4, parameterizes the effective kinetic mixing between the dark
photon, V , and the Z, and is of order εZV ∼ ε ∼ x2

i ∼ 10−4. G0
V,Z are the Goldstones eaten by the V

and Z, respectively. Noting that sinθG ∼ xi, we see that G0
Z is primarily composed of the a, while G0

V

is primarily an admixture of ξ1,2 as might be expected. We also see that t controls the relative amount
of ξ1 and ξ2 in the dark photon’s Goldstone partner, with t > 1 increasing the ξ1 admixture and t < 1
increasing the ξ2 admixture. This may have been expected since t is the ratio of the dark vevs, and t > 1
reflects the case in which U(1)D breaking and the dark photon mass are dominated by v1 while t < 1
implies that v2 dominates the dark photon mass and U(1)D breaking.
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2.2 Charged Sector

In the charged sector, there are two physical states, denoted H±1,2, and a Goldstone mode, G±, which is
eaten by the W±. These are admixtures of the gauge eigenstates H±, the charged component of the SM
Higgs, and η±1,2. The mass matrix in the H±, η±1 , η±2 basis is

M2
ch =

v2

2

−λ41x
2
1 − λ42x

2
2 − 2λ5x1x2 λ41x1 + λ5x2 λ42x2 + λ5x1

λ41x1 + λ5x2 −λ41x1+λ5x2+λ7x1x
2
2

x1
λ7x1x2

λ42x2 + λ5x1 λ7x1x2 −λ42x2+λ5x1+λ7x
2
1x2

x2

 . (10)

The mass eigenstates can be expressed as

G± =
H± + x1η

±
1 + x2η

±
2√

1 + x2
1 + x2

2

,

H±1 =
cα
√

1 + x2
2√

1 + x2
1 + x2

2

η±1 +

[
x2sα√
1 + x2

2

− x1cα√
(1 + x2

2)(1 + x2
1 + x2

2)

]
H± −

[
sα√

1 + x2
2

− x1x2cα√
(1 + x2

2)(1 + x2
1 + x2

2)

]
η±2 ,

H±2 =

[
cα√

1 + x2
2

− x1x2sα√
(1 + x2

2)(1 + x2
1 + x2

2)

]
η±2 −

[
x2cα√
1 + x2

2

+
x1sα√

(1 + x2
2)(1 + x2

1 + x2
2)

]
H± +

sα
√

1 + x2
2√

1 + x2
1 + x2

2

η±1 ,

(11)
where the angle α is given by

tan(2α) =
−2x1x

2
2

√
1 + x2

1 + x2
2[x2λ5 + x1(λ41 − λ7)]

x2(1 + x2
1 + x2

2)[x2λ5 + x1(λ41 + x2
2λ7)]− x1[x2(1 + x2)2λ42 + x1λ5(1 + 2x2

2 + 2x4
2) + x2

1x2(x2
2λ41 + λ7)]

'2x2
2λ5 + 2x1x2(λ41 − λ7)

λ42 − λ41 + λ5(t− 1
t )

+O(x4
i ).

(12)
The G± is primarily composed of the charged component of the SM Higgs, with O(xi) admixtures of
η±1,2, while H±1,2 are primarily composed of η±1,2, respectively, with an O(xi) admixtures of the H± and

O(x2
i ) admixtures of η±2,1. Keeping only terms to order x2

i , the masses for H±1,2 are given by

m2
1 =

[
−λ41

2
(1 + x2

1)− λ5

2t
(1 + x2

1)− λ7

2
x2

2

]
v2

m2
2 =

[
−λ42

2
(1 + x2

2)− λ5t

2
(1 + x2

2)− λ7

2
x2

1

]
v2.

(13)

Inspecting these expressions, we see that m2
1,2 & m2

h requires λ41, λ42 < 0 in addition to the requirement
λ5 < 0 arising from m2

A > 0.

2.3 CP-Even Sector

The most complicated sector is that of the CP-even neutral fields, with three physical states which are
admixtures of h, the would-be SM Higgs boson, and the real parts of η0

1,2, denoted by χ1,2. The mass
matrix in the h, χ1, χ2 basis is then

M2
CPE = v2

 2λ1 x1(λ31 + λ41) + x2λ5 x2(λ32 + λ42) + x1λ5

x1(λ31 + λ41) + x2λ5 2λ21x
2
1 − λ5

2t
λ5

2 + x1x2(λ6 + λ7)

x2(λ32 + λ42) + x1λ5
λ5

2 + x1x2(λ6 + λ7) 2λ22x
2
2 − tλ5

2

 . (14)

Note that the mass mixings between h and χ1,2 are O(xi) ∼ 10−2, while the mass mixings within the
“dark” sector between χ1 and χ2 are O(1). This hierarchical mixing can be leveraged to make a very
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good approximation of the required diagonalization process analytically. First we diagonalize the lower
right 2× 2 block, with a large mixing angle θ given by

tan(2θ) =
2(c− (λ6 + λ7)x1x2)

c( 1
t − t) + 2λ21x2

1 − 2λ22x2
2

. (15)

where xi and t are defined as above, and we introduce c = −λ5/2 > 0. Under the exchange t ↔ 1
t ,

tan(2θ) will change sign, but this exchange is equivalent to interchanging the labels of η1 and η2, so for
concreteness in the remainder of the paper we will consider the case t ≥ 1 so that tan(2θ) < 0. At leading
order we may drop the O(x2

i ) terms in tan(2θ), and make the identification

cos(θ) ≈ t√
1 + t2

sin(θ) ≈ −1√
1 + t2

. (16)

Diagonalizing the rest of the matrix and neglecting terms of O(x3), we arrive at the admixtures for the
physical states, which are given by

hSM =cθ1cθ2h+ (−cθcθ2sθ1 − sθsθ2)χ1 + (cθ2sθsθ1 − cθsθ2)χ2

hd = (cθ3sθ1 − cθ1sθ2sθ3)h+(cθcθ1cθ2 − cθ2sθsθ3 + cθsθ1sθ2sθ3)χ1 + (−cθ1cθ3sθ − cθcθ2sθ3 − sθsθ1sθ2sθ3)χ2

H = (cθ1cθ3sθ2 + sθ1sθ3)h+(cθ2cθ3sθ + cθcθ1sθ3 − cθcθ3sθ1sθ2)χ1 + (cθcθ2cθ3 + cθ3sθsθ1sθ2 − cθ1sθsθ3)χ2,
(17)

where the various angles are of order sθ(= sin(θ), etc), cθ ∼ 1, sθ1 , sθ2 ∼ xi and sθ3 ∼ x2
i . We identify the

' 125 GeV, SM-like Higgs boson with the suggestively named hSM , and note that only small admixtures
of h, of order xi ∼ 10−2, appear in the other neutral CP-even states. In terms of the Higgs potential
parameters and the angle θ of Eq. 15, and dropping O(x3

i ) terms, these three angles are given by

tan(2θ1) =
−cθ[x1(λ31 + λ41) + x2λ5] + sθ[x2(λ32 + λ42) + x1λ5)]

λ1
,

tan(2θ2) =
−2(cθ[x2(λ32 + λ42) + x1λ5] + sθ[x1(λ31 + λ41) + x2λ5])

2λ1 − c( 1
t + t)

,

tan(2θ3) =
−sθ1t2θ2(2λ1 − c( 1

t + t))

c( 1
t + t)

.

(18)

The masses of the physical states can be expressed in terms of the Higgs potential parameters, dropping
terms of O(x4

i ), as

m2
hSM

v2
= 2λ1(1− 2s2

θ1 − 2s2
θ2) + λ1s2θ1t2θ1 + s2

θ2M3 + sθ2t2θ2(2λ1 − c
(

1

t
+ t

)
),

m2
hd

v2
= M2(1− 2s2

θ1) + 2λ1(s2
θ1 − sθ1t2θ1),

m2
H

v2
= M3(1− 2s2

θ2) + 2λ1s
2
θ2 − sθ2t2θ2(2λ1 − c

(
1

t
+ t

)
),

(19)

where we have introduced the abbreviations M2 ∼ O(x2
i ) and M3 ∼ O(1):

M2 = c2θ

(c
t

+ 2x2
1λ21

)
− s2θ(−c+ x1x2(λ6 + λ7)) + s2

θ(ct+ 2x2
2λ22),

M3 = c2θ(ct+ 2x2
2λ22) + s2θ(−c+ x1x2(λ6 + λ7)) + s2

θ

(c
t

+ 2x2
1λ21

)
= c

(
1

t
+ t

)
+O(x2

i ).

(20)
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p p

γ V

1

p p

γ V

1

Figure 1: The two, 1-loop diagrams which contribute to ε and εZV . For ε, only the charged Higgses H±1,2
run in the loops. For εZV we replace γ → Z and we have the neutral BSM Higgs fields H, A, hd, and
the V Goldstone boson, G0

V , run in the loops in addition to the H±1,2.

From this we observe that there is a light state, hd, with a mass near the GeV scale, and a heavy state
H with a mass very close to the mass of the pseudoscalar A. Neglecting all O(x2

i ) terms, we see that
m2
H = m2

A = v2c( 1
t + t), so that this H−A degeneracy is broken only by the small U(1)D breaking terms.

2.4 Gauge Bosons and Kinetic Mixing

Kinetic mixing in this model is somewhat distinct from the usual cases examined in the literature [22].
In the typical case, kinetic mixing is induced while the SM gauge group remains unbroken, and the dark
photon V mixes directly with the hypercharge boson B, usually via loops of vector-like fermion PM.
The kinetic mixing is then removed by a non-unitary transformation which rescales the dark photon
field and couples it to the hypercharge current, and the couplings to mass eigenstates after electroweak
symmetry breaking (EWSB) are determined by a standard mass diagonalization procedure. This process
can generate finite ε at one loop as long as the portal matter satisfies

∑
i YiQD,i = 0 and have masses

which arise independently of EWSB. The model outlined in section 2 departs from this standard picture,
however, as the portal matter masses are themselves generated as a result of the symmetry breaking, by
the SM Higgs vev v and/or dark vevs v1,2. Since the portal matter states are massless prior to symmetry
breaking, they will not generate kinetic mixing in the unbroken theory, and ε 6= 0 can only be produced in
the broken phase of the theory. After symmetry breaking, it is most convenient to consider KM between
the usually defined SM fields Aµ, Zµ, with Vµ rather than the weak eigenstates Bµ, W3µ, and Vµ. Mass
mixing between the Z and V will be order x2

i ∼ ε, and thus we will neglect these effects in our estimation
of ε itself. Similarly we will only consider the O(1) mixings of the Higgs bosons which will run in the
loop graphs, since the O(xi) contributions become O(εxi) terms in the Lagrangian, which are negligible.
At leading order, it is convenient to work in the mass eigenstate basis H, A, hd, G

0
V , making the field

transformations

χ1 → cθ hd + sθ H, ξ1 → cθ GV − sθ A,
χ2 → −sθ hd + cθ H, ξ2 → sθ GV + cθ A,

(21)

where we use the leading order estimate for cθ and sθ given by Eq. 16. We take η±1 ≈ H
±
1 and η±2 ≈ H

±
2 ,

as the mixing effects in the charged sector are O(xi). Since we are interested in the coupling of the
dark photon to SM matter, we focus on kinetic mixing between the SM photon and the dark photon,
parameterized by ε, and the Z and the dark photon, parameterized by εZV . The relevant Feynman
diagrams for these are shown in Fig. 1. We denote the kinetically mixed fields with hats, and write the
kinetically mixed Lagrangian as

LKM = −1

4
F̂µν F̂

µν − 1

4
ẐµνẐ

µν − 1

4
V̂µν V̂

µν − ε

2
F̂µν V̂

µν − εZV
2
Ẑµν V̂

µν . (22)

We turn first to the calculation of ε, the familiar Aµ − Vµ kinetic mixing parameter. Here only the
charged H±1,2 contribute in the loop graphs, and they satisfy

∑
i=H±

1,2
QiQD,i = 0 so that ε is indeed finite

6
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Figure 2: The function G(δ), as defined in Eq. 25. Typical values of δ for the models in this paper are
δ ≈ 0.985, which corresponds to G(0.985) ≈ −0.5.

at one loop. We find the familiar-looking result

ε =
gDe

48π2
ln

(
m2

2

m2
1

)
. (23)

The calculation of εZV involves the neutral BSM Higgs bosons as well as the charged states, and
we will work in the ξ = 1 gauge so that the relevant fields in the loop are H, A, hd, and G0

V . The
H and A couple to each other and to Zµ and Vµ via derivative couplings, and to the Zµ and Vµ and
themselves via the four point couplings. Since H and A are nearly degenerate, up to a mass splitting
m2
H − m2

A ∼ O(x2
i v

2), we will assume mH ' mA so that they contribute to εZV as a single neutral
complex scalar. The two charged Higgs H±1,2 also contribute to εZV as complex scalars, just as they did

to ε. The dark Higgs, hd, and the Vµ Goldstone, G0
V , couple to Zµ and Vµ similarly to the H and A, but

they contribute to εZV with opposite sign so that the total logarithmic contribution from the set of fields
H, A, hd, and G0

V is again finite. Since hd and G0
V have masses which are set by O(xiv) ∼ GeV, the mass

splitting m2
hd
−m2

V ∼ O(x2
i v

2) is of the same order and produces an additional finite contribution to εZV .

Denoting the fractional mass splitting δ = (m2
hd
−m2

V )/m2
hd
∼ O(1), this additional finite contribution

to εZV is proportional to the function G(δ) defined below and shown in Fig. 2. For gD = e =
√

4παEM ,
we find the G(δ) term to be ∼ 25% of the contribution arising from the ln(m2

V /m
2
A) term. We emphasize

that G(δ) → 0 as δ → 0 so that the small fractional mass splitting of the H and A, δHA ∼ O(x2
i ), may

be safely neglected. We thus find εZV to be

εZV =
ggD

48π2cw

[(
1

2
− s2

w

)
ln

(
m2

2

m2
1

)
+
c2θ
2

(
ln

(
m2
V

m2
A

)
− 6G(δ)

)]
, (24)

where δ = (m2
hd
−m2

V )/m2
hd

and G(δ), shown in Fig. 2, is given by

G(δ) =
1

δ3

[
2δ(1− δ)

3
+

2δ3

9
+ ln(1− δ)

(
2

3
− δ +

δ2

2

)]
. (25)

To remove both kinetic mixing effects we can make a non-unitary transformation [23]
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ÂµẐµ
V̂µ

 =

1 0 −ε/D
0 1 −εZV /D
0 0 1/D

AµZµ
Vµ

 , (26)

where D =
√

1− ε2 − ε2ZV ' 1 to leading order. Removing the KM produces mass mixing between the
Zµ and Vµ which is O(εZV v

2). This combines with the mass mixing induced at similar order by the dark
vevs v1,2, which are O(x2

i v
2), to produce a mass matrix in the Zµ, Vµ basis given by

M2
ZV =

(
g2v2

4c2w
(1 + x2

1 + x2
2) − gDgv

2

2cw
(x2

1 − x2
2)− g2εZV v

2

4c2w
(1 + x2

1 + x2
2)

− gDgv
2

2cw
(x2

1 − x2
2)− g2εZV v

2

4c2w
(1 + x2

1 + x2
2) g2

Dv
2(x2

1 + x2
2) + gDgεZV v

2

cw
(x2

1 − x2
2) +

g2ε2ZV v
2

4c2w

)
,

(27)
where we have dropped terms of order ε3. Diagonalizing the mass matrix by a rotation given by

sinθZV =
2gDcw
g

(x2
1 − x2

2) + εZV +O(ε2), (28)

we find the physical masses to be

M2
Z = v2

[
g2

4c2w
(1 + x2

1 + x2
2 + ε2ZV ) + g2

D(x2
1 − x2

2)2 +O(ε3)

]
, (29)

M2
V = g2

Dv
2
[
(x2

1 + x2
2)− (x2

1 − x2
2)2 +O(ε3)

]
, (30)

so the relevant piece of the covariant derivative describing the interactions becomes

−ieQAµ−i
[
g

cw

(
T 3
L − s2

wQ
)
− gDsθZV QD

]
Zµ−i

[
−εeQ+ 2gD(x2

1 − x2
2)
(
T 3
L − s2

wQ
)

+ gDQD
]
Vµ, (31)

where we have now dropped O(ε2), etc, suppressed terms. We note that the dark photon coupling to the
SM is modified from the typical case in the literature due to mass mixing with the Z, with a strength
determined by the dark sector coupling, gD, (rather than known SM couplings) at leading order. This is
similar to the situations observed previously in the literature, where vevs which are charged under both
SU(2)L×U(1)Y and U(1)D generate Z − V mass mixing proportional to the ratio of the couplings [11].
Whether the conventional εeQ term dominates the DP interaction with the SM fields thus depends on the
details of the dark sector via the relative size of the product eε compared to the combination gD(x2

1−x2
2).

We note as well that the DP now must also couple to the SM neutrinos due to its mass mixing with
the Z. Thus V may mediate non-standard neutrino interactions [24, 25], but we note that these become
vanishingly small as t→ 1 since the Z − V mass mixing vanishes in this limit.

3 Constraints on the Model Space

3.1 Higgs Potential

The Higgs potential in Eq. 3 will be minimized by the vevs v, v1, v2 only if the masses of the various
Higgs states in Section 2 are positive. This requirement led to the constraints λ41, λ42, λ5 < 0, and
the identification of hSM with the SM Higgs sets the additional constraint that λ1 ' 0.129 so that
mhSM ' 125.1 GeV, up to O(x2

i ) corrections. Beyond the requirements of positive mass eigenvalues, there
are additional theoretical constraints on the couplings λi arising from unitarity and vacuum stability.

Unitarity constraints on the λi come from the high energy behavior of 2-to-2 scattering in the Higgs
sector, where the dominant contribution to the generic scalar scattering amplitude S1S2 → S3S4 comes
from the quartic terms in the potential. Since at high energies SU(2)L×U(1)Y×U(1)D is unbroken, we
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Y = 0, σ = 0 Y = 1, σ = 0:

QD = 0 1√
2
Φ†Φ, 1√

2
η†1η1,

1√
2
η†2η2

1√
2
η̃1η2

QD = 1 1√
2
Φ†η1,

1√
2
η†2Φ 1√

2
Φ̃η1

QD = 2 1√
2
η†2η1 absent

QD = −1 1√
2
η†1Φ, 1√

2
Φ†η2

1√
2
Φ̃η2

QD = −2 1√
2
η†1η2 absent

Table 1: The weak isoscalar states which form the gauge eigenstate basis of the potential in Eq. 3 for
high energy 2 to 2 scattering.

Y = 0, σ = 1: Y = 1, σ = 1:

QD = 0 1√
2
Φ†τ iΦ, 1√

2
η†1τ

iη1,
1√
2
η†2τ

iη2
1
2 Φ̃τ iΦ, 1√

2
η̃1τ

iη2 = 1√
2
η̃2τ

iη1

QD = 1 1√
2
Φ†τ iη1,

1√
2
η†2τ

iΦ 1√
2
Φ̃τ iη1 = 1√

2
η̃1τ

iΦ

QD = 2 1√
2
η†2τ

iη1
1
2 η̃1τ

iη1

QD = −1 1√
2
η†1τ

iΦ, 1√
2
Φ†τ iη2

1√
2
Φ̃τ iη2 = 1√

2
η̃2τ

iΦ

QD = −2 1√
2
η†1τ

iη2
1
2 η̃2τ

iη2

Table 2: The weak isovector states which form the gauge eigenstate basis of the potential in Eq. 3 for
high energy 2 to 2 scattering.

may consider the scattering between states of definite hypercharge, dark charge, and isospin. Following
the methodology of Ref. [26], we categorize our states as scalar products with Y = 0, 1,−1; σ = 0 (weak
isoscalar) or 1 (weak isovector); and QD = 0, 1, 2,−1,−2. The weak isoscalar states are listed in Table
1, while the weak isovector states are listed in Table 2. The states with Y = −1 can be obtained from
the Y = 1 states by conjugation.

We note that the U(1)D charge of the two particle states plays a role analogous to the softly broken
Z2 symmetry of the Two Higgs Doublet Model in preventing scattering between two particle states with
different QD values, though in this instance it is due to a gauge symmetry rather than an imposed
discrete symmetry. As a result, it is an instructive check to compare the Z2-odd results of Ref. [26] with
the QD = ±1 results here. Following the notation of Ref. [26], we find the tree-level scattering matrices
in the isoscalar channels, SY,σ=0,QD , to be

16πSY=0,σ=0,QD=0 =

 6λ1 2λ31 + λ41 2λ32 + λ42

2λ31 + λ41 6λ21 2λ6 + λ7

2λ32 + λ42 2λ6 + λ7 6λ22

 ,

16πSY=0,σ=0,QD=1 =

(
λ31 + 2λ41 3λ5

3λ5 λ32 + 2λ42

)
,

16πSY=0,σ=0,QD=2 = λ6 + 2λ7,

16πSY=1,σ=0,QD=0 = λ6 − λ7,

16πSY=1,σ=0,QD=1 = λ31 − λ41,

16πSY=1,σ=0,QD=−1 = λ32 − λ42,

(32)

where the corresponding matrices for Y = −1, QD = 0,±1 and Y = 0, QD = −1,−2, obtained through
charge conjugation, will be the same as the Y = 1, QD = 0,∓1 and Y = 0, QD = 1, 2 cases, respectively,
since all parameters in the potential are real. The corresponding tree-level scattering matrices in the
isovector channels, SY,σ=1,QD , are given by
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16πSY=0,σ=1,QD=0 =

2λ1 λ41 λ42

λ41 2λ21 λ7

λ42 λ7 2λ22

 ,

16πSY=0,σ=1,QD=1 =

(
λ31 λ5

λ5 λ32

)
,

16πSY=0,σ=1,QD=2 = λ6

16πSY=1,σ=1,QD=0 =

(
2λ1

√
2λ5√

2λ5 λ6 + λ7

)
,

16πSY=1,σ=1,QD=1 = λ31 + λ41,

16πSY=1,σ=1,QD=2 = 2λ21,

16πSY=1,σ=1,QD=−1 = λ32 + λ42,

16πSY=1,σ=1,QD=−2 = 2λ22,

(33)

where again states with Y = −1 and/or QD = −1,−2 may be obtained by charge conjugation, but will
be the same as the corresponding matrix above. The unitarity constraint can be written SY,σ,QD < 1,
which constrains the absolute values of the eigenvalues of the above matrices, Λi, to satisfy |Λi| < 16π.
This produces some constraints on linear combinations of couplings or quadratic functions of couplings
for many of the above (Y, σ,QD) states, but for the 3x3 matrices of SY=0,σ=0,Qd=0 and SY=0,σ=1,Qd=0,
these are constraints on cubic equations which translate into complicated constraints on the parameters.
We confirm these conditions numerically during our scan of the parameter space.

The Higgs potential in Eq. 3 must also be bounded from below in order for the minimum characterized
by the vevs v, v1, v2 6= 0 to be stable. This requirement sets additional constraints on the quartic couplings,
and analytic forms of these constraints were found in Ref. [18] for the case of negligible λ5. In the case
considered here we cannot neglect λ5, as it controls the mass of the pseudoscalar A, and mA & mh

requires a sizable −λ5 & 0.3.

To ensure the Higgs potential is bounded from below, it is sufficient to demonstrate that the quartic
portion of the potential can be written in the form λabφ

2
aφ

2
b , where φa,b are real fields or gauge orbit

variables and λab is a copositive matrix [27]. A symmetric matrix B is copositive if the quadratic form

xTBx ≥ 0 for all x ∈ Rn+, so we simply need to express the potential as ~hTΛ~h where ~h is a set of
non-negative monomials, and demonstrate that Λ is copositive. We begin by defining

Φ = fΦ̂, ηi = eiη̂i, Φ̂†Φ̂ = η̂i
†η̂i = 1, f, ei > 0,

Φ̂†η̂i = ρie
iδi , η̂1

†η̂2 = ρ′eiφ, 0 ≤ ρi, ρ′ ≤ 1.
(34)

Using these definitions we may write the quartic terms of Eq. 3 as

V4 = λ1f
4+λ21e

4
1 + λ22e

4
2 + λ31f

2e2
1 + λ32f

2e2
2 + λ41f

2e2
1ρ

2
1 + λ42f

2e2
2ρ

2
2

+ 2λ5f
2e1e2ρ1ρ2cos(δ1 + δ2) + λ6e

2
1e

2
2 + λ7ρ

′2e2
1e

2
2.

(35)

To ensure vacuum stability, it is sufficient to minimize the potential with respect to ρi, ρ
′, and δi, and

show that the resulting matrix representation of the potential ~hTΛ~h, with ~hT = (e1e2, f
2, e2

1, e
2
2), has

copositive Λ. It is difficult in general to write the minimum of this function for arbitrary values of λi
since the values of ρi, ρ

′, and δi which minimize it are necessarily functions of the parameters λi. However,
since we are interested in a particular portion of parameter space where λ5, λ41, λ42 < 0, we can minimize
with respect to ρi, ρ

′, and δi in a convenient manner. In particular, we may write

λ41f
2e2

1 + λ42f
2e2

2 + 2λ5f
2e1e2 ≤ λ41f

2e2
1ρ

2
1 + λ42f

2e2
2ρ

2
2 + 2λ5f

2e1e2ρ1ρ2cos(δ1 + δ2), (36)

since cos(δ1 + δ2) = 1 will ensure the λ5 term contributes negatively, i .e. 2λ5f
2e1e2ρ1ρ2 ≤ 0 for λ5 < 0,

and ρ1 = ρ2 = 1 minimizes λ41f
2e2

1ρ
2
1 + λ42f

2e2
2ρ

2
2 + 2λ5f

2e1e2ρ1ρ2 for λ41, λ42, λ5 < 0. Additionally,
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since λ7ρ
′2e2

1e
2
2 is the only term dependent on ρ′, it will be minimized by ρ = 1 for λ7 < 0 and ρ′ = 0 for

λ7 > 0, so that at the minimum the term takes on the value min(0,λ7)e2
1e

2
2. Thus the minimum of the

quartic terms of potential may be written as

V4,min =
1

2

(
e1e2 f2 e2

1 e2
2

)
2c1λ67 2λ5 0 0

2λ5 2λ1 λ31 + λ41 λ32 + λ42

0 λ31 + λ41 2λ21 c2λ67

0 λ32 + λ42 c2λ67 2λ22



e1e2

f2

e2
1

e2
2

 , (37)

where λ67 = λ6 + min(0, λ7) and c1 + c2 = 1. Note that the relationship c1 + c2 = 1 defines an affine
subspace Λ(ci) of the general 4x4 matrix space, and that V4,min is invariant under affine transformations
within this subspace. Therefore if any point of the subspace Λ(ci) is copositive, the potential will be
bounded from below. There exist copositivity criteria for 4x4 matrices in the literature [28, 29], but for
the present study we satisfy ourselves by confirming that the affine subspace Λ(ci) contains a positive-
definite matrix for c1 = 1. Since positive-definite matrices are a subset of copositive matrices [30], this
condition is sufficient but not necessary to confirm that V4 is bounded below. To check that Λ(c1 = 1)
is positive-definite, we employ Sylvester’s Criterion [31], which is both necessary and sufficient to show
that a Hermitian matrix, such as that of Eq. 37, is positive-definite.

3.2 Constraints from Invisible Widths

Since the dark Higgs and dark photon (eventually) dominantly decay to DM, the presence of these new
light states, V and hd, which couple to the SM will introduce new invisible decay channels for both the SM
Higgs, hSM , and the Z. Neglecting O(xi) terms, we can take h→ hSM and use the field identifications of
Eq. 21, where we then use the leading order estimate for cθ and sθ given by Eq. 16. These substitutions
in the covariant derivatives of η1,2 yield a ZV hd coupling which mediates Z → V hd decays (which are
assumed to result in an invisible final state), with partial width

Γ(Z → V hd) =
g2Mz

96πc2w

c22θ
2

= Γ(Z → νν̄)
c22θ
2
, (38)

where we have treated hd and V as essentially massless, and Γ(Z → νν̄) is the partial width for a single
species of neutrino. Writing c2θ = (t2 − 1)/(t2 + 1), this invisible width sets a constraint on the allowed
values of t. Requiring Γ(Z → V hd) ≤ 0.0146 Γ(Z → νν̄), a value consistent with a 95% CL limit on
the deviation from the central value of Nν as measured from the Z invisible width [32], leads us to the
condition

0.8415 <∼ t <∼ 1.1884. (39)

Since we have chosen to work with t ≥ 1, this constraint is actually realized as 1 ≤ t <∼ 1.1884.

Making the replacements of Eq. 21 into the Higgs potential and using the leading order values for
cθ, sθ in Eq. 16, we see that hSM couples to the BSM states as

L ⊃ −hSMv
2

{
(h2
d +G2

V )

[
t2

1 + t2
(λ31 + λ41) +

1

1 + t2
(λ32 + λ42) +

2t

1 + t2
λ5

]
+ (AGV −Hhd)

[
2t

1 + t2
(λ31 + λ41 − λ32 − λ42)− 2

t2 − 1

1 + t2
λ5

]
+ (H2 +A2)

[
1

1 + t2
(λ31 + λ41) +

t2

1 + t2
(λ32 + λ42)− 2t

1 + t2
λ5

]}
.

(40)

These couplings thus mediate new invisible decays hSM → hdhd and hSM → V V . By the Goldstone
Boson Equivalence Theorem [33] we may take Γ(hSM → V V ) ' Γ(hSM → GVGV ) = Γ(hSM → hdhd)
at leading order. In the limit that m2

hd
/m2

h → 0, we obtain

11



Γ(hSM → hdhd) =
λ̃2
hv

2

32πmhSM

. (41)

where we define λ̃h = t2

1+t2 (λ31 + λ41) + 1
1+t2 (λ32 + λ42) + 2t

1+t2λ5. Searches for invisible Higgs decays at
the LHC have recently set a bound on the branching fraction B(hSM → inv.) < 0.11 [34], which translates
into a corresponding constraint on the coupling

|λ̃h| < 6.8× 10−3. (42)

Note that this constraint forces tan(2θ1) to be small, since at leading order in xi we can write tan(2θ1)
= −

√
x2

1 + x2
2λ̃h/λ1 ∼ O(x2

i ).

4 Model Signals

4.1 Parameter Scan

In order to probe the parameter space of the model, we performed a linear flat scan over the 10 λi
parameters of the Higgs potential and t = x1/x2, setting x1 by taking v1 = 1 GeV. As outlined above, we
require λ5, λ41, λ42 < 0 to ensure positive masses for the A and H±1,2, respectively. The Higgs potential
parameters are required to satisfy |λi| < 5, and we also require that 1 ≤ t ≤ 1.1884 due to the constraint
on the invisible width of the Z. For each point in parameter space, the unitarity constraints on the Higgs
potential of Sec. 3.1 are verified, as well as the coupling constraint from the invisible width of the SM
Higgs of Eq. 42. To increase the number of points which pass the scan, we require |λ3i + λ4i| ≤ 2, since
the constraint of Eq. 42 relies on these quantities. This increases the efficiency of points passing the scan
requirements by a factor of ∼ 8. Finally, since we expect that light neutral and charged states would
have been seen in previous collider searches, we will also require mA > 150 GeV and m1,2 > 200 GeV.
A scan of 5× 108 randomly chosen points in parameter space yielded 6884 points which simultaneously
satisfied these multiple requirements.

Fig. 3 shows λ̃h vs. t. The scan clearly uniformly samples the allowed region of t and λ̃h as defined by
Eqs. 39 and 42, indicating that neither boundary of λ̃h or of t is preferred by the constraints on masses
and the λi outlined above. Fig. 4 displays the values of t vs.λ5, showing that smaller values of |λ5|, which
correspond to smaller values of mA ≈ mH are preferred by the scan. The top boundary is defined by the
mA > 150 GeV requirement, which forces λ5 < −2( 150 GeV

v )2 t
1+t2 , up to O(x2

i ) terms.

Fig. 5 left and right shows mA ' mH plotted against min(m1,m2) and max(m1,m2), respectively.
The preference for smaller |λ5|, and thus smaller mA, can be seen by the relative overdensity of points
near 150 GeV, and we see that there is no comparable preference for low m1,2, as the points are relatively
uniform above the constraint m1,2 > 200 GeV. The slight upward tilt on the top of the right panel
reflects the fact that increasing mA requires larger −λ5, which increases both m1 and m2 even when |λ4i|
is nearly maximal.

The kinetic mixing parameters ε and εZV , given by Eq. 23 and Eq. 24, are plotted against t in
Fig. 6, up to an overall factor of gD/e. The value of ε will scale linearly with gD, while εZV scales
approximately, though not exactly, linearly with gD, as there is a subleading dependence on gD through

the mV dependence of the neutral sector contribution c2θ
2

(
ln
(
m2
V

m2
A

)
− 6G(δ)

)
. The right panel of Fig. 6

shows the t dependence of εZV , which comes primarily through c2θ ' (t2−1)/(1+t2). While m1, m2, and
mA all depend on t, this logarithmic dependence is subleading from that arising from the c2θ dependence.
When t = 1 the sole contribution to εZV comes from the charged Higgs fields, and as t increases the
neutral sector contribution becomes increasingly important until it dominates εZV near t ≈ 1.18.
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Figure 3: t vs. λ̃h, showing that the scan uniformly fills the region defined by the constraints arising
from the invisible widths.
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Figure 4: t vs. λ5, showing that smaller values of |λ5|, which correspond to smaller values of mA are
preferred as in the previous Figure. The top boundary is defined by the mA > 150 GeV bound, which
forces λ5 < −2( 150 GeV

v )2 t
1+t2 .
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Figure 5: mA ≈ mH plotted against min(m1,m2) (left) and max(m1,m2) (right). The preference for
smaller mA can be seen by the relative over density of points near 150 GeV, and we see that there is no
comparable preference for low m1,2, as the points are relatively uniform above the constraint m1,2 > 200
GeV. The slight upward tilt of the boundary on the top of the right panel reflects the fact that increasing
mA requires larger −λ5, which increases both m1 and m2, even when |λ4i| is nearly maximal.
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Figure 6: Left: |ε|, up to an overall factor of gD/e, plotted against t. Since ε depends linearly on gD, the
points in this plot will scale up or down linearly with a scaling of gD/e. Right: |εZV |, taking gD = e,
plotted against t. Since mV depends on gD, εZV is only approximately linear in gD/e, with a subleading

dependence coming through the mV dependence of ln
(
m2
V

m2
A

)
- 6G(δ). When t = 1, εZV is dominated by

the contribution from the charged Higgs fields, and as t increases εZV comes to be dominated by the
neutral sector contribution, which is proportional to c2θ ' (t2 − 1)/(1 + t2).
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4.2 LHC Signals

The LHC is capable of producing the various BSM Higgs fields through their couplings to the W±, γ and
Z. The charged Higgs, H±1,2, can always decay into W±hd/V since the dark Higgs and dark photon are
light, and may sometimes decay into W±H/A if this channel is kinematically accessible. Approximating
the dark Higgs and dark photon as massless, the width for H±1 and H±2 at leading order are given by

Γ(H±1 ) ' m1

16π

[
−λ41 −

λ5

t

] [
c2θ(1− rW )3 + Θ(m1 −mH −mW )s2

θ(1− 2(rW + rH) + (rH − rW )2)3/2
]
,

(43)

Γ(H±2 ) ' m2

16π
[−λ42 − λ5t]

[
s2
θ(1− rW )3 + Θ(m2 −mH −mW )c2θ(1− 2(rW + rH) + (rH − rW )2)3/2

]
,

(44)
where rX = m2

X/m
2
1,2 in Eq. 43 and 44, respectively, Θ(x) is the Heaviside function which is 1 for x ≥ 0

and 0 otherwise; we have taken mH ' mA, and θ is defined by Eq. 15.

At leading order in the small parameters, H decays are either as H → hSMhd or H → ZV , and the
corresponding A decays are A→ hSMV and A→ Zhd. Since the H and A form a neutral complex scalar
up to O(xi) effects, we can approximate Γ(H → hSM +hd) ' Γ(A→ hSMV ) and Γ(H → ZV ) ' Γ(A→
Zhd). At the same leading order in the small parameters these partial widths are given by

Γ(H → hSMhd) =
mHs2θ

64πλ5
[1− rh][(λ31 + λ41 − λ32 − λ42)s2θ + 2c2θλ5]2 ≡ mHs2θλ̃

2

64πλ5
[1− rh], (45)

Γ(H → ZV ) =
mHs2θλ5

16π
[1− rZ ]3, (46)

where rX = m2
X/m

2
H , and θ is defined by Eq. 15. The ratio R = Γ(H → ZV )/Γ(H → hSMhd)

determines which decay mode is dominant, and thus what final states should be searched for at colliders.
Fig. 7 shows R plotted against mH , and we see that for ' 72% of the points in the parameter scan
H/A → Z + V/hd is the dominant decay mode. We also see from the Figure that for mH & 175 GeV
nearly all the parameter space points lead to R > 1, so that the decay into H → Z + V/hd dominates.

The dark Higgs, hd, will essentially only decay into V V since its mixing with the SM Higgs is governed
by sin(θ1), which is suppressed by the constraint on λ̃h, so that decays into light SM fermions are doubly
suppressed by both the light fermion Yukawas as well as by sin2(θ1). Interestingly, we note in passing
that hd remains a reasonably narrow state, Γ(hd)/mhd ' 5.5 − 6.0%, for the parameter space under
study. We expect that V will either completely escape a detector at the LHC, or perhaps to decay inside
the calorimeter and produce a lepton jet. This will depend on its mass, the value of ε and the boost
it experiences from its production from the decay of a heavier state. However, to leverage current LHC
searches it is most convenient to assume that V almost always produces missing ET (MET), so that the
decay signatures of interest are H±1,2 →W±+MET and H/A→ hSM/Z+MET depending on whether we
have R < 1 or R > 1, respectively. We refer to points in parameter space with R > 1 as “Z-dominant”,
and those with R < 1 as “hSM -dominant” in the following discussion.

Since the BSM Higgs fields only couple to the light fermions through their O(xi) mixings with the
SM Higgs, these new particles will predominantly be produced through the SM electroweak bosons in
the s-channel at the LHC. In order to broadly probe the parameter space of this model, we select four
benchmark points which roughly span the range of masses produced by the scan over parameters and
the possible final states. The four benchmarks may be categorized by the masses of the H/A, the masses
of H±1,2, and the dominant decay mode of the H/A (either to Z+MET or to hSM+MET). These are
summarized in Table 3, and the full set of parameter values for each benchmark point (BP) are in given
in the Appendix A. BP1 and BP2 are both Z-dominant, with BP1 featuring H/A, H±1 , and H±2 being
on the heavier end of the scanned space, while BP2 has relatively light H/A, H±1 , and H±2 . BP3 and
BP4 are hSM -dominant, with BP3 having BSM Higgs masses on the heavier end of the scan range, and
BP4 featuring BSM Higgs masses on the lighter end of the scan range.
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Figure 7: The ratio of partial decay widths R plotted against mH , showing that more points are Z-
dominant than are hSM -dominant, especially at large values of mH . The red line corresponds to R=1 to
guide the eye.

In order to analyze various LHC searches for the BSM Higgs fields, we have used FeynRules [35]
to produce UFO files, which are passed to MadGraph5 aMC@NLO [36] to generate parton-level events.
These events are showered with Pythia8 [37], and DELPHES 3 [38] is used to simulate detector effects.
Searches conducted by ATLAS (CMS) have used the default ATLAS (CMS) card without pileup effects
and modified so that the hd and V would not deposit energy in the calorimeters. Further modifications
were made on a search-by-search basis, depending on the search parameters such as b-tagging efficiency,
reconstruction efficiencies of various physics objects, or isolation cuts as stated in the searches. When
searches did not state explicit cuts or procedures for isolation of physics objects, the default DELPHES
3 loose cut parameters were used. FastJet [39] was then used to reconstruct final state jets based on the
jet algorithm stated in each search.

The first set of LHC searches we consider are for Z+MET final states at the
√
s = 13 TeV LHC,

which should be sensitive to Z-dominant points in parameter space such as BP1 and BP2. The largest
signal will come from associated production of HV and Ahd through the Z in the s-channel, as shown
in Fig. 8. with production determined entirely by measured SM quantities and the values of mH,A. We
note that there are also contributions from diagrams with V in the s-channel, but these are suppressed
by a factor of ε in the amplitude, and may be safely neglected. Since the H/A in these events are always

Benchmark Point mH m1 m2 Z or hSM dominant
BP1 180.8 GeV 371.0 GeV 333.2 GeV Z
BP2 154.7 GeV 203.9 GeV 249.0 GeV Z
BP3 187.8 GeV 305.6 GeV 346.2 GeV hSM
BP4 155.7 GeV 210.5 GeV 275.3 GeV hSM

Table 3: Four benchmark points and their mass parameter values used to analyze the efficiency of LHC
searches for the model. These roughly span the range of mH , m1, and m2 produced by the full parameter
scan, with two Z-dominant points and two hSM -dominant points.
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Figure 8: The dominant production processes for Ahd at the LHC. A similar diagram, with A→ H and
hd → V , is responsible for HV production. There are similar diagrams with V ∗ in the s-channel, but
these are suppressed by a factor of ε2.

produced in association with a V/hd (which leads to MET), when they decay into Z+MET it is likely
that a portion of the MET from the primary V/hd will be balanced by the MET resulting from the V/hd
secondaries, thus reducing the overall event MET and lowering the event acceptance for searches with
somewhat high cuts on the MET threshold. This will limit the LHC’s capability to find these states,
especially when they are relatively light.

For hadronically decaying Z bosons, the best constraints arise from the
√
s = 13 TeV ATLAS search

with 36.1 fb−1 of integrated luminosity [40]. Since we expect our kinematics to differ significantly from
the mono-Z and mono-Z ′ searches, which use the MET distribution to place constraints on simplified
models, we rely on the model-independent limits on production cross section times acceptance times
efficiency, denoted by Aeff = (A × efficiency), to search for our benchmark point models. The model
independent limits on the visible cross section σvis(MET) = σZ+MET(MET)×Br(Z → qq̄)×Aeff (MET)
are binned by MET, with σZ+MET(MET) and Aeff (MET) both being functions of MET. Denoting the
95% CL limit on the observed visible cross section by σvis,lim, we find that for BP1, which has mH ' 181
GeV, the most sensitive search bin is MET∈ [400, 600) GeV, with σvis, lim/σvis, BP1 ≈ 13.4. For the
lighter case of mH ' 155 GeV in BP2 we find that the MET∈ [200, 250) GeV bin provides the strongest
limit, with σvis, lim/σvis, BP2 ≈ 11.8, while the second strongest constraint is from the MET∈ [400, 600)
GeV bin which leads to with σvis, lim/σvis, BP2 ≈ 12.2. If improvements in the background suppression
techniques and increased integrated luminosity can lead to stronger constraints by a factor of ' 13 or
more, this search may be able to probe the Z-dominated parameter points of these models.

When the Z decays leptonically, searches again use MET distributions as discriminants to set limits on
simplified models of dark matter, which we expect to differ significantly from the MET distributions gen-
erated by HV and Ahd associated production. We instead can approximate a probe the of Z-dominated
parameter points by using the implied limits on σ(ZhSM → l+l− + inv.) from the SM value of the
ZH production cross section and the corresponding reported limits on B(hSM → inv) in Refs. [41, 42].
Ref. [41] uses 36.1 fb−1 of data and reports a 95% CL upper limit of 40 fb on σ(ZhSM → l+l− + inv.)
and a 95% CL upper limit of Br(hSM → inv.) < 67%, which corresponds to σBP1(Z + MET) . 530 fb
and σBP2(Z + MET) . 740 fb, after accounting for differences in Aeff due to the event selection cuts.
Similarly, Ref. [42] uses 137 fb−1 of data and reports a 95% upper CL on Br(hSM → inv.) < 29%, which
translates into limits of σBP1(Z + MET) . 294 fb and σBP2(Z + MET) . 380 fb. Since the production
cross sections for Z+MET at

√
s = 13 TeV are σBP1(Z + MET) = 226 fb and σBP2(Z + MET) = 403 fb,

we see that the search in Ref. [42] might be able to probe part of our parameter space, though a more
careful study than this naive estimate, ideally using the unique MET distribution expected in this model,
is required to definitively rule out points in parameter space. The luminosity gains from the HL-LHC
would seem to make future versions of these searches especially promising probes of the Z-dominant
points of our model space.

For hSM -dominant points in the parameter space such as BP3 and BP4, we expect searches for
hSM+MET to be most sensitive. The largest signal for these searches will arise from the same associated
production process as in the Z-dominant case, though now we expect the H and A to decay as H/A→
hSM + hd/V . Since the hd and V will escape the detector and register as MET, we again expect the
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Figure 9: The dominant production processes for H+
i H

−
i at the LHC. A similar diagram, with V ∗ in the

s-channel, is suppressed by a factor of ε2.

MET distributions to differ from simplified models which typically assume the MET is produced roughly
back-to-back with the hSM .

Model-independent limits exist for hSM+MET final states with hSM → bb̄ [43] and hSM → γγ [44],
both with 36.1 fb−1 of data at the

√
s = 13 TeV LHC. For the hSM → bb̄ search, we assume that the

b-jets are tagged at the 77% efficiency working point of Ref. [45]. The model-independent limits are set on
σvis and binned by MET, similarly to the hadronic Z+MET searches. We find that the MET∈ [200, 350)
bin is the closest to constraining both BP3 and BP4, with σvis,lim/σvis,BP3 ≈ 9 and σvis,lim/σvis,BP4 ≈ 6,
so that an improvement by a factor of ∼ 10 in this search would be capable of probing nearly all of
the parameter space. For the hSM → γγ search, there are four relevant categories which each have a
model-independent limit on σvis. We find that for both BP3 and BP4 the Mono-Higgs event category is
the most sensitive to the model, with σvis,lim/σvis,BP3 ≈ 3.8 and σvis,lim/σvis,BP4 ≈ 2. Since this 36.1 fb−1

search is close to probing these benchmark points, we expect that the hSM → γγ search mode should be
able to probe much of the hSM -dominant parameter space with a factor of a few times more of integrated
luminosity.

Searches for the charged states, H±1,2, rely on the W±+MET in the final state, and should be sensitive

to all of our benchmark points. Pair production of H±1,2 occurs primarily through s-channel Z and γ
exchange, shown in Fig. 9, and the production rate is again dependent only upon the SM gauge couplings
and the charged Higgs masses m1,2. While diagrams with quarks in the t-channel also contribute due
to mixing with the SM H±, these contributions will be suppressed by x2

i in the amplitude, and are thus
negligible. The W+W−+MET final state produced by these events can be examined by using searches
designed to look for chargino or slepton pair production. Leptonic decays of the W+W− provide the
cleanest probe of these events, and ATLAS has performed such a search using 139 fb−1 of data to place
model-independent bounds on W+W−+MET production in event categories binned by the stransverse
mass, mT2, of the leptons and by whether or not the leptons were same-flavor or different-flavor pairs [46].
These constraints prove quite insensitive to our benchmark points, with the closest bound still remaining
a factor of ∼ 19 above the prediction of BP4 in the different-flavor, 0-jet, mT2 ∈ [120, 160) bin. Generally
to probe our benchmark points, the searches would need to improve their sensitivities by roughly factors
of ∼ 70, 22, and 48 to begin being sensitive to BP1, BP2, and BP3, respectively. We see that these limits
are closer to probing the models with lighter H±1,2, due to the higher production cross sections but still
remain rather far away.

The H±1,2 states may also be produced in association with H/A via W± exchange in the s-channel,
as shown in Fig. 10. The final state for this process depends upon whether the model is Z- or hSM -
dominant. For the Z-dominant cases, BP1 and BP2, searches for chargino/neutralino or slepton pair
production with a W±Z+MET final state are relevant, and ATLAS employed 36.1 fb−1 of data to set
model-independent limits on this process [47]. We find the 2l+ jets and the 3l+0-jet searches to be the
most sensitive to these benchmark points, with the SR2-int search region being the most sensitive to both
BP1 and BP2. We find σobs, SR2-int/σBP1, SR2-int ≈ 8, and σobs, SR2-int/σBP2, SR2-int ≈ 6, so that with the
higher integrated luminosity of the HL-LHC it may be possible to probe these benchmark points using
the SR2-int search.

There are myriad other searches for charginos and neutralinos, which in principle may also be sensitive
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Figure 10: The dominant production processes for H±i +H/A at the LHC.

to the Z-dominant model benchmark points. Given the lower expected MET produced by events in this
model, one may expect that the cleaner background at the lower energies of the 8 TeV LHC could perhaps
better probe the parameter space. Two 20.3 fb−1 ATLAS searches for electroweakinos and slepton pair
production, with 3l+MET [48] and 2l+MET [49] final states, set relevant model-independent limits on
the visible cross section, with lower cuts on MET than the 36.1 fb−1 search of Ref. [47]. The tightest
limits across all bins are σvis = 0.148 fb for the SR0τa signal region of the 3l+MET search of σvis = 0.17
fb. Calculating σ × BF (Z → ll,W → lν) ≈ 0.053 fb for BP1 and 0.297 fb for BP2, we see that the 3l
search is in principle only sensitive to BP2. After running the SR0τa search for BP2 we find that all bins
are insensitive to the model. Ref. [48] also performs searches for W±hSM+MET final states, but BP3
and BP4 do not produce large enough visible cross sections to be seen by these searches, even with perfect
acceptance. Turning to the 2l+MET search, which looks for chargino and slepton pair production as
well as chargino/neutralino production, we see that the chargino and slepton searches should be sensitive
to WW+MET final states in this model. After calculating production cross sections times branching
fractions for the various benchmark points, however, we see that none of them produce signals which
would be visible in the SR-mT2 or SR-WW searches, even with perfect acceptance. The SR-Zjets search
could be sensitive to the Z-dominant model point BP2, as BP1 again doesn’t produce enough visible cross
section even assuming perfect acceptance, but after performing the analysis we find that it is insensitive
to the benchmark models considered here.

Additional searches for charginos, neutralinos, and sleptons have been performed using 139 fb−1 of
data at the 13 TeV LHC, and may also probe BP1 and BP2. However, an ATLAS search for compressed
SUSY spectra in the 2l+MET final state [50] will not be sensitive to WZ+MET final states produced
here, since the search assumes off-shell Z and W in the decays and our model produces them on-shell.
However, the slepton search is in principle sensitive to the WW+MET final states produced by our
benchmark points. This search assumes that the sleptons recoil against a hard ISR jet, so we generate
W+W−j+MET final states at 13 TeV for each of the four benchmark points. After making the pT cut
on the leading jet pT,j1 ≥ 100 GeV and multiplying by the branching fractions for the W ’s to decay into
same flavor lepton pairs, the visible cross sections are all found to be already below the lowest limit in
the slepton search, thus rendering it insensitive to our model points. Another SUSY-inspired ATLAS
search for 3l+MET final states [51] with 139 fb−1 sets model-independent limits on WZ+MET and
WZj+MET final states which may be sensitive to BP1 and BP2. After performing this analysis, we
find that the limits are still quite far away from probing our benchmark points. The closest bound for
BP1 comes from the SR-low search region, which has σvis,lim/σvis,BP1 ≈ 170. The nearest probe of BP2
is the SR-ISR signal region, which has σvis,lim/σvis,BP2 ≈ 40. These searches are unlikely to be sensitive
to these benchmarks at the HL-LHC from the additional luminosity alone but would require substantial
analysis improvements.

Associated production of H±1,2 with H/A can be probed with searches for WhSM+MET in the hSM -

dominant points of parameter space, with hSM → bb̄ [52] or hSM → γγ [53]. The model-independent
limits of Ref. [52] come from the channel W (→ lν)hSM (→ bb̄)+MET in 139 fb−1 of data, and require
MET > 240 GeV for event selection. This is a high threshold for our model’s events to pass, since both
H±1,2 and H/A will produce MET in their decays which will tend to somewhat balance one another to
some degree, thus lowering the overall event MET. We find the most sensitive constraint in this case
arises from the SR-LM model-independent search, though we find σobs, SR-LM/σBP3, SR-LM ≈ 28 and
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Model Z(qq̄)+MET [40] Z(l+l−)+MET [42] hSM (bb̄)+MET [43] hSM (γγ)+MET [44]
BP1 13 1.3 – –
BP2 12 0.94 – –
BP3 – – 9 3.8
BP4 – – 6 2

W+W−+MET [46] WZ+MET [47] WhSM+MET hSM (γγ)+MET [53]
BP1 70 8 – –
BP2 22 6 – –
BP3 48 – 28 (bb̄) [52] 2
BP4 19 – 14 (γγ) [53] 1.2

Table 4: The ratio σvis,lim/σvis,BPx for the analysis bin providing the strongest constraint coming from
the various searches for the various final states produced in our scalar PM models at the LHC. Note
that the limits for Z → l+l−+MET are estimates from searches for ZhSM → l+l− + inv. rather than
model-independent limits. For final states with multiple searches, we display the result of the search with
smallest value of σvis,lim/σvis,BPx. The hSM → γγ+MET search in the lower half of the table reflects the
Category 12 signal region of Ref. [53] applied to H/A+ V/hd associated production events.

σobs, SR-LM/σBP4, SR-LM ≈ 20. Thus the sensitivity of this search must improve by a factor of 20-30 to
probe these models in this channel.

The model-independent limits on WhSM (→ γγ)+MET set by Ref. [53] from 139 fb−1 of data prove
much more sensitive to BP3 and BP4. The most sensitive category is the “Rest” Category 12, which
requires MET significance SMET = Emiss

T /
√

ΣET > 9, no leptons, and no jets with dijet mass consistent
with a hadronic W decay if there are at least 2 jets. Since this search category uses SMET rather than a
cut on MET, the low MET events produced by this model may pass event selection. Since this category
essentially searches for hSM → γγ+MET due to the requirement that there not be an observed leptonic
or hadronic W decay, it is more sensitive to hSM+MET events produced by H/A being produced in asso-
ciation with V/hd rather than to H±1,2+H/A associated production. We find that for the H±1,2+H/A asso-
ciated production events, σvis,lim/σvis,BP3,H±

1,2+H/A ≈ 35 and σvis,lim/σvis,BP4,H±
1,2+H/A ≈ 14, while for the

H/A+V/hd associated production events σvis,lim/σvis,BP3,H/A+V/hd ≈ 2 and σvis,lim/σvis,BP4,H/A+V/hd ≈
1.2. At this level, full NLO effects become important, and a relatively modest K-factor could render this
search sensitive to BP4. With additional statistics from the HL-LHC, this search should be able to probe
the hSM -dominant points of our parameter space.

Table 4 summarizes the factors by which various searches must improve in their sensitivities in order
to probe the BP1-4 benchmark points. We emphasize that the production cross sections of the BSM
Higgs fields in these models are governed entirely by SM couplings and the new scalar masses. This
implies that any search which is sensitive to both Z- or hSM -dominant BPs should be sensitive to the
most, if not the entire, Z- or hSM -dominant parameter space, since the BPs were chosen to roughly span
the range of BSM masses generated by the scan. Several searches in combination could be sufficiently
sensitive to probe the entire parameter space considered here with the statistics gained from the HL-LHC.
In particular, searches targeted towards lower MET requirements can perform especially well in probing
this model space since the production event topologies reduce the amount of observed MET relative to
the back-to-back SM+MET topologies more typically targeted by, e.g., mono-searches. We note that the
present searches are generally more sensitive to H/A production signal events than to H±1,2 production
events due to the lighter masses of the H/A and the relative difficulty of reconstructing W± in the decays
compared to the Z or hSM decay products since these lead to invariant mass peaks whereas clean W
identification requires a leptonic decay which already contains MET.
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Figure 11: Diagrams contributing to hSM → V γ, which contribute to Br(hSM → γ+inv.). These are
mediated the charged Higgses H±1,2 through a triangle (left) and loop (right) diagram.

4.3 Probes through Rare Higgs decays

The extended Higgs sector mediates additional decays with hd and V in the final state, producing new
contributions to hSM → γ+MET and hSM → Z+MET; we will discuss these modes in turn below.

(i) hSM → V γ

This reaction is the Scalar PM model analog of the SM hSM → Zγ process and, as noted above,
V will likely appear as MET in the detector. In fact, the SM process with Z → ν̄ν (which has a
branching fraction of ' 20%) provides the irreducible background for this reaction unless the photon
energy in the Higgs rest frame can be determined. The corresponding LHC search where the Z decays
instead to e+e− or µ+µ− has recently been performed by ATLAS [54]; they obtain an upper limit of
B(hSM → Zγ) < 5.5 ·10−3 for the relevant branching fraction. This result is roughly ∼ 3.6 times greater
than that of the SM prediction under the assumption that the Higgs production cross section is given by
its SM value. A similar set of assumptions would then tell us that this bound implies the corresponding
limit of B(hSM → γ + invisible) < 1.1 · 10−3 would be expected by just employing the known SM
branching fractions of the Z into charged leptons and neutrinos; the actual SM prediction itself for the
process hSM → Zγ,Z → ν̄ν is ' 3 · 10−4.

In the Scalar PM model, the hSM → V + γ process is the result of triangle and loop graphs, shown in
Fig. 11, involving those PM fields which couple to hSM and carry both electric as well as dark charges,
i.e., H±1,2 with dark charges QiD = ±1. The partial width for this process can be written as

Γ(hSM → V γ) =
m3
h

32π

(
1− m2

V

m2
h

)3

|Atot|2, (47)

where Atot is the total amplitude resulting from the sum of both H±1,2 loops which we can write in the
form

Atot =
2α

π

gD
e

v

m2
h

∑
i

QiDci
I1(τi, µi)

τi
, (48)

where we have defined the hSMH
+
i H

−
i coupling to be civ, and whose values can be read off from the set

of couplings given above, µi = 4m2
H±
i

/m2
V , τi = 4m2

H±
i

/m2
h and I1 is the well-known function as given in,

e.g., the Higgs Hunters Guide [55]1. Note that since mV <∼ 1 GeV, we see that the µi >> 1 while τi ∼ 10

1See Eq.(2.24) on p.29.
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given the typical set of masses we have encountered above. Denoting this sum by Σ, we then find that

Γ(hSM → V γ) ' mhα
2

2π3

g2
D

e2
|Σ|2, (49)

so that employing Γ(hSM ) = 4.07 MeV , mh = 125.1 GeV, v = 246.2 GeV, and α−1 = 127.935 we obtain,
numerically, that

B(hSM → V γ) ' 0.233
g2
D

e2
|Σ|2. (50)

Now as µi → ∞, which is a reasonable numerical approximation here, I1 becomes a function of just τ
alone and we find that in this same limit

I1
τ
→ −1

2

(
1− τ [sin−1(1/

√
τ)]2

)
= F (τ) ' 1

6τ
. (51)

where we have assumed τ is also large in the last step. Fig. 12 shows F as a function of the charged

Figure 12: The quantity F , as defined in the text, as a function of the charged Higgs mass in the loop.

Higgs mass in the loop and we see that for our range of masses typical values F ∼ 0.01 might be
expected. With Σ = c1F1 − c2F2 and the ci ∼ O(1), one might then anticipate a branching fraction of
B(hSM → V γ) ∼ 10−5, barring cancellations, for the typical models in our scan, thus lying roughly a
factor of ∼ 10− 30 below the SM predicted background. Fig. 13 shows that the bulk of the model points
do indeed satisfy these expectations but also that cancellations between the two contributions can be
quite important since the charged Higgs masses are generally not very different.

(ii) hSM → Z+MET

The H and A mediate additional decays which contribute to the hSM → ZhdV = Z+MET decay
mode at tree-level, with the relevant Feynman diagrams shown in Fig. 14. There is also a contribution
from a virtual Z∗, similar to the SM process for hSM → Zνν̄, with an amplitude proportional to c2θ
which vanishes in the limit t → 1. We define M1 to be the amplitude associated with the virtual A,
hSM → V A∗, A∗ → Zhd. We neglect the width of the H, A and Z since we are far off-shell, and assume
that the coupling to the Goldstone G0

V represents the entire coupling to V , noting that the coupling to
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Figure 13: Br(hSM → V γ), up to an overall factor of
g2D
e2 , vs m1. Larger m1 generally decreases the

branching fraction of hSM → V γ, as expected from the behavior of F in Eq. 51.
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Figure 14: Three body decays of hSM → ZV hd which contribute to Br(hSM → Z+inv.). These are
mediated by a virtual A∗ (left), which gives rise to the amplitude M1 in the text, a virtual H∗ (center),
which gives rise to M2 in the text, and a virtual Z∗ (right), which gives rise to M3 in the text.
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Benchmark Point Br(hSM → ZV hd)
Γ(hSM→Z+MET;εZ>0.75)
Γ(hSM→Z+MET;εZ<0.75)

SM 0 0.807
BP1 3.22× 10−3 0.925
BP2 1.87× 10−4 0.828
BP3 3.96× 10−4 0.825
BP4 1.41× 10−5 0.809

Table 5: The branching fraction for hSM → ZV hd and the ratio of hSM → Z+MET events with
εZ > 0.75 to hSM → Z+MET events with εZ < 0.75 for the benchmark points, including both SM and
BSM contributions.

the transverse modes of V will be suppressed by a factor of xi ' 10−2. We find that

iM1 =
λ̃mZs2θ

2

(pZ + 2phd)µ

p2
A −m2

A

ε∗s(pZ)µ, (52)

where pµA = (pZ + phd)µ and we have used mZ ' gv/(2cw). The second relevant amplitude, M2, is for
the decay via a virtual H, hsm → hdH

∗, H∗ → ZV , and is given by

iM2 = − λ̃mZs2θ

2

(pZ + 2pV )µ

p2
H −m2

H

ε∗s(pZ)µ, (53)

where pµH = (pZ + pV )µ. Note thatM1 andM2 have the same the same overall coupling coefficient, but
will destructively interfere due to their relative signs. The third amplitude, M3, is for the decay via a
virtual Z, hSM → ZZ∗, Z∗ → hdV , and is given by

iM3 =
g2mZc2θ

2c2w

(
gµσ − pµ

Z∗p
σ
Z∗

m2
Z

)
p2
Z∗ −m2

Z

(phd − pV )σε
∗
s(pZ)µ, (54)

where now pµZ∗ = (phd + pV )µ.

The branching fraction for hSM → ZV hd, assuming λ̃ = 1 and t = 1 so that M3 = 0, and taking the
SM value Γ(hSM ) = 4.07 MeV , is shown in the left panel of Fig. 15 as a function of mH ≈ mA. We
see that in this case the BSM contribution to hSM → Z+MET from the H∗ and A∗ mediated decays
exceeds the SM value of Br(hSM → ZZ∗ → Zνν̄) ≈ 4.3 × 10−3 for mH . 160 GeV. The right panel
of Fig. 15 shows the normalized differential width (1/Γ)dΓ/dεZ for the SM and BSM contributions to
hSM → Z+MET, taking λ̃ = t = 1 and where εZ = EZ/mhSM . This shows that the SM contribution
dominates for εZ . 0.75, while the BSM contribution dominates for εZ & 0.75, suggesting that the
strength of the BSM contribution may be probed by a simple two bin analysis. For the benchmark
points considered, the branching fractions for hSM → ZV hd and the ratios Γ(hSM → Z + MET; εZ >
0.75)/Γ(hSM → Z + MET; εZ < 0.75), including both the SM and BSM contributions in the calculation
of Γ(hSM → Z + MET), are listed in Table 5. We see that even for branching fractions of hSM → ZV hd
smaller than the SM branching fraction, the enhancement of decays with εZ > 0.75 relative to the SM
case may be measurable, though of course increasing precision is required for smaller BSM branching
fractions.

Fig. 16 shows the branching fraction for hSM → ZV hd plotted against mH for the parameter space
points from the scan; in general all three amplitudes will now contribute. We see that the branching
fraction is typically ∼ 0.01− 1%, but also that far smaller values are possible due to suppressed values of
λ̃ and/or interference between the three contributing amplitudes. Expressions for Γ(hSM → ZV hd) and
dΓ/dεZ may be found in Appendix B.
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Figure 15: Left: Branching fraction for hSM → ZV hd via virtual H and A (blue) and via ZZ∗ (red) vs.
mH , assuming the SM value of the Higgs width Γ(hSM ) = 4.07 MeV. Right: The normalized differential
width for the SM (from hSM → ZZ∗ → Zνν̄) (red) and BSM (from hSM → ZV hd) channels, assuming
λ̃ = t = 1. For the BSM channels we show normalized differential widths for mH = 150 GeV (blue) and
mH = 200 GeV (green), to fully cover the range of masses in the scan.
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Figure 16: Branching fraction for hSM → ZV hd vs. mH , assuming the SM value of the Higgs width
Γ(hSM ) = 4.07 MeV. While the majority of models have Br(hSM → ZV hd) ' 0.01−1%, it is possible for
the branching fraction to be quite suppressed due to small values of λ̃ and/or large destructive interference
between the three decay amplitudes.
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5 Conclusions

The existence of portal matter, coupling to both the SM and the dark photon, is a necessary ingredient
of the DM kinetic mixing portal scenario. Unlike in the more familiar case where the portal matter is a
set of vector-like fermions, scalar portal matter fields considered here obtain their physical masses only
after the electroweak symmetry breaking associated with the SM and/or U(1)D sectors and so cannot
be made arbitrarily heavy. As discussed above, the requirement that after SSB no massless axion-like
states be present in the physical spectrum coupled to the requirements that the KM mixing parameter(s)
be finite and calculable, while the ρ parameter remains essentially unity at tree-level, necessitates the
introduction of two new weak iso-doublet Higgs representations with opposite dark charges, QD = ±1,
as the simplest possibility for the scalar PM model. This implies the new scalar spectrum consists of
two pairs of charged Higgs states, H±1,2, one new CP-odd neutral state A, as well as two new CP-even
neutral states, H,hd. In this minimal scenario as discussed above, the structure of the extended Higgs
potential consistent with all of the gauge symmetries implies that the physical masses of these new, purely
electroweak spin-0 states cannot be much larger than the SM Higgs vev, i.e., ' 246 GeV. In the above
scenario, the new scalars we introduce play two essential roles working not only as the PM to generate
KM but also as the Higgs fields whose vevs are responsible for U(1)D breaking.

While the new particles in our model will have rather typical electroweak couplings to the SM W±, Z
and γ gauge bosons, their couplings to the SM fermion fields, as shown above, will be quite highly
suppressed by (very) small mixing angle factors. Thus, while these new states can be produced at the
LHC in a manner familiar from the examination of the new Higgs fields in many BSM scenarios (which
do not involve the SM fermions), their decays will, rather uniquely, almost exclusively involve the W±, Z
or SM Higgs fields plus either a dark photon or dark Higgs in the final state thus necessarily leading
to missing ET in LHC detectors. Amazingly, such new scalar states, though overall rather relatively
light on the scale of present day new physics searches, could have up to now evaded the multiple MET
analyses performed by ATLAS and CMS at the LHC in various final state channels for much of the model
parameter space as we have demonstrated here. As we seen, in most cases these searches had sensitivities
rather far from those needed to probe the model space considered here. A few, however, provide the
promise of an early window into at least some of this model parameter space once 14 TeV LHC running
commences.

One clear way future searches for this model can extend their sensitivities is to lower requirements on
MET and/or make greater use of MET significance since, as we have seen, the amount of MET is not
always large due to both the lightness of these new states and the MET having some tendency to partially
cancel in decay/production processes. Although this is conventionally somewhat difficult, especially in
an even higher luminosity environment with more pileup, efforts in machine learning may be very helpful
here.

On the theoretical side, one interesting direction for further exploration would be to more completely
map out the parameter space allowed by imposing more general copositivity conditions on the Higgs
potential of Eq. 3. In Sec. 3.1 we restricted ourselves to c1 = 1 and positive definite Λ for simplicity, but
a future study may relax these conditions to more fully explore the affine subspace defined by c1 + c2 = 1
to find matrices which satisfy the more general copositivity conditions outlined in the literature [28, 29].
Another interesting direction for future work is the study of spontaneous CP violation in this model.
While above we took the dark vevs v1,2 to be real, in general there may be a relative phase between them
which may lead to an interesting phenomenology.
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Parameter BP1 BP2 BP3 BP4
λ1 0.129 0.129 0.129 0.129
λ21 3.8354 4.8965 4.7086 4.9992
λ22 1.5295 3.741 0.6718 1.45263
λ31 4.7436 1.5225 3.599 1.8702
λ32 3.4145 1.8583 3.2664 2.0187
λ41 -4.0414 -1.0256 -2.5749 -1.0935
λ42 -3.0846 -1.6024 -3.2974 -2.069
λ5 -0.5375 -0.3918 -0.5768 -0.3987
λ6 4.095 2.7361 4.6574 3.5631
λ7 1.0 1.0 1.0 1.0

t = x1

x2
1.0773 1.1317 1.1402 1.0838

Table 6: Four benchmark points in the parameter space, with the λi couplings of the Higgs potential in
Eq. 3, and t.

Model mH ≈ mA m1 m2 mhd mV ε εZV
BP1 180.8 GeV 371.0 GeV 333.2 GeV 3.17 GeV 413.2 MeV -4.2×10−5 -1.9×10−4

BP2 154.7 GeV 203.9 GeV 249.0 GeV 3.37 GeV 404.1 MeV 7.7×10−5 -2.1×10−4

BP3 187.8 GeV 305.6 GeV 346.2 GeV 3.27 GeV 402.8 MeV 4.8×10−5 -2.6×10−4

BP4 155.7 GeV 210.5 GeV 275.3 GeV 3.28 GeV 412.0 MeV 1.0×10−4 -1.0×10−4

Table 7: Four benchmark points in the parameter space, their BSM mass values, and the values of ε and
εZV , assuming gD = e. These points were chosen since they roughly span the range of masses of the scan
performed in Sec. 4.1.

Appendix A Benchmark Model Points

This Appendix contains the input parameters for each of the four benchmark points described in the text,
BP1-BP4. Table 6 lists the values of t and the λi in the Higgs potential in Eq. 3. Since the copositivity
constraint of Sec 3.1 forces λ67 = λ6 + min(0, λ7), we let λ6 = λ67 and take λ7 = 1 for all points. This
only impacts O(x2

i ) terms in the mass relations of Sec. 2 and thus has negligible impact on the analysis
of Sec. 4.

The values of the masses and kinetic mixing parameters are listed in Table 7. As stated in Sec. 4.1,
we take v1 = 1 GeV, and here we use gD = e =

√
4παEM for concreteness in the calculation of mV , ε,

and εZV .

Appendix B hSM → ZV hd Calculation

Adding the amplitudes of Sec. 4.3, squaring, and taking the sum over the spin states of the external Z,
we find
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∑
pol.

|M|2 =m2
Z λ̃

2s2
2θ

 −c2 + (a·c)2
m2
Z

[(a+ c)2 −m2
A]2

+
−b2 + (a·b)2

m2
Z

[(a+ b)2 −m2
H ]2

+
2(b · c)− 2 (a·b)(a·c)

m2
Z

[(a+ c)2 −m2
A][(a+ b)2 −m2

H ]


+
g2λ̃m2

Zs2θc2θ
c2w

 (−c2 + (a·c)2
m2
Z

)(1− c2−b2
m2
Z

) + (1 + c2−b2
m2
Z

)(b · c− (a·b)(a·c)
m2
Z

)

[(a+ c)2 −m2
A][(b+ c)2 −m2

Z ]


+
g2λ̃m2

Zs2θc2θ
c2w

 (−b2 + (a·b)2
m2
Z

)(1 + c2−b2
m2
Z

) + (1− c2−b2
m2
Z

)(b · c− (a·b)(a·c)
m2
Z

)

[(a+ b)2 −m2
H ][(b+ c)2 −m2

Z ]


+
g4c22θm

2
Z

4c4w

 (−c2 + (a·c)2
m2
Z

)(1− c2−b2
m2
Z

)2 + (−b2 + (a·b)2
m2
Z

)(1 + c2−b2
m2
Z

)2 + 2(1− [c2−b2]2

m4
Z

)(b · c− (a·b)(a·c)
m2
Z

)

[(b+ c)2 −m2
Z ]2

 ,
where we have defined aµ ≡ pµZ , bµ ≡ pµV , and cµ ≡ pµhd . When we make the approximation of massless V

and hd we then have b2 = c2 = 0, and a2 = m2
Z . Integrating over phase space, we can write expressions

for the differential width dΓ/dεZ in terms of εZ ≡ Ez/mhSM , xc = 2Ehd/mhSM , and µZ = m2
Z/m

2
hSM

.
Note that we may write (a · b) = m2

hSM
(1 − xc − µa)/2, (a · c) = m2

hSM
(2εZ + xc − 1 − µa)/2, and

(b · c) = m2
hSM

(1 + µa − 2εZ)/2, since b2 = c2 = 0. We find

dΓ

dεZ
=
mhSM

512π3

∫
dxc

{
λ̃2s2θ2

[
[2εZ + xc − 1− µa]2

[2εZ + xc − 1− µH ]2
+

[1− xc − µa]2

[1− xc − µH ]2

+
4µa[1 + µa − 2εZ ]− 2[1− xc − µa][2εz + xc − 1− µa]

[2εZ + xc − 1− µH ][1− xc − µH ]

]
+
g2λ̃m2

Zs2θc2θ
c2w

[
[2εZ + xc − 1− µZ ]2 + 2µZ [1− 2εZ + µZ ]− [1− xc − µZ ][2εZ + xc − 1− µZ ]

[2εZ + xc − 1− µH ][1− 2εZ ]

+
[1− xc − µZ ]2 + 2µZ [1− 2εZ + µZ ]− [1− xc − µZ ][2εZ + xc − 1− µZ ]

[1− xc − µH ][1− 2εZ ]

]
+
g4c22θm

2
Z

4c4w

[
[2εZ + xc − 1− µZ ]2 + 4µZ [1− 2εZ + µZ ]− 2[1− xc − µZ ][2εZ + xc − 1− µZ ] + [1− xc − µz]2

[1− 2εZ ]2

]}
,

where µH ≡ m2
H/m

2
hSM

= m2
A/m

2
hSM

and 1− εZ −
√
ε2Z − µZ ≤ xc ≤ 1− εZ +

√
ε2Z − µZ are the bounds

of integration over xc. We have used 2 = 2εZ + xb + xc to replace xb in the integral. Integrating dΓ/dεZ
with respect to εZ over the range

√
µZ ≤ εZ ≤ (1 + µZ)/2 then produces the full BSM width.
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