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1. INTRODUCTION 

I,n this paper we continue the development and application of techniques for 

finding the ground state and spectrum of low-lying physical states of field the- 

ories without recourse to either weak or strong coupling expansioas. Following 

our earlier papers 
1 

we study lattice Hamiltonians by means of a constructive 

variational procedure. The methods, which in our preceding paper (Paper III) 

were described and applied to free field theory of bosons in oae space dimension 

and to the one-dimensional Ising model with a transverse applied mag.netic field, 

are now applied to two fermion theories in lx - It dimensions: massless free 
2-5 

fermions and the Thirring .model. Our aim in this paper is to demonstrate that 

these methods are easily applied to fermion theories and that our simple con- 

structive approach reproduces results known to hold in soluble continuum models. 

Our fundamental approach to the study of these models is the same as in Paper 

III. Namely, we dissect the lattice into blocks containing a few sites which are 

coupled together via the gradient terms in the Hamiltoaian. The Hamiltonian for 

the resulting few-degree of freedom problem is diagonalized and the degrees of 

freedom “thinned” by keeping only an appropriate set of low-lying states. We 

then construct an effective Hamiltonian by computing the matrix elements of the 

original Hamiltonian in the space of states spanned by the lowest energy eigen- 

states in each block. The process is then repeated for our new effective Ham- 

iltonian. At each step, the coupling parameters of the effective Hamiltonian 

change and the procedure is repeated until we enter either a very weak or very 

strong coupling regime. 

The specific features of these models which make them interesting are 

that (i) for the first time one must study the behavior of the first order gradient 

term which we introduced for fermion theories’ in order to avoid doubling of 
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states and preserve chiral symmetry, and (ii) the wave function renormalization, 

Z2, in the Thirring model vanishes when the coupling strength exceeds a finite 

value^gcr N 1.1, even in the presence of a cutoff. We also analyze the lattice the- 

ory’s Schwinger term and establish correspondence with the continuum theory, 

As we show, our general procedure leads to the conclusion that there is a 

finite value of the coupling strength gcr such that for g < gcr one only needs to 

study the general properties of the massless fermion theory. On the other hand, 

for g > gcry we are driven to study the theory of the Heisenberg anti-ferromagnet, 

which is also a theory with massless low lying excitations. In particular this 

analysis confirms a co.njecture made in Paper II to the effect that the spectrum 

of the strong coupling limit of our lattice Thirring model is that of the Heisenberg 

anti-ferromagnet with nearest neighbor interactions even though the gradient ap- 

propriate to a fermion theory on the lattice includes long range couplings. In 

addition to these results we show in the appendix that the operator expression 

for the Schwinger term becomes, in the infinite volume limit, the ground state 

expectation value of the kinetic energy density divided by the square of the wave 

function renormalization constant Z,(g). 

II. GENERAL METHOD APPLIED TO FREE FIELD THEORY 

To fix notation and illustrate our general method as well as its aCCuraCY, 

we construct the ground state and lowest lying excited states of 

fermion theory. The free massless lattice Hamiltonian is (see 

Paper II) 

H=A c iS’(j,-j,)(b? b. -d’: d. ) 
j, A, Jl I2 Jl J2 

a lattice free 

(3,l) - (3.4) of 

(2.1) 

.I. Y 

where 

I 

+$ 
j j#O 

S’(j) = 
0 j=O 
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The two-component dimensionless lattice field 
b. 

0 

x j is specified in the Dirac 

basisJj = i, witha = r5 = a3, 
7 and satisfies the anti-commutation re- 

lations “: 

+ 
Xj) Xj = 6jjl 11 

1 
Xj 5 Xjl = 

1 
0 

and so, 

{ bj , b;} = {dj , df } = 6jj, 

{bj , dj} = 0, etc, 

A is the inverse lattice spacing and the lattice has 2N + 1 = A 

This theory possesses two conserved “charges” which in this 

. - 
Q = c : X;Xj: =c Qj = c (nb(j) - nd(j)) 

ii j j 

Q5 SC XfYsXj= 

j 

C Q5j = c(“b (j) + nd(j) - 1) 

j j 

where 

n,(j) = b;bj 

n,(j) = d?d. ., 
J J 

(20 2) 

L sites. 

representation are 

(2.3) 

The Hamiltonian (2,l) is also invariant under three discrete symmetry 

operations D Two are unitary, and analogous to P and C, and one is anti-unitary 

corresponding to time reversal 8. We define them as follows: 
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(1) Charge conjugation 

h CbjC-l = b; 

CdjC-’ = d; 

-c2=1 

(2) Parity 

’ PbjP-’ = d+. 
-J 

“djP -’ = b+ 
- j 

P2=1 

C&C-l = -Q 

CQ5 C-l = - Q5 (2.4) 

P&P-I =Q 

P Q5 P-l = -Q5 (20 5) 

(3) Time reversal 

@ = TK, where K is the anti-linear operator of complex conjugation 

and the unitary T operator is defined by 

Tbj T-l =d. 
J 

Tdj T -l = b 
j 

Q2 = 1 

@&Q-l z-Q 

@Q&-l =Q5 (2.6) 

Note that this problem shares one feature in common with the Ising calculation: 

there are only a finite number of states associated with each lattice site. In 

this case for each lattice site there are four basis states, summarized in 

Table I. 

The transformation properties of these states under P, C, and 0 are 

given once we adopt the conventions 

C IOj> =i Iij> 

’ l”j> = I*j> 

and 8 I”j> = l’j’ (2.7) 
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Note that these conventions imply 

P I+j> =- l+j> 

P l-j> = I-j> 

Also, it follows from Eq. (2,7) that 

C I+j> =i l-j> 

In particular, fermions and antifermions have opposite intrinsic parity as usual. 

Our purpose in this section is to study the free fermion model in order to 

establish the notation and methods to be used in the discussion of the Thirring 

model. For this reason, the calculation will be done in a way which is 

more cumbersome than it needs to be for this simple case. Aside from matters 

of notation, we will illustrate the fact that although 6’ (j, - j,) is non-vanishing 

for all j, # j,, it is not more difficult to work with than a gradient term ex- 

pressed simply as the difference of fields at neighboring sites. 

To begin our iterative procedure, we dissect the lattice into 3-site blocks. 

We write 

H=x HP+ c Hpp~ 
P P’#P 

i ~‘(cY -01’) (b& bpo, -die dplY, ,I (2.8) 

where now p specifies the block and a! = -1, 0, 1 to specify a site within a 

block. Each single-block HP operates only oa that factor of the product basis 
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which pertains to block p, and is diagonal otherwise, 

ye choose to use three-site rather than two-site blocks when dealing with 

fermions so that the lowest eigenstates of the block Hamiltonian will have the 

same quantum numbers for Q and Q5 that are displayed for single sites in 

Table I, as will be clear immediately. Our simple algorithm for “thinning” our 

space of states will be to first solve the 4” = 64 degree of freedom problem, 

which can be done very simply by grouping the states in the different (Q, Q,) 

sectors which do not mix. We anticipate that the block states of lowest energy 

will be in the (Q = 0; Q5 = -1, +l) sectors, degenerate by C symmetry, and we 

namethem lop> and lhp> , respectively, in analogy with the single-site 

states of like quantum numbers. (That these are indeed the lowest block eigen- 

states is verified in all cases by explicit computation. ) However, when we apply 

H 
PP’ 

between two blocks, it is apparent that it has no matrix element between 

lop> a+.d I *p> ; the charge-selection rule governing bj and dj indicates that 

we have to keep (Q = +l, -1; Q5 = 0) states in order to have non-zero block- 

block coupling. We call these I +p > and I - p > ; again, they are degenerate. 

Since these four sectors are the sectors of greatest degeneracy, they are gen- 

erally those containing the lowest eigenlevels for the three-site problem. 

To be specific, let us consider the 20 states in the Q = 0 sector of the three- 

site problem. These are listed in Table II along with the states into which they 

transform under iCP (note (iC,P)2 = 1). The notation used is an obvious gener- 

alization of that in Table I: the creation operators appear in an order fro-m left 

to right corresponding to the ordering of the sites in the lattice, and at each 

site the bt is to the left of df; thus for the block p 

I-* +>p = d;p-l b;pd;pb;p+l 1 OOO>p P-9) 
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Under C, P, and 8 these states will have transformation properties de- 

rive&from (2.7); viz. , starting from the (Q = 0, QS = -3) sector, 

C 1000>p= -i I ***>p 

P looo>p= I%**> 
P 

0 looo>p= looo>p (2.10) 

As a general rule, the overall phases to be introduced in the (Q = 0, Q5 = f 1) and 

(&=*I, Q,=O) sectors as we proceed will be such that the phase convention (2.7) will 

hold for the lowest -lying block states (with 10j > replaced by lop>, etc D ) 0 We do this 

because we wish to identify the new block states in these sections with the original 

single site ones so that the only thing changing in the iteration is the Hamiltonian itself. 

Of the nine states in the Q5 = -1 sector, six combinations that are even under 

iCP and three that are odd can be formed. The lowest eigenstate of the three- 

site Hamiltonian is evea and can be written as follows: 

1 
IOp>=n(3-4i) l+O-)p+s IL (3+4i) [ -O+>p 

- $ (3 + i) 1 t--o>+ 1 O*-> .-$(3-i) 1 [ 
IO-+>+ t-+0> 

P 1 P 

+$i[lOaO>-!-g( I *too>+ lOO+))l 
P (2.11) 

HP lop> = -311 lop> 

The other eight eigenstates in the (Q = 0, QS = -1) sector lie higher in energy ._ 

with eigenvalues +3R, +3/2 A, +3/2A, 0, 0, 0, - 3/2 A, -3/2 A. Since the 

state having (Q = 0, Q5= -3) is unique, it must be an eigenstate of HP and it is 

clearly a null eigenstate. 

The Q = 1 sector has the 15 basis states listed in Table III along with their 



-9- 

corresponding P transforms (C takes us from the Q = 1 to the Q = -1 sector 

and is-not important in this context). 

The lowest eigenstate of HP in the Q = 1 sector is formed from the six odd 

eigenstates of P in the QS = 0 sector; this corresponds to the odd parity of the 

single site eigenstate according to (2.7), It is given by:’ 

‘“p> = 18 L (4 -3i) I *+O)p - $- (4+3i) IO+ f >p 

*+(l-3i) I+O*> + lo*+> 
I P 

-;(1+3i) b&O+> + I-t f 

+$ [I+-+> +;(I++-> ‘+ I-++>1 
P 

(2.12) 

HP l+p> = -3A ‘+p> o 

The states specified in (2.11) and (2,12) plus their two charge conjugate 

counterparts I f p > and I 
-P> 

are the states used as a basis in which to con- 

struct the truncated Hamiltonian, This same process is then repeated by com- 

bining 3 neighboring 3-site blocks as illustrated in Fig, 1. In order to do this, 

however, we must express the terms in H pp, (that couple different blocks to one 

another) in terms of creation and annihilation operators, B+ P’ 
BpandDi, D 

P’ 
defined by 

BP lop> =Dp lop> = 0 (2,13) 

B; lop> = l+p> 

D; lop> = l-p> 

B;D; lop> = I*,> 

{$,, BP,} = 6p p, etc. 
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th 
To accomplish this let us define for site 01 = -1, 0, 1 in the p block, 

h + 

<+p Ib3p+cY lop> = u o! 

<-p Id;p+a lop> = v, 

(2.14) 

It then follows from the symmetries (2.4) - (2,6) that we can fix the remaining 

matrix elements: e, g., from (2.4) and (2.7) we see that 

+ 
<*p Ib3p+o! I-p> = cp $p+a bp>* 

= <+p ICb3p+a C lop>* 

+ 
= <+p hp+cr lop)* 

=u * 
a 

-. - From (2.5), we find that 

U =V 
o! -a 

and from (2.6) 
* 

U 
o! =%i! 

Combining these results, we see that we can write truncated operators 

TR 
3 B+ u 

P 
Q2 + u* Q2 

cl 5P 01 P 

(2.15) 

(2.16) 

(2.17) 

(2.18) 

where 

Qp = B;BP-D;Dp 

Q5p= B;Bp + D;Dp - 1 
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Equations (2.18) summarize, in operator form, the contents of (2,13) - (2.17) 

.and aLlow us to write the Hamiltonian restricted to the Hilbert space 

spanned by tensor products of the four basis vectors I Op > , I fp > , I +p > , 

and I - 
P> 0 

Since in this subspace 

2 2 
Qp+ Q5p = 1 (2.19) 

it follows that if uo and vo are real, then our truncation procedure amounts to 

making the simple substitutions 

+ =u B 
01 P 

(Gp+ a)TR = ua D; (2.20) 

For the present case of a free fermion model uQ! and va! are reaLg However, 

this is not generally true, and the transformation (2.18) for the Thirring model 

takes the more general form as we shall see in the next section. Restricting to 

the free field case and collecting our results, the truncated Hamiltonian (2,l) 

becomes 

HTR = 
(1) 

-(3A) ‘+ (2.21) 

-D+D 
Pq Pq 1 

where Hz denotes the Hamiltonian obtained after the first iteration, Pro- 

ceeding to the second iteration, we couple three adjacent “sites” of the new 

Hamiltonian(or blocks of the original Hamiltonian) and again retain the lowest 

eigenstate in each of the four sectors (Q = rt 1, QS = 0) and (Q = 0, QS = f 1). 
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Of course, this time the gradient is given in terms of a new function 

- 
A,(p-q) = 2 6’ ( 3(p - q) + o - 

a! ,p=-1 
p) %! “p (2.22) 

which is readily calculated using (2.11) - (2.14) and the definition (2.1) of 

Table IV compares the first few terms of 6’ (j) to A, (j). It is 

evident from the table that in a single iteration, the strength of the 

gradient is decreased by almost a factor of two and the second nearest neighbor 

term is suppressed by “N 30% relative to the nearest neighbor one. Continuing 

this process, we find that, aside from the fact that the gradient’s overall scale 

keeps dropping by a factor z 8/15, An(j) rapidly converges to a fixed form. 

One can approximately carry out the iteration procedure analytically by setting 

An(2)/An(l) = -l/2 = 6’ (2)/ 6 ’ (l), in order to estimate the ground state energy. 

One obtains 

2 = -A L N - 1,216 A2L (2.23) 

Carrying out the calculation exactly by means of a computer yields an almost 

identical result 

ETR = 
0 -1.217 A2L (2.24) 

The exact ground state energy can of course be computed very simply from (2.1) 
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by transforming to momentum space, This leads to the familiar expression 

H=X k nb(k) - nd W 
k=-nA C 3 

(2.25) 

where rib(k)) and rid(k)) are the number of particles and anti-particles, respec- 

tively, with momentum k, The ground state corresponds to filling all k > 0 

states with d-quanta, rid(k)) = 8 (+k), and all k < 0 states with b-quanta, 

rib(k)) = 0 (-k), Actually the ground state is 4-fold degenerate corresponding to 

whether rib(O)) = 0, 1 and rid(O)) = 0, 1 in the k = 0 state (n, b, in the infinite vol- 

ume limit it becomes infinitely degenerate). It follows that the ground state 

energy for (2 o 25) is 

.,+, = -5-&- 

/ 

kdk=- $A2L 
0 

0 

(2.26) 

Hence our simple truncation procedure leads to a ground state energy that lies 

22% above the exact answer., There are two ways in which this agreement can 

be improved. One is by keeping a larger subspace of states than the four of the 

64 retained in the above calculation for each three-site block. This has proved 

very effective in the study of the Ising model. Alternatively we can determine 

which states to retain by a variational procedure as illustrated in Paper III. 10 

III. LATTICE THIHHING MODEL 

Turning now to the Thirring model, we add a chirally invariant “potential 

term” to the Hamiltonian of the free fermion theory. The lattice Hamiltonian 

is (see Eq. (2,X) and Section III-A of Paper II) 
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H= 

-i 

c 
i6’ (j 1-j2) xfq. -5 

j,J, 
c( 1 J2 j 

(xjXj)2 - (Xj ysxj)2} 

I 

(3.1) 

C iS’(j,-j,) b? b. -d? d. -g Q~j 

Lj, 
Jl J2 Jl J2 ‘= 1 j 

where Q 
5j 

is defined by (2.3). , Since the added potential term commutes with 

Q and Q,, we again choose the site basis in Table I used for the massless free 

fermion theory. The discrete symmetries C, P, and 0 of (2.4) - (2.7) are 

again useful for classifying states. 

proceeding as in Section II, we divide the lattice into blocks of three sites, 

and rewrite the Hamiltonian divided into single-block and block-block terms 

H =x HP +c Hpp, 
P PZP’ 

(302) 

The plan is again to diagonalize the single-block terms exactly, to truncate the 

Hilbert space to the lowest few eigenstates, and to rewrite the block-block 

coupling term in terms of operators which are confined to the truncated space. 

The exlumeration of block states and the block diagonalization of HP accord- 

ing to Q and Q5 go through as for the free field, and oace more we choose the 

lowest eigenstates I Op > , I +p > , I-p > , and I *p > and define BP and DpO 



-15- 

Equations (2,16) and (2.17) still hold, because they depend only on the same 

symmetries (2.4) - (2.6). Furthermore, (2.18) is unchanged; indeed, when we 

truncate our block Hilbert space, that expression for (b+) 
TR 

is the most general 

operator on the subspace with selection rules AQ = + 1, AQ5 = +l; and analogously 
9 TR 

for (d ) 0 However, we can no longer write (2.20)) because uj is no longer 

real. The reality condition depended on the symmetry of H under QwQ5, which 

does not hold for g # 0 in (3.1). Unlike the free field case, now 

<+p lb; lop> # <*p lb; kp> l 

Thus (2.18) no longer turns into a simple scaling transformation for b+ and d+. 

Instead it expresses a non-linear Bogoliubov transformation which forces these 

operators to take on their most general forms in the next iteration. 

The single site term HP in (3,2) becomes the sum of two terms: a constant 

representing an overall energy shift and a term proportional to 

splits the degenerate pairs I +p > and I - p> from I Op> and 

(H$? = El 2 
-g1Q5p (3.3) 

This is its most general form consistent with the symmetries. Correspondingly, 

the kinetic Hamiltonian turns into 

bd&? = B+ [A(p-p’)Q2 Q2 
A P 5P 5P’ + B (P-P’) Q; Qip, 

- B*(P-P’) Qgp Q;,- A*(p-p’)Q; Q”p , BP, 
3 

-D+ 
P [ 

-A* (P-P’) Qgp Q2,,,* B(P-P’) Q; Q”sp, 

- B*(P,- P’) QEp Qf,+ A (P - p’)Q; Q;, Dp, 
I 

(3.4) 
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where 

A(p-p’)=z i6’(3(p -p’)+o -o! u ‘) o1 u:’ 
clo!’ 

(30 5) 

B(p-p’)=x iS’(3(.p-p’,) +CJ u.*u* c! a’ 
CLO! 

Note that if ua! = u; , then A = B and (3.4) reduces to (2,21) when we use (2.19). 

Equation (3.4) is in fact the most general site-site (or block-block) coupling 

Hamiltonian which conserves Q, Q,, C, and P, for any functions A and B sub- 

ject to 

A(-P) = A.* (P) B(-P) = -B(P) (30 6) 

We are now faced with the prospect of iterating (that is, blocking and truncating) 

this operator as a kinetic energy term in the Hamiltonian. It is clear that the 

generality of (3,4) precludes any further change in form in the truncated sub- 

space to which we have restricted ourselves. 

In the second iteration, we treat our former blocks as “sites” and group 

them into (super)blocks as in the free field theory. After diagonalizing, we will 

need matrix elements such as (letting 01 index a “site” within “block” p) 

<*p 1 B;p+a Q&+cu lo p> = % 

'"p IB;p+o!Q25,3p+a! fop> z wcl! 

and (3.7) 

Indeed, use of C and P symmetries shows these to be the only independent 

matrix elements. Then the newly truncated H 
PP’ 

takes the form (3 ., 4) with new 

A(p) and B(p) given by a generalization of (3.5): 
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A(P - P’) -+z A(x) ro r;r! I -A*(x) wow:, + B(x) war;, - B*(x)r,wG, 

0101’ 
CI (3.8) 

B(p -19) AX B(x) rzr;, -~*(~)~;w;,+A(x)w~r~, -A*(x)rzwz, 

0101 

where 
x=3(p-p’)+o! -01’ 

This procedure can in fact be specialized to the first iteration if we start with 

A(j) = B(j) = i 6’(j). 

It is convenient, in order to make later comparison with the free-field 

case more transparent, to rewrite H (n) (defined as H;mfz/A in the nth 

iteration) as 

H(n) = c i X&PI B -D+D 

Pl’P2 p2 Pl p2 

2 
-1 +E 

n 

Q2 Q2 B - D+ Q2 
2 

Pl p2 p2 P1 5Pl ‘5P2 DP2 

Q2 QEp B 
5% 2 p2 

- D+ Q2 Q2 D 
Pl Pl p2 p2 )I 

(3.9) 

where X,(p) and Z,(p) are the appropriate linear combinations of A’s and B’s: 

VIZ. , iX,n(p) = B,(P) and i Zn (P) = Bi (P) - Ai (P). 

In this way our Hamiltonian (3.2)) with generalized kinetic term (3,4), 

takes on the same form when blocked and truncated, subject to an energy shift 

and a change in the value of g and in the form of the “gradient functions” A(j) 

and B(j). We iterate this procedure until one of three limits is reached: 
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(a) Xn and Zn + ~0 relative to gnO The resulting gradient functions must 

then ha compared to those resulting from the free field (where g = 0 to begin 

with) 0 More on this later. 

(b) X, and Z n - 0 relative to gnO This, the “strong coupling limit, ” 
11 is 

the Heisenberg antiferromagnet as discussed in Paper II, and the limiting form 

of the gradient functions before they go to zero must be examined to determine 

the degeneracy-breaking of the ground state. 

(c) Xn and Zn approach a fixed form, and a fixed ratio with respect to gnO 

In this case the dynamics at large scales remain complicated. 

We have thus far applied our procedure of successively truncating the Hil- 

bert space to compute the general form of the Hamiltonian. We may also apply 

this procedure to any other operator by computing its matrix elements between 

the states retained in each step of truncation, An example which will be useful , 

for calculating the Schwinger term in the Appendix is the ground state expectation 

value of the potential energy density (in units of A = (2 N + 1)/L) 

1 
‘=2N+l c 

2 

j 
-gQsj 

=& c (+ IT o l(-g)Q:,3pia?)=&~ vp 13010) 
P -9, P 

Noting that Q2 
5j 

is diagonal in our truncated basis and that it commutes with C, 

we let, in a 3-site block basis, 

a+b= -f c 01 
<OplQ; , 3p+JOp>= <VP1 vp’“p, = <kp ‘VP BP> 

(3.11) 

a=-ff c 3 a <+p I Q”S sp+o! , 
Dp> = <+p IV, I+,> = <-p IV I-,> 
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Then the matrix elements of VP in the truncated basis are summarized by 

writing 

VP = a + b Q2 
5P 

2N+1 Since 3 is just N b , the number of blocks, 

V=a+ 1 c 
Nb p 

b Q2 5P 
(3.12) 

This procedure may be repeated through following blockings, and the recursion 

formula is 

a - a+b 3 c <+plQE, 3p+c!!l+p> 
a 

b ,"c .-b- ;‘Op IQ2 5,3p +cJOp> - <+p IQ; 3 p+al+p>] (3 D 13) 
, 

o! 

Nb - Nb/3 

Initial conditions are a = 0, b = -g. 

Thus we may calculate <V> in any of our final variatioaal states. Since we 

already know what the Hamiltonian is doing in the iteration, we also determine 

the kinetic energy density by this process. This will be of interest for deter- 

mining the theory’s Schwinger term. 

In order to renormalize the field, we will need its amplitude to create a 

(Q = 1, Q5 = 0) t t s a e at rest from the vacuum, i. e., 

&i <0 Ix (k=O) I+> = 
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The operator of interest in (3.14) is 

d&l F bj=/Z F (J$$ b3P+o) (3.15) 

after one blocking. The symmetries of the theory imply that in the truncated 

basis 
1 

-z 
TR 

43 (y lb3 p+o! ) = SrlBp 

After n iterations, with Nb = (2 N-F 1)/3”, we have 

where 

At this 

so that 

,@) c BP 
P 

n 

!P =n c. . j,=l l 

(3.16) 

stage there is no order in the system on a scale greater than 3” sites, 

the zero-momentum state is just 

Thus 

(3.17) 

Therefore 
1 

c ~2N+l j 
<0 lbj I+> =+- @) bb c <OplBp I+,> =l@) 

P 

l/2 
z2 

= lim cln) = E [ 
n - co i=l i 

Using (3.16) and (3.7), we find that in iteration i 

(3.18) 

(3.19) 

(3.20) 

(3.21) 
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IV. CONTINUUM THIRRING MODEL 

aefore discussing results obtained from our renormalization group pro- 

cedure, we review known features of the continuum solution with which we are 

interested in making contact. To begin, we recall that operator solutions to 

the Thirring model have been constructed in two ways. In the first,3 the starting 

point is the formal equations of motion 

and 

i o= g,f+ (4.1) 
#‘j,(x) = ZP(Yj yp I)) = 0 (4.2) 

a% ~~ jv (x) = a?,, (4 = 0 (40 3) 

We refer to these as formal equations since if one begins with the fields +(x) as 

fundamental, the operators jP (x) and (d $) (x) are singular. To give them meaning, 

o.ne must adopt some prescription for rendering them finite. .Johnson does this by 

introducing a point splitting prescription 

jP(x) = lim 
E-- o ;<mxw yp $(x>;) - (4.4) 

where the bracket indicates a suitable averaging process over directions of E D 

Once both sides of Eq. (4.1) - (4.3) are well defined, it is possible to com- 

pute all finite Green’s functions. 

A second procedure 12 is to take the currents and their commutators as 

fundamental, and 

field. According 

jP and jw where 

I- 

from these reconstruct the Thirring model and the fermion 

to this approach, the theory is defined in terms of currents 

jP (x) is assumed to satisfy the commutators 

-I 

1 
j,(x), j, W)jEQT = 0 (4.5) 

[jo(x)9 jl(y)]EQT = ic s’(x-y) (4.6) 
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1 = 0 
EQT .- 

and also the conservation laws 

(4.7) 

(4--Q 

The fermionic degrees of freedom are introduced, after finding general solutions 

of the problem specified by (4.5) - (4.8), by requiring that there exist a field 

z$(x) such that 

= -a+(x) 6(x -y) 
EQT 

[j 1 W9 W] = -Q(x) 6(x-y) (4.9) 
E&T 

A Hamiltonian is then constructed in terms of currents alone in such a way that 

e(x) satisfies the equation 

i 6 +Nx) = gr : f (x) q(x) : (4.10) 

where : : indicates an appropriately defined normal ordering prescription for 

the composite operator. 

In either approach, if one studies the full operator solution of the theory, 

one learns that only two of the four parameters (a, 5, gr, c) are independent and 

that the resulting theory has no mass gap. Moreover, the wave function renor- 

malization Z2(gr) is found to vanish at a finite value gr=gcr if one adopts 

Johnson’s specific point splitting procedure. The parameter c in (4.6) is sin- 

gular at gcr as 1 

l- ( gr/gcr)2 
, and is negative for gr > gcr. Thus the Hamiltonian, 

which when written in terms of light-cone components of the Bose field jP(x) is4 

1 H= 4c j:(u) : du + 
/ 

: j:(v) : dv 1 (4.11) 

cannot be constructed past this point. 
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V. CALCULATION 

Lp. this section, we present the calculational details necessary to understand 

how we numerically carry out and interpret the results of our iterative “renor- 

malizatioa group” procedure for the lattice Thirring model. We find that the 

picture emerging from our truncation procedure and the resulting equations (3.3) - 

(3.9) is consistent with the continuum model in that there is a finite critical value 

g cr = 1.108’7 such for g < gcr the theory has no mass gap; for g > gcr the cut- 

off lattice theory cannot be multiplicatively renormalized in the usual fashion. 

The lattice theory still exists for g > go, . in fact, for this region its behavior seems 

entirely sensible and is precisely as described in Paper II-i. e. , for g > gor we 

are driven to the strong coupling limit which corresponds to a Heisenberg anti- 

ferromagnetic chain with nearest neighbor interactions. As was discussed in 

Paper II, this theory possesses a massless excitation spectrum as first proved 

46 years ago by Bethe. 13 For g > gcr, however, the single particle operator 

JTJ / 
d x $ (x) fails to create any finite energy states from the vacuum. In fact, 

the excitations of unit charge are found to lie an energy - gA above the ground 

state. This result shows that for a certain region of the parameter g the.particles 

and low-lying excitation spectra found in finite cutoff lattice theories are not 

simply related to the fundamental field introduced in the starting Lagrangian and 

Hamiltonian. 

In order to describe more fully how we carry out the numerical solution, we 

recall that the generic form of the Hamiltonian obtained after n iterations will be 

as givea in Eq. (3.9). The problem of storing and recomputing the infinite arrays 

X,(j) and Z,n(j) is handled in our numerical iteration procedure by explicitly com- 

puting and storing the values of X,(j) and Z,(j) for j = 1, . 0 D , 100. For j > 100 

we parametrize Xn( j) and An (j) by 
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.b I+, 
Xr (3 = twlJJ j i 

(A 2& 
+ -3 

J I 

ZT (j) = (- 1)j 
+ 

U3 2Jn 
.3 

+ 

i wn 
.2 

3 J 1 
(5.1) 

(5.2) 

where ‘as’ stands for asymptotic fit to large ‘j’, and compute the real coefficients 

(Al),, (4,s VW,, (J32), and (c)~. 

Tables V through VII show the results of such a calculation for typical values 

of g < gcr and g ’ gcro The meaning of the various columns is as follows: 

(i) The number of iterations performed. 

(ii) The value of Xn( 1) since it proves convenient for numerical reasons to 

redefine Hn = Xn(l)x%,, where the shortest range part of the gradient term in 

,;cpn is chosen to be normalized to the starting function S’(j). 

(iii) g eff is the value of g,/ I Xnc 1) I and so, for example, ‘geff -0 implies 

that up to an overall scale factor the theory is being driven to a theory with no 

quartic single site interactions. 

(iv) X norm(j) gives the first five values of 

X,(j) X(W), + tWn) /XnU) XX: (j) (5.3) 

The values of Z,(j) stay small for all initial values of g and iterate to zero relative 

to X,(j) so that we do not bother to display them here. 

(v) (Al)n/Xn(l), (A2)n/Xn(l), etc., are self-explanatory. 

We see that if geff and Bl/Xn( l), B2/Xn( 1), and C/Xn( 1) go to zero as the 

number of iterations increases and if only Xnorm (j) takes a fixed non-zero form, 

then the Hamiltonian becomes a purely quadratic operator which can be diagonal- 

ized simply. Tables V -VII show that this is what happens for g< gcr. On the 
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other hand, for g > gcr we see that geff grows; infact, geff XX,(l) approaches a fi- 

pite vslue, This means that the quark terms of the theory dominate the gradi- 

ent. Moreover, according to Table VII, only the first(,i. e. , nearest neighbor) part 

of Xnor; (j) survives an infinite number of iterations. Therefore, the Hamil- 

tonian .wn = Hn/Xn(l) is seen to approach the strong coupling nearest neighbor 

Thirring model-which was shown in Paper II to be equivalent to the Heisenberg 

antiferromagnet as studied by Bethe. The results shown are typical of the be- 

havior for all values of g > gcrO Since, as is shown in Table VI, the fixedformof 

X norm(j) is the same for all g < gcr and is in fact the same as for the free field 

case g = 0, it is evident that, for g< gcr, the large distance behavior of the 

Thirring model will be that of a massless free fermion theory, This is of course 

consistent with what is known about the continuum model, 

In order to understand what the change in the behavior of the iterative solu- 

tion at the point g = gcr signifies, we consider the wave-function renormalization 

constant Z,(g). Since the spectrum for g < gcr is always a free massless 

spectrum, there is no scale in the theory which is set by multiplicatively re- 

normalizing q(x) and so there is a great deal of arbitrariness in the definition 

of z2 w l 
We therefore consider the ratio 

3 (g) 
I-- zp- 

<+IJdxll;t(x) I o> 
<+ lj-dx 47x) ‘“~=o 

(5.4) 

with Z,(g) defined in (3.14) with $ = & x 0 

The result of our renormalization group calculation of this ratio is shown 

in Fig. 2. Note that it vanishes for g 1 gcr, the point dividing the two regions 

in which the Hamiltonian Hn iterates to very different forms, When g< gcr, 

Hn converges to the same fixed form that the free g = 0 Hamiltonian 
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iterates to, whereas for g > gcr it iterates to the very different form in which 

the ch_harged fermions move high up to mass m gA and fail to propagate. This 

breakd0w.n of multiplicative renormalization and the concomitant loss of the 

charged degrees of freedom from the finite mass spectrum is interesting in that 

it seems to occur in several types of lattice theories for appropriate values of 

coupling constant. Presumably if there is a qualitative difference between non- 

Abelian gauge theories, to which we look for an explanation of quark confinement, 

and these non-gauge models, it will be that for the gauge theories whenever g # 0 

we will lose the simple multiplicative renormalization procedure and, with it, 

propagating free fermion (quark) states. 14 

CONCLUSION 

We have demonstrated that our iterative procedure of constructing an effective 

Hamiltonian on the lattice can be readily applied to fermion problems and is suc- 

cessful in reproducing known results for the Thirring model. 
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APPENDIX: THE SCHWINGER TERM 

&n the preceding sections we described a technique for calculating the prop- 

erties of a lattice versioa of the Thirring model and showed that at least in its 

most important features it corresponded to the continuum theory. If we wanted 

to construct a more complete correspondence with the continuum theory, we 

would have to give expressions for the operators jcl(x) on a lattice with finite 

parts that converge to their continuum counterparts. The next step would be to 

fix the normalization of these operators by computing their matrix elements be- 

tween an appropriately chosen set of low lying states. As an illustration of such a 

general program we will discuss here the Schwinger term for this model. The 

principle purpose of this discussion is {i) to show how to define continuum oper- 

ators “j,(x)” for finite cutoff A and (ii) to show how to compute matrix elements 

of this operator and commutators of j,(x) with j 1. (x) between low lying states. 

To begin, we observe that our goal is to define a current jp (x) satisfying 

8jp/Px = 0 
I-L (A. 1) 

and to evaluate the commutator 
C 
j,(x,t), j, (y,t) 1 which according to (4.6) must 

be non-vanishing. We can directly construct a conserved current p(x) = j,(x) 

and j,(x) but it turns out technically to be simpler to use Eq, (A, 1) and 

b 00 = i[fL P (xl] (A. 2) 

to rewrite (4.6) 

[P tx), b (Y)] EQT = i[p(xh[H,p (y)]] = -ic 6” (x - Y) - (A. 3) 

There is no unique description for constructing a local charge density on 

the lattice. We adopt the straightforward procedure of defining the continuum 

field l5 
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x (j =0) eaipx 

TA 
A = 

c 2N+1 k=-TA 
x(k) e 

i&x= 

sin T (Ax-j) 

and introducing 

P,tx) = q+ tx) $tx) 

= A C 
j,j’ 

Xf X j.,! 

sin T (Ax-j) 
n(Ax-j) 

) sinT(Ax- ) jf ) 
T(Ax-j’) j 

(A. 4) 

(A. 5) 

Nextwe construct, from the equation of motion 

X jyi[H,xj]=-iA &iS’(j-j’)cu xj, 
J 

-g ~~xj(x~yOxj)+(xjy~xj)yOxj]~ (A.6) 

Using (A. 5), we find 

dPA r=-iA 2 

[ 

-I- 
‘j 

O! c ‘II J 
is’tj’-j”) .X j,, +C 

‘II J 
xi,. a iS’(j -j”) xj, 

- 2g(ijt X’j)( Xj,X j)+2g(,~j.Xj )(ij X j; il ’ (A, 7) 
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We will now evaluate the commutator (A. 2) and verify that the left-hand 

side slf (A. 3) becomes a c-number which is a function of the coupling g. This is 

easily accomplished once we recognize that at kmax 

coefficient c in the Schwinger term by averaging the 

size - l/A. In the lattice theory (A, 3) becomes 

we can simply pick off the 

commutator over a cell 

TA 

I 
= -ic 

-k2eikt=-Y) 
A c 2N+1 

EQT k= -7rA 
(A* 8) 

An average over the lattice distance is performed by operating on both sides of 

(A. 8) with 

dy (A. 9) 

-d/A -d/A 

where d - 1. This gives 

(x), QyiA (Y) 1 2 2 
= + d A (icA) 

The calculation of the left-hand side of (A, 10) is straightforward in the limit 

L=2N+1+ao 
A and we find 

8 d2A + 
2N+l c S’(.il-j2)X jl Q! Xj2 = 4Tr2d2 A (ic 

3 A 
) 

Jls j, 

or 

-6 T -6 T. 
‘A = 7 A(ZN+l) = ,2hALL 

(A, 10) 

(A. 11) 
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where 

TEA c X+ 
9 

i a! 6’ (j, - j,) x . 
JlJ2 

32 
(Ac.12) 

is the kinetic energy term in the Hamiltonian. This result is independent of the 

specific form of the quartic interaction terms which are softer at short distances, 

1. e. , the same result (A. 11) follows from prescriptions for defining the Thirring 

model on a lattice in terms of a quartic potential term free of TJmkhpps 0-r of a 

charge density defined by constructing p (x) by the operation (A,4) on the bilinear 
f 

Xj Xj’ We must now verify that in the limit L .+ 00, (A. 12) becomes a c-number 

equation. We readily verify this by expressing T in a momentum basis and 

recognizing its content: 

T = k=$A k(b+(k)b(k) - d+(k)d(k)) . (A. 13) 

The only term in (A. 13) proportional to volume L is the zero point energy since 

all excitations are finite, Note, for the case g = 0, H = T and since we know the 

ground state of the system, we find 

TA 

k + { finite excitations } 

Hence in the L A 00 limit the free field Schwinger term is given by - 

(A.14) 

3 
CA=;; l (A.15) 

Finally, one must divide the uA of (A. 11) by (Z2)2 in order to have the Schwinger 

term of the currents after field renormalization. 3 Since Z2 -0 as g-go, our 
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c is indeed singular there. (See Fig. 3.) 

Jahnson has shown that the choice of a value of gr and of a point-splitting pro- 

cedure are sufficient to determine the theory and its Schwinger term. Con- 

versely, choice of values for gr and c determine the theory4 and every pair of 

values corresponds to a point-splitting procedure. 5 We have given a renormal- 

ization group coastruction of the operators determining c as a function of the 

“bare” coupling g, In order to complete the numerical correspondence to the 

continuum theory, we would have to similarly construct the operators $ Al, and 

j’ $, thus finding the ‘kenormalized”~ l6 parameter grQ 
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{ Ic;” (4 $0) 
= A sinnA(x-y) 

EQT TA tx - Y) 
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TABLE CAPTIONS 

Table& Single-site basis states. 

Table II. Three-site basis states, Q = 0 sector 0 

Table III. Three-site basis states, Q = 1 sector. 

Table IV. A comparison of the free field gradient functions before (6’) and 

after (A,) the first iteration. 

Table V. Computational results for g = 0 (free field), 

Table VI. Computational results for g = D 1 < gcr. 

Table VII. Computational results for g = 2 > gcrO 
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TABLE I 

State 9j '5j 

1 0 j >: bjIOj> = djIOj> = 0 o -1 

I j J l”jz + > zb+. +1 0 

I-j -1 0 

If.> rb+ J d+ 10 > j j j 0 +1 
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TABLE II 

Q = 0 Sector 

'25 State iCP Transform 

$1 1 o++> 

1 ++o> 

1 +o+> 

1 -+k> 

1 ?I-+> 

I-++> 

1 +A> 

1 c+-> 

1 +t-> 

- 1 +*o> 

- 1 Ok?> 

- 1 +ot> 

- 1 k-f> 

- 1 -+I0 

- I-++> 

- 1 f+-> 

- I+-+ 

-I++> 
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TABLE III 

Q = 1 Sector 

State P transform 

-2 

0 I +0+7 

lo++7 

I o++> 

[ +_+o> 

I+o+7 

I++07 

I +-+7 

I U-7 
4-i-7 

- lo++7 

4+0+7 

+++7 

+o+> 

- I++07 

- I++07 

-I +-+7 

-I -++7 

-I++-7 

I+++7 -I 00+7 

1 +-I-t> -I +007 

1 z!I++> -I 0+07 
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TABLE IV 

j S’(j) Al(j) 

0 0 0 

1 1 8/15 

2 -l/2 -4/15(1-g/28) 
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FIGURE CAPTIONS 

1. Iteration of the blocking procedure 0 

2. Wave-function renormalization vs coupling constant g in the lattice 

Thirring model. 

3. Renormalized Schwinger term c vs coupling constant g in the lattice 

Thirring model. 
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