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The evolution of neutrino flavor in dense environments such as core-collapse supernovae and
binary compact object mergers constitutes an important and unsolved problem. Its solution has
potential implications for the dynamics and heavy-element nucleosynthesis in these environments.
In this paper, we build upon recent work to explore inference-based techniques for estimation of
model parameters and neutrino flavor evolution histories. We combine data assimilation, ordinary
differential equation solvers, and neural networks to craft an inference approach tailored for non-
linear dynamical systems. Using this architecture, and a simple two-neutrino, two-flavor model,
we test various optimization algorithms with the help of four experimental setups. We find that
employing this new architecture, together with evolutionary optimization algorithms, accurately
captures flavor histories in the four experiments. This work provides more options for extending

inference techniques to large numbers of neutrinos.

I. INTRODUCTION

Core-collapse supernovae and binary compact object
mergers are extreme physical environments with the po-
tential to serve as valuable laboratories at the intersec-
tion of particle theory, dense matter physics, and high-
energy astrophysics. Many of the important physical
phenomena in these environments, such as shock propa-
gation, bulk matter outflows, and the synthesis of heavy-
elements are driven in part by interactions between nu-
clear matter and the accompanying prodigious flux of
emitted neutrinos [1-4].

In these situations, the flavor evolution of the neutrinos
is a complicated, nonlinear problem, wherein the flavor
histories of neutrinos with different energies and trajec-
tories are coupled to one another. This has been shown
to lead to various collective flavor oscillation phenom-
ena [5-15]. In particular, in the last few years, it has
been demonstrated that relaxing certain assumptions re-
garding spatial and temporal symmetries in the neutrino
flavor field can lead to flavor instabilities not previously
identified, and which have not been well studied [16-40].

Since the flavor evolution of neutrinos is so inextrica-
bly linked to the transport of energy and lepton number
in these environments, it is important to identify the ini-
tial conditions and physical regimes under which these
noted flavor-field instabilities and collective phenomena
can manifest themselves. Meanwhile, the next generation
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of terrestrial detectors such as DUNE [41] and Hyper-
Kamiokande [42] could potentially provide a detection of
a large number (~ O(103-10%)) of neutrinos from Galac-
tic core-collapse supernovae events. Thus it is pertinent
to ask what such a detection could reveal about neutrino
properties, as well as the physics of the supernova envi-
ronment itself.

The last decades have seen the rapid development of
machine learning (ML) algorithms, many of which uti-
lize “big data” to solve difficult problems such as im-
age recognition [43-45] and natural language process-
ing [46, 47]. The training of most ML algorithms requires
large amounts of data, in part because initial conditions
are typically not assumed to be well known. Not surpris-
ingly, scientific fields that typically produce large data
sets have leveraged these technological advances [48, 49].
Other domains of science and engineering, however, are
characterized by sparse data - sparsity that precludes the
application of such learning algorithms to problems in
these fields. Instead, these fields have long established
research traditions which have led to the development of
predictive models.

At first glance, then, there appears to be a dichotomy
in approach: data-driven machine learning on one hand,
and theoretical models with few parameters on the other.
If no model knowledge is available but large amounts of
data are, the first approach seems very reasonable. When
dealing with sparse data, however, ignoring prior knowl-
edge of the system is counterproductive, especially as the
sparsity of the available data might preclude the train-
ing of the algorithm if it must learn “from scratch”. In
the physical sciences and engineering fields characterized
by highly developed theoretical frameworks, the few un-
knowns are usually modeled by known functions with few
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free parameters to be fitted from data. In such cases,
the function chosen to represent the unknown part of the
model is typically dictated by the researchers’ experience
and intuition. But, this educated guesswork might not
be general enough to account for all possible functional
forms that are both useful for the model and appropri-
ately represent the data.

Recently, in calculations of neutrino flavor transfor-
mation, there have been attempts [50, 51] to combine
the best from both approaches noted above, by utilizing
an inference procedure known as statistical data assim-
ilation (SDA). In an SDA procedure, real or simulated
data from measurements are considered together with as-
sumed theoretical constraints, to complete a model with
one or more unknown parameters. This work continues
to explore SDA for constraining neutrino flavor evolu-
tion histories inside core-collapse supernovae, with two
key extensions of previous work. Firstly, we incorporate
into the procedure recent developments in ML, to ascer-
tain whether a “SDA-ML hybrid” ameliorates problems
associated with grid discretization. Specifically, we em-
ploy a deep neural network to replace any guesswork of
the unknown parameters and include a differential equa-
tion solver in the neural architecture [52]. Secondly, we
perform the calculations using various optimization algo-
rithms, for a comparative analysis of performance.

In section II, we describe the algorithmic setup and
specifics of the problem. We perform two sets of inference
experiments, for a two-neutrino system. In the first set
(sections IIT and IV), we focus on the estimation of un-
known parameters governing the matter potential. The
second set (sections V and VI) assumes that the matter
potential is known, and instead focuses on the estimation
of initial conditions regarding flavor. Finally, we present
our conclusions in section VII.

II. INVERSE PROBLEMS AND NEURAL
NETWORK OPTIMIZATION

A. General Framework

Forward Problem

»
dru = F(u,r,0) ) (Neural ODE)

<«
Backward Update

Cost((‘))

FIG. 1. Data assimilation as neural network architecture.
The unknown parameters of the forward problem are denoted
by 6. Cost(0) is the objective function whose minimum de-
notes the optimal solution of the inverse problem. Blue ar-
rows denote the forward process of prediction, and red arrows
denote the backward pass for error correction.

Data assimilation is an inverse problem formula-
tion [53]: a procedure whereby information in measure-
ments is used to complete a model of the system from
which the measurements were obtained. For our pur-
poses, the model F is written as a set of ordinary differ-
ential equations that evolve in affine parameter r as:

du
= F(u,,0) 1)
where the vector w is the observable being modeled, with
initial value ug. The affine parametrization r may be, for
example, time or distance. Any unknown parameter that
influences the forward problem (differential equation) is
denoted by 8. An observation up is made at a detector
location R and one seeks to estimate 6 that best fits this
observation. This is achieved through minimization of
the cost function:

Cost(0) = [up — ug(R)]" W up —ug(R)]  (2)

where ug(R) is the prediction from F. In practice, we
may only observe a subset of the components of the vec-
tor up, while through F' all components are evolved in
order to predict the final values at the detector. The
sparse matrix W is introduced to select these compo-
nents when computing the cost function.

In [50, 51], the cost function was comprised of three
parts: model error, measurement error, and physical con-
straint terms. The model error, in addition to permitting
uncertainty in the model parameter estimates, included
terms related to the uniform discretization of the domain
and finite difference approximation of the derivative. In
addition, as the optimization algorithm took the grid
points to be independent, we had imposed co-variation
of the model coordinates into the cost function as an
equality constraint. Here, we explicitly include only the
measurement term in the cost function, as the neural ar-
chitecture ensures that the other terms are automatically
satisfied; this will be explained in detail below. In [51],
we also considered ug to be an input in the form of a mea-
surement. Here, in the first two experiments we follow
the same assumption, but without explicitly including
ug as part of the cost function (the cost function implic-
itly depends on ug, via the dynamical equations). In the
last two experiments, we assume all model parameters
are known, and we instead optimize the cost function by
varying the initial conditions .

In recent decades, machine learning has been used to
provide solutions to ordinary differential equations [54—
58]. As the focus of this work is the inverse problem, the
system of differential equations is a building block of our
setup. As such, our goal is not to approximate the ODE
solution through a neural architecture or discretized grid,
but rather to understand which parameters in the ODE
definition lead to a solution that best matches observa-
tions. Hence, we use the existing vast and established lit-
erature on solving ODEs through forward integration in
the vein of incorporating model knowledge with machine



learning. This is the motivation for using the recently de-
veloped neural ODE [52] network for data assimilation.
This network will automatically incorporate our model
knowledge of the dynamical system, through Eq. (1).

We include an adaptive step solver method in the neu-
ral architecture, removing the need for domain discretiza-
tion and errors induced by such discretization. Specifi-
cally, we employ the Radau method [59]. The forward-
problem arrow in Fig. 1 refers to this part of the archi-
tecture. The solution ugy(r) then satisfies all the physical
constraints associated with Eq. (1). Consequently, no
model and no constraint terms are needed in the cost
function. As such, the cost function in Eq. (2) contains
only the measurement term. We have verified that the
errors associated with model and constraint terms are
within numerical precision (< 10716). An additional
benefit of this setup is the reduction of the number of
unknown parameters that require optimization. Obtain-
ing adequate resolution in the previous setup required a
rather large number of grid points. That burden is re-
duced in this new architecture. The points in the domain
are automatically chosen by the adaptive Radau method
to solve the forward problem to machine precision.

Before moving to the backward update arrow, we com-
ment on the decision to incorporate an ODE solver into a
neural architecture. At first glance, this choice may seem
puzzling. The most general definition of a neural layer
is a differentiable function with tensor input and output.
This is the basis of a general differentiable programming
architecture. Traditionally, neural layers are superposi-
tions of simple primitive functions, but they need not be.
Differential equation solvers naturally fit this framework,
as an ODE solver has an input vector u(r,) that outputs
a new vector u(r,+1), where the points (r, and r,41)
and the separation between those points are determined
adaptively. In order for the solver to be a neural layer,
the output of the ODE solver must be differentiable with
respect to the unknown parameters. This is achieved
through automatic differentiation [60, 61] and adjoint
sensitivity analysis [62, 63]. Automatic differentiation in
computer science encompasses a set of techniques for con-
verting a program into a sequence of primitive operations
that have specified routines for computing derivatives. It
is efficient, in that there exists a linear time cost in com-
puting values, and it is numerically stable. Adjoint sen-
sitivity analysis allows for the automatic differentiation
of ordinary differential equations. The code for this work
was written in the Julia programming language [64], and
we used the DiffEqFlux package [65—67]. While the in-
terested reader may delve deeper into these interesting
topics, for the purposes of this work, it suffices to state
that the current architecture allows us to compute the
Jacobian and Hessian matrices of the dynamical model
(VoCost(0) and 0y:0y; Cost(0)).

Once the forward problem is implemented, one per-
forms the minimization of the cost function. In Fig. 1 this
step is represented by the backward update arrow. Typ-
ically, in deep learning, the minimization is performed

through stochastic gradient descent (SGD) [68] (which
requires the computation of the gradients mentioned).
In practice, the step size of the parameter update is a
hyper parameter of the training procedure, which must
be tuned to achieve convergence. Many improvements on
SGD have been developed through decades. For instance,
AdaGrad [69] and Adam [70] are algorithms widely used
in deep learning. LBFGS [71], which also approximates
the Hessian of the cost function, is a commonly used al-
ternative to SGD.

The focus of this work is global optimization (finding
the optimal value in the entire region of interest), and
the algorithms mentioned above work locally, informed
by gradients of the cost function. Hence, we also em-
ployed a number of global algorithms in our analysis. A
list of algorithms used in this work, along with their clas-
sification, is given below:

e Monte Carlo based methods (gradient free): “Sim-
ulated Annealing” (SAMIN) [72, 73] — based on
Metropolis-Hastings algorithm to generate samples
from a thermodynamic system,

e Evolutionary algorithms (gradient free):

1. “Improved Stochastic Ranking Evolution
Strategy” (ISRES) [74, 75] — based on a com-
bination of a mutation rule (with a log-normal
step-size update and exponential smoothing)
and differential variation (update rule similar
to Nelder-Mead [76]) ,

2. “Adaptive  Particle Swarm  Algorithm”
(APS) [77] — improve global coverage and
convergence by switching between four evo-
lutionary states: exploration, exploitation,
convergence, and jumping out.

e Jacobian and Hessian based methods:

1. “Interior Point Optimizer” (IPOPT) [78] — a
primal-dual interior point method which uses
line searches based on filter methods. IPOPT
is designed to exploit 15* and 24 derivative in-
formation if provided. If no Hessians are avail-
able, IPOPT will approximate them using a
quasi-Newton methods, specifically a BFGS
update.

2. “Newton method with Trusted Region Hes-
sian” (NTR) [79] — quadratic approximation
of the objective function by means of the
hessian with steps restricted to be within a
‘trusted’ region where the approximation is
believed to be valid.

e Combination of global and local optimization:

1. “Stochastic Global Optimization”
(STOGO) [80] — systematically divide
the search space (which must be bound-
constrained) into smaller hyper-rectangles via



a branch-and-bound technique, and search-
ing them by a gradient-based local-search
algorithm.

2. ‘Multi-Level Single-Linkage” (MLSL) [81, 82]
— global optimization by a sequence of local
optimizations from random starting points,
in conjunction with local optimizations algo-
rithms

— BOBYQA [83] — (gradient free) bound-
constrained optimization using an itera-
tively constructed quadratic approxima-
tion for the objective function,

— “Method of Moving Asymptotes”
(MMA) [84] — local, convex and sep-
arable approximation of the objective
function from the gradient,

— LBFGS [85, 86| — quasi-Newton
method that approximates the Broy-
den—Fletcher—Goldfarb—Shanno algo-
rithm (BFGS) [87] wusing a limited
amount of computer memory.

These algorithms cover a wide range of methodologies.
For instance, multi-level algorithms (MLSL) have been
used for over three decades in optimization, and nowa-
days are part of many statistical programming languages.
Simulated annealing is another widely used algorithm,
with over four decades of applications. In addition to
the familiar Newton’s method and IPOPT, we have also
included evolutionary algorithms like ISRES and APS
which are inspired by biological evolution [88]. Clearly,
optimization is a rather fascinating and varied field. The
numerical implementation can be found in NLopt [89]
and Optim [90] packages. In all experiments covered in
this work, we set the maximal number of iterations for
the optimization procedure to 1000.

B. Specifics of the problem

The neutrino flavor evolution problem has been ex-
plained in detail in [51]. Here we summarize the system
of differential equations,

A,B+V(r

Y Pj| xP (3)

J#i

)2+ p(r

Here, A; = ém?/(2E;) are the vacuum oscillation fre-
quencies of neutrinos with energies F;. The mass-
squared differences in vacuum are dm2. The unit vec-
tor representing neutrino flavor mixing in vacuum is
B = sin(2a)z — cos(2a)Z, where « is the mixing angle
between the flavor and mass eigenstates. The functions
V(r) and u(r) are the potentials arising from neutrino-
matter and neutrino-neutrino interactions, respectively.
The “polarization vectors” P;, which contain information
about the flavor composition of the neutrinos, play the
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role of the state variable u from Eq. (1), and the only
components that are measured at the detector are the
P, of each neutrino.

In our model, we take the neutrino-neutrino potential
to be,

ulr) = (r f%o)‘l' @

This choice is consistent with how the coupling strength
varies in the neutrino bulb model calculations employing
the single-angle approximation. In our SDA experiments,
1o is taken to be a constant with a known value and
8o = 1073 is added to avoid any numerical singularities
at rg = 0. The matter potential V(r) is chosen to be

Vo

T

()
In the first two experiments, Vj is treated as an unknown
parameter that we optimize. To generate the simulated
“detector data” (up in Eq. (2)), we use the value Vp = 1}
of the matter potential coefficient, given in table I. As a
thought experiment and proof of concept, we study a
system of two neutrinos, with all the parameters used for
simulated data generation displayed in table I. In future
work we intend to study much larger systems.

Parameter | Value | Initial polarization Value
Ay 30 Pi (7o) -1.0
AQ 55 PQ’Z(T'O) 1.0
1o 10.0 | Final polarization Value
Vo 50.0 Pi.(R) 0.20575
a 0.15 P, .(R) -0.96750
T0 0

R 5

TABLE 1. Model parameters used for generating the
simulated ‘detector’ data. A; are t~he vacuum oscillation
frequencies of the neutrinos, and (uo, Vo) are the multiplica-
tive factors governing the neutrino-neutrino coupling poten-
tial u(r) and matter potential V (r). Parameter « is the mix-
ing angle in vacuum. Neutrino 1 is initially = flavor and neu-
trino 2 is initially electron flavor.

In Fig. 2 we display the z components of the polar-
ization vectors as functions of r for the parameters of
table I. As the figure shows, the two neutrinos are ini-
tially in pure flavor states (electron and z). At some
intermediate distance there is a large flavor transforma-
tion, and the two neutrinos swap flavors. As expected,
with increasing distance, both matter and neutrino po-
tentials become less relevant and we can observe vacuum
oscillations.

III. MATTER POTENTIAL COUPLING AS AN
UNKNOWN CONSTANT

In this section, we assume the matter potential cou-
pling Vg is an unknown parameter and ask whether the
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FIG. 2. The z components of the two neutrino polarization
vectors as functions of the affine parameter r. The parameters
used in the forward integration are shown in table I.

z components of the polarization vectors of the two neu-
trinos at the detector provide sufficient information to
infer the true value Vj provided in Table I. As this is a
small system, and there is only one unknown parame-
ter, we can plot the dependence of the cost function on
the unknown parameter using repeated forward integra-
tion, as shown in Fig. 3. That is, the forward code was
run several times with different parameter values V, and
the corresponding values of P, at the endpoint in each
case were compared with the true values (that is, with
Vo = Vo) to generate the cost function using Eq. (2). In
practice, physical systems contain many more particles,
and more unknowns, rendering it infeasible to create the
plot analogous to Fig. 3. We are considering a ‘toy’ prob-
lem, however, as a proof of concept for the approach we
propose, and for the relative ease with which we may
examine figures such as those displayed in this work.
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FIG. 3. Cost function dependence on the free parameter V5.
The global minimum is obtained at Vo = V; (see table I), but
there are many local miminma present, making this a very
hard optimization problem.

From Fig. 3 we see that at V[, = f/o the cost func-
tion attains its global minimal value as expected. But,
in addition, there are many local minima present which
will make it hard for any local optimization algorithm
to find the correct value Vj if the initial guess is in the

vicinity of a different local minimum. In addition, in the
parameter range with small Vj values, the cost function
changes very quickly between large and small values. To
understand how gradient and Hessian based optimizers
would perform, in Fig. 4 we plot the first and second
derivatives of the cost as function of V. As the figures
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FIG. 4. Gradient and Hessian of cost function with respect
to the free parameter § = V5. There is a sudden transition
from large oscillations to tiny ones near Vo = V;. For small
Vb, gradient based methods will have very large parameter
updates in either direction, and for large Vp the updates will
be very small.

show, there are large fluctuations in the derivatives of
the cost function at small values of Vj, and many stable
local minima at large Vj. On the one hand, if the initial
guess is small, gradient-based optimization will change
the value of the guess drastically, and on the other hand,
if the initial guess is large, the changes will be minis-
cule. This does not bode well for gradient- (and Hessian-)
based optimization. Even with just two neutrino modes,
the problem is rather complicated. Hence our choice for
global optimization and the wide range of optimization
algorithms that we test.

In Fig. 5 we plot the cost function at the end of the
iterations for each algorithm as a function of the initial
guess for V. We sampled uniformly 100 initial values in
the range [0, 400]. Not surprisingly, gradient and Hessian
based algorithms have a final cost value much larger than
the rest. To verify that small cost indeed translates to
convergence to the global minimum, we also plot the final
inferred values of the unknown parameter as function of
the initial guess in Fig. 6.

As can be seen from both figures, most gradient-based
methods have difficulties in converging to the optimal
value, while gradient-free methods perform rather well.
In particular, with the Jacobian/Hessian based methods
like IPOPT and NTR, the final inferred value of Vj is pos-
itively correlated with the initial guess, suggesting that
the optimization procedure simply finds a local minimum
close to the initial guess. This outcome agrees with ex-
pectations laid out by Figs. 3 and 4. In addition, the com-
bination of a global (MLSL) and local method (MMA)
seems successful.
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goal here is to merely explore whether a neural archi-
tecture can provide us with reasonable estimates for Vj
and the architecture chosen can represent a wide range
of functions. Since only positive values are physically
meaningful, the matter coupling parameter is taken to
be the absolute value of the output of the neural archi-
tecture. We opted to perform global optimization in the
range £103 for each of the parameters. For each method
we sampled uniformly 40 initial parameter sets for each
optimization.
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FIG. 5. The cost function at the final inferred values of Vj
as function of the initial guess V"l for each optimization
algorithm. Ideally this value should be 0, and in practice, the
smaller it is the better the optimization.
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FIG. 6. The final inferred value of Vj as function of the initial
guess Vitital for each optimization algorithm. For a converged
optimization this value should be Vi = 50, independent of the
initial guess (see table I).

IV. MATTER POTENTIAL COUPLING AS AN
UNSPECIFIED FUNCTION OF POSITION

In the calculations presented in this section, we treat
the numerator in Eq. (5), Vy, as a function of the affine
parameter r. Note that the simulated “detector data”
(up) used is identical to the data used in the previous
section. That is, it was generated using a constant mat-
ter potential coefficient Vj). Instead of selecting a spe-
cific functional form for this dependence, we represent
the numerator by a two-layer feed-forward neural net-
work, Vo(r) = |NMa(0,r)|. Each layer has five neurons.
The first layer has a hyperbolic tangent activation func-
tion, and the second is linear; for a total of 16 param-
eters denoted by 6. The depth, width, and activation
functions of the neural architecture are hyper parame-
ters. We choose these hyper parameters strictly, as our

FIG. 7. The minimum, maximum and average values of the
cost function at the final values of 8 for each optimization
algorithm. Ideally, all these three values should be 0. The
spread shows how dependent the optimization algorithms are
on the initial guess of the unknown parameters.

In Fig. 7 we show the maximal, minimal and average
values of the cost function at the end of the each opti-
mization procedure. APS stands out from the rest: it
performs quite well for all initial guesses and provides
overall small cost values. While NTR achieves a near-
zero cost value for a particular initial guess, its results
are quite spread and have a strong dependence on initial
conditions. Generally, dependence on the initial guess is
to be expected. If a guess happens to be close to the
optimal result, one would expect the optimization pro-
cedure to produce a final cost value close to zero. On
the other hand, if the initial guess is quite far from the
optimal value, the optimization might converge to local
minimal nearby. An additional complication arises from
the possibility of degeneracies as the number of unknown
parameters increases. “Degeneracies” here refers to the
possibility of multiple solutions [N 4(8,r)| that yield the
same values of P,(r) at the endpoint.

To illustrate the behavior behind this remark, we plot
the numerator [N 4(80,r)| for each method using the pa-
rameters that produced the smallest cost value in Fig. 8.
A priori, we know that a constant function of r, namely
Vo(r) = Vi, is one possible optimal solution.

As the plot shows, both ISRES and IPOPT converge to
a constant function close to V5. APS shows a sharp tran-
sition from a region of high density to the optimal V5. A
rather interesting result is displayed by NTR, where the
matter density profile experiences two sharp transitions
and yet the cost value is small (= 1071®). Other methods
that display sharp transitions are MLSL+LFBGS and
SAMIN, which perform slightly better than ISRES. In
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FIG. 8. Optimal matter potential coupling found by each
method as function of the affine parameter r. Some algo-
rithms find the coupling to be constant close to the value in
table I, while others show sharp matter profile changes.

fact, many methods show sharp changes in the matter
profile. For the model chosen, the matter density profile
is inversely proportional to 3, so the sharp changes in the
numerator amount to small changes in the profile itself.
In an actual core-collapse supernova environment, such
sharp transitions may represent, for instance, a dense
matter outflow in a lower density background, or alter-
natively the presence of a shock during the supernova
explosion. In this manner, allowing for a variable numer-
ator represented by the neural architecture can lead us to
discovering other possible matter profiles consistent with
the same detector measurement.

V. PARTIALLY UNSPECIFIED INITIAL
CONDITIONS

In this section we study the influence of initial con-
ditions on the inference of the neutrino flavor compo-
sition at the detector. As an illustration, we assume
that Neutrino 1, which in the original setup was taken
to be initially in the x flavor, decouples earlier and
can potentially oscillate in flavor before the second neu-
trino is emitted. By assuming the matter and neu-
trino potentials of table I, and given detector measure-
ments at R = 5 in Fig. 2 (i.e.,, the same simulated
detector data as in the previous experiments), we in-
vestigate whether we can infer the initial polarization
of this neutrino. The initial flavor polarization is nor-
malized, so it can expressed by two free parameters,
the azimuthal and polar angles in flavor space; that
is, u(()l) = {cos(# ,)sin(01,),sin(; ) sin(b1,),sin(61,)},
where 61, € [0,27], 61, €[0,7]. Here, 8 = {0,,,61,} are
the unknown parameters to optimize. As we assume co-
herent evolution, the polarization is normalized through-
out the evolution.

In Fig. 9 we plot the cost function dependence on these
two parameters. Given that the second neutrino is ini-
tially of electron flavor, the optimal value for the first
neutrino is to be an x flavor (i.e., P, = —1, or equiva-
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FIG. 9. The cost function, Cost(:1,,6:1,), dependence on
initial conditions of the first neutrino. There is a relatively
strong dependence on the polar angle in flavor space, and
weak dependence on the azimuthal angle.

lently, 6;, = 7), as the figure confirms. In addition, we
can see that the polar angle plays a major role in deter-
mining the value of the cost function. The figure shows
the cost value decrease as the polar angle changes from
0 to m, which is the optimal value. There is also minor
dependence on the azimuthal angle for a fixed polar an-
gle. Overall, this is to be expected, as for 0;, = =, the
neutrino is « flavor regardless of 6y ,.

We have performed 100 optimization experiments with
different initial guesses of @, from a uniform grid of ini-
tial values within the allowed range. The statistics for
the final values are summarized in table II. APS and

Method (Hop,po,)/m | (00p,00,)/m
ISRES (0.996,1.05) | (0.001,0.57)
STOGO (0.87,1.52) (= 0,~0)
MLSL + BOBQYA |  (1.0,1.4) (~0,~ 0)
MLSL + LBFGS (0.484,1.0) | (0.31,0.64)
MLSL + MMA (0.997,1.011) | (0.00013, ~ 0)
SAMIN (0.997,0.996) | (0.002,0.615)
NTR (0.47,0.98) | (0.31,0.65)
APS (1.0,1.0) (~0,0.9)
IPOPT (0.9,1.1) (0.2,0.4)
Optimal Values 1,-) 0,-)

TABLE II. Sample average and standard deviation of the in-
ferred angles in flavor space, for the initial polarization of the
first neutrino at the end of the each optimization procedure.
The optimal values shown at the end of the table; there is no
preferred azimuthal angle.

MLSL + BOBQYA reach the optimal value of 6, for
most of the initial guesses, as shown by the tiny variances
in the table. Many other algorithms (ISRES, MLSL +
MMA, SAMIN, TPOPT) converge quite close to the op-
timal value and have small variances. All methods con-
verge to large values of the azimuthal angle. To under-
stand this behavior, we computed the gradients of the
cost function and found one major gradient flow toward
01, = m, as expected. We also found a rather small
flow toward 6;, = 27. But interestingly, the average in-



ferred values of the azimuthal angle seem to be clustering
around 7 rather than 27. This is an unexpected result,
and a priori hard to guess, as one would need to solve to
the flavor evolution equations for all initial conditions to
notice this secondary flow.

In Fig. 10 we display the maximal, minimal and av-
erage cost value obtained from each method. APS and
MLSL + BOBQYA result in small cost values for all ini-
tial guesses, in agreement with table II. Most methods do
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FIG. 10. The minimum, maximum and average values of the
cost function at the final values of 8 for each optimization
algorithm. Ideally, all these three values should be 0. The
spread shows how dependent the optimization algorithms are
on the initial guess of the unknown parameters.

not show any spread in the final values of the cost func-
tion, apart from APS and IPOPT. In these two cases,
for some initial conditions, the methods achieve very low
cost function values.

VI. COMPLETELY UNSPECIFIED INITIAL
CONDITIONS

In this section, we make no assumptions about the
initial polarizations. Instead, given the detector data
generated by the parameters in table I, we optimize the
cost function for the azimuthal and polar angles in flavor
space for both neutrinos. We pick 5 uniformly-spaced
values for each of the 4 angles for a total of 625 experi-
ments for each optimization method.

As Fig. 11 shows, most methods converge to sub-
optimal solutions. There is convergence for initial condi-
tions close to optimal values, but this does not happen
for initial guesses farther away. APS is the only method
that performs well for all initial guesses. On the hand,
STOGO does not provide a small cost value even for ini-
tial guesses close to the optimal one.

As an additional check, in tables III and IV we sum-
marize the statistics for the final values obtained from
each method for each neutrino respectively. The sample
standard deviation shown is an additional indication of
the dependence on the initial guess. Ideally, this devia-
tion should be zero as the methods should converge to
the optimal value regardless of the initial guess for the
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FIG. 11. The minimum, maximum and average values of the
cost function at the final values of 8 for each optimization
algorithm. Ideally, all these three values should be 0. The
spread shows how dependent the optimization algorithms are
on the initial guess of the unknown parameters.

unknown parameter, but this is not the case in practice.

Method (g o))/ | (Tgn), o) /7
ISRES (0.89, 0.98) (0.07,0.53)
STOGO (0.73,1.0) (= 0,~0)
MLSL + BOBQYA | (0.81,1.88) (0.04,0.27)
MLSL + LBFGS (0.5,1.0) (0.35,0.71)
MLSL + MMA (0.81,0.14) (0.21,0.04)
SAMIN (0.87,0.99) (0.07,0.59)
NTR (0.5,1.0) (0.5,1.0)
APS (1.0,1.04) (~0,0.54)
IPOPT (0.45,0.89) (0.26,0.57)
Optimal Values (1,-) (0,—)

TABLE III. Sample average and standard deviation of the in-
ferred angles in flavor space, for the initial polarization of the
first neutrino at the end of the each optimization procedure.
The optimal values shown at the end of the table; there is no
preferred azimuthal angle.

As the tables show, most methods tend toward a large
polar angle for the first neutrino and a small value for
the second one. In other words, most methods expect
the first neutrino to be mostly x flavor and the second
to be mostly electron flavor. This result indicates that,
for the two neutrino system, the final polarization values
can provide information on initial conditions, under the
assumption that we know the matter density profile. In
addition, we have identified APS as a method that works
quite well in understanding the initial flavor composition
of the system.

VII. DISCUSSION AND CONCLUSION

In this work, we have combined recent developments
in deep learning with data assimilation, to examine what
information is contained within a detected neutrino sig-
nal regarding complex astrophysical environments such
as supernovae.



Method (g2, o)/ | (T4, 092) /T
ISRES (0.17,0.98) (0.10,0.53)
STOGO (0.43,0.99) (~0,~0)
MLSL + BOBQYA | (0.15,0.18) (0.03,0.26)
MLSL + LBFGS (0.5,1.0) (0.35,0.71)
MLSL + MMA (0.21,0.33) (0.04,0.22)
SAMIN (0.19,1.0) (0.07,0.59)
NTR (0.35,0.71) (0.35,0.71)
APS (~0,1.03) (~0,0.64)
IPOPT (0.19,0.89) (0.21,0.59)
Optimal Values (0,—) (0,—)

TABLE IV. Sample average and standard deviation of the in-
ferred angles in flavor space, for the initial polarization of the
second neutrino at the end of the each optimization proce-
dure. The optimal values shown at the end of the table; there
is no preferred azimuthal angle.

By exploiting existing knowledge of solving differential
equations within the layers of the neural architecture, we
have avoided potential errors associated with domain dis-
cretization, while automatically satisfying physical con-
straints for the problem under investigation. This frame-
work has allowed us to focus on the prediction error (that
is, the cost function), and greatly reduced the number of
free parameters to be optimized.

In addition, we have tested nine optimization algo-
rithms that cover a wide range of techniques, and we
have identified the “Adaptive Particle Swarm Algorithm”
(APS) as the best suited one for our purposes. This al-
gorithm, through its four evolutionary stages, is able to
move out of local minima, and thus has a high chance of
finding a global minimum.

The study conducted here has focused on a small sys-
tem, primarily as a first testing ground for our frame-
work. We expect the computational complexity to in-
evitably increase with larger systems, and many degen-
eracies to be present in the parameter space. Thus, when
the particle number is greatly increased, we might com-
bine evolutionary algorithms such as APS for a wide pa-
rameter search with a follow-up gradient- and Hessian-
based methods such as IPOPT as a secondary search
within smaller optimal regions that are found by the first
search. We might also need to transition to distributed
ordinary differential equation solvers, which can take ad-
vantage of computer clusters.

We intend to maintain a level of modeling complexity
lower than that of three dimensional supernovae simula-
tions (which take months for a single run to complete),
and provide a computational service that is complemen-
tary to simulations and can function as a bridge between
them and earth-based neutrino detection. A more realis-
tic setting, however, would require more than one affine
parameter, for instance both temporal and spatial flavor
evolution. In this case, the grid discretization of previous
work can be applied to spatial dimensions and combined
with the new framework developed here.
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