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ABSTRACT 

A modified form of the Wilson action is studied for the Abelian field 

in 2+1 dimensions, The system is shown to be identical to the infinite 

spin component generalization of the Ising model. In the weak coupling 

limit, the system factorizes into the ordinary Coulomb interaction, and 

a new set of interactions which are a direct reflection of the compact- 

ness of the Abelian lattice.field, This new interaction is divergent, for 

d 5 4, if expanded about the naive vacuum0 An exact calculation shows 

the existence of at least two phases. A mean field calculation shows the 

system to be in the same phase for all coupling g2, except for g2 = 0 - 

where there is a phase transition. 

(Submitted to Phys. Rev.) 
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Section I 

The lattice gauge theory proposed by Wilson 192 is motivated by the require- 

ment of exact local gauge invariance for the gauge field theory with a lattice 

cut-off. This requirement leads to a redefinition of the conventional continuum 

action, 192 such that the lattice action is made a function of the finite group ele- 

ments of the g.auge group. 

We discuss the Wilson action for the Abelian field, and then propose a mod- 

ification of it for the 2 Q 1 dimensional case. We will always consider a finite 

d-dimensional Euclidean lattice which is periodic, i. e, , a lattice of Nd lattice 

points O 

Let BnCl be the local spacetime Abelian degree of freedom at the lattice 

site n. 
c 

(Bnp = a(d-2)/2 gAP(x=na), where a is the lattice spacing, g the bare 

coupling constant, and AP(x) the continuum field. ) ” 2 Let 

f =B +B n+G,v, -B 
wv w n+C,P - Bnv 

Then the conventional continuum action is defined by 

A 
-1f2 

I 
e continuum = n e 492 wJv 

npv 

(where the prime denotes p # v )O 

The Wilson action is defined by 132 

if 
A 

II’ 
rwv -1 

e continuum 
- .nPv 

(1.1) 

(1.2) 

-(1.3) 

+ cos f 
wv - 1) 

= II’ e4g (1.4) .nPv 
iB 

Note that since the action is now only a function of e nP, the Feynman path 
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integral is defined on the compact space of -T 2 B w 
2 T for all n, ~1 and hence 

leading to a theory which needs no gauge-fixing. 

We define the modified Wilson action in d = 2 + 1 by the following prescription 

1 -- 
A 3 

e co.ntinuum = n’ e 4g 
2 nij 

nij 

1 
- 2 (& e ijk fnjk)2 

=Ile2g 
n i 

+oG 
A e continuum +,A = E pc 

.=-a ni 

Using the identity 3 

+oO c 6(x-n) = +a3 e2niLx 
c 

n=-00 Q=-co 

we also have (dropping an overall constant) 
r) 

A 
e = c 

[ 
C=n E 
i I Q ni Bni= -co 1 

(1.6) 

(1.7) 

Similar systems have been studied in statistical mechanics. 
4 Note that eA is a 

if . . 
function of e nlJ and hence is periodic in the Bni variables with period 27~. In 

fact, it was primarily to have this periodicity in the fnij that the construction in 
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(1.5) was carried out. In the strong coupling limit (g >> 1) we have 

eA = nq 
i 

-g2/2 
l+e ( e 

ie ijkfnjk/2 -k ijkfnjk/2 
i-e )+()(,-““)i 

1 -g2/2 
zexp e 

i fnij 

= i 
e 

n i j 
(1.8) 

We see that (1.8) is the strong coupling Wilson action, but with a coupling 

constant renormalization. See Appendix A for further discussion on this action. 

Section II 
iB . 

Since the action is a function only of e nl, we cover all possible unique 

values of the field Bni by letting -a < Bni I TL Hence the Feynman path integral 

is defined by 

+7T 

z= Fi 
I 

d Bni eA 

-7r 
The gauge transformation on the lattice is defined by 

iB ni Wn iB,ni -i$ n+? 
e ,e e e 

or 

B ni + B ni - ‘i +n+“; + 2 Thni 

where hni = integers, qn is a (compact) scalar quantum field, and 

“if, z fnmfn-c 

(2.1) 

(2.2) 

42.3) 

is the finite lattice derivative. 
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The most general integer-valued external current which is gauge- 

invariantly coupled to the Abelian field is 

c 
e -“ijk n j ni j 6 Bn + s k , =e 

kijk ; di jnj Bnk 

is an arbitrary collection of integers. 

We evaluate the generating functional 

Z[j] = $ 
I 

dBnie 
ieijk c ‘i jnj Bnk A 

n e 

-7r 

= .e c 
i z Q 

h ni 
l ijk ’ j ‘,nk, 0 

Note that the Kronecker d-functions in (2.5) imply that 

eijk ‘j Ink =O Vn,i 

(20 4) 

(20 5) 

(2.6) 

We show in Appendix A that Eq. (2.6) is. uniquely solved by 

Qni = cTiQn .-( 2 0 7) 

n +; (In is an integer-valued scalar field.) Also, the functional sum ni 
+CO 

f _ -,is 
ni- 

restricted by (2.6) to become f f c = ~ giving the final answer 
n - 
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+cO 
Zcj] = !i? Q C-, e 

- $ C ( 6j,Qn 
n i - jni)” 

n 
(20 8) 

We see that (2.8) is simply the generalized Ising-model with the infinite 

spin field fn at the lattice site n, The theory is well-defined, on a finite lattice 

(N < m), for all d 2 1. The limit of N - 00 seems to exist only for d > 2 isee 

Section III] O Z[j] reduces to the ordinary Ising model in the presence of a mag- 

netic field if In = *l. We call (2.8) the strong coupling representation of Z [ j] O 

Equation (2,8) is suitable for the strong coupling sector, but unsuited for 

weak coupling. We rewrite (2.8) using the identity of (1.6). To do so, we de- 

fine the following (for an Nd periodic lattice): 

Q n i ‘k. E 7 e _ ‘k 
i 

ikn 

‘k,q = N 
diG =1-e 

-iqi 

i=l ki,qi ’ rqi 

dq =c Irqi12 , Dn=x eiqn/dq 1 q 



-7- 

Then, from (2,8) and (1.6), we have 

c, 

Z[j] = CII 
iQP 

-< 
= e 

J 
.+CS 2sicxnQn - < ~(“ixn-jni) 2 

dxn e n e n1 
--03 

Cj2 +a0 
Cxn(2xien %26ijn+I, i) 

c J dxn en 

_ 2, (6 .x 
in 

j2 

ni ni I1 
2 ni e 

11 Q n --03 

F 
= e ‘z[jl 

where 

F,=-< c jii+ < c G&+$; i Dnmm$jrn+$ k 
ni nm 

* 

(2.9) 

(2,lU) 
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For d = 3, we can rewrite (2.10) as 

Also 

and 

Fc = - < c 6 ijk ’ iab ‘i jnk Dn _ n’ ‘ajnla 
nn’ 

2 

z[j] = f: 

27r 
c 

me-8nn’ 
‘nDn-n”n’ i CQnen n e 

n - 

o~=~T C 
n i 

Dmwntjn+T i- j,i) , 

(2.10') 

(2.11) 

(2.12) 

The results obtained are exact, and note that no gauge-fixing was involved in 

obtaining the result. We call (2.9) the weak coupling representation for Z[j] . Fc is 

simply the ordinary Coulomb interaction in 2+1 dimensions. To show this ) we compute 

the closed gauge loop by choosing the appropriate { jni) and compute its Coulomb part; 

1. e. a 

<e 
iF Bmh > ~ Fc[jl e c 3 

where the contour I? is a planar square of side L (see Fig. 2) 0 The sum along 

the closed contour I’ we denote by E 0 Then one can easily show that, for large L, 
r 

*?z 
2 

<el I7 
Bma 

>c = e 
-5 LQnL 

-I- lower order. (2,13) 

(See Appendix B for derivation. ) 

Let E(L) be the energy of the state. Then” 2 

-E 
<el r 

B mh 
>c = e 

-L EC W 
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giving the Coulomb part of the energy to be 

EC(L) = i g2 QnL + 0 (1) (2.14) 

We see that EC(L) is simply the expected logarithmically growing Coulomb 

potential for d = 2 + 1. 

The partition function ??[j] is the sector of the Abelian field which is a 
iB . 

direct consequence of the compactness (periodicity) of the field variables e n1 

(as construction in (1.5) shows). Note z [j] is non-analytic about g2 = 0 due to 

the discreteness of the degrees of freedom { Qn } . The structure of A is remi- 

niscent of the actions studied by Polyakov 536 and Savit D 7 Similar actions have 

also been studied by Banks, Meyerson, and Kogut. 8 

We discuss gauge-invariance for the system in the Qn basis. The gauge- i t 

invariant coupling of { jni 1 to the Abelian field implies invariance under the 

following transformation: 

j ni --c jni - ‘i hn (2.15) 

where { hn 1 is an arbitrary collection of integers. We call (2.15) the gauge- 

transformation on the external current jniO Under (2.15), we have 

Z [j] = Z [j -6h] (2.16) 

This invariance is realized quite differently for the strong and weak coupling 

representations of Z [j ] . For the strong coupling representation, we have from 

(2.8) 

eiQn - jni + tii hn 2 
> 

T ZZ L ,C 2 (si’n - jni)” 
i t Q 

(2.17) 
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where we displaced Qn to Qn - hn to obtain (2.17). Any cutoff on Qn, say 
iB . 

-H < 4 5 H (H = integer), will destroy invariance in (2.16). (Note if e ” is 

made discrete, then Q { n\ becomes bounded. ) Any strong coupling expansion 

of (2.8) about the Qn = 0 vacuum respects gauge-invariance only to the order of 

the expansion, and not exactly. To define an exactly gauge-invariant strong 
iB . 

coupling expansion, it seems easier to go back to the e ” variables. 

Gauge-invariance of Z [j ] f or the weak coupling representation is realized 

as follows: From (2.10) and (2,12) 

en = 
w $ijki 

-27rCe - 
k dk 

(2.18) 

(2.19) 

From (2.15) 

jki - jki + rkihk (20 20) 

Therefore, under (2 D 20)) 

Fc[j-Sh] = - 
2 

-ki’r&h-k) (jki’rkihk) +$C (j k -ki’r&h-k) dk a (jijrkjhk) 

2 
=FJjl -Fz&h-khk-g2-j-j 

k ‘i; -kirkihk 

= F&l (2.21) 

and 

en[j-6h] = - 2nz e 
tin l‘k*i(jki+rkihk) 

& 
= O,[j] - 2xh (2.22) 

k n 
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Therefore, from (2, ll), 

Fc L-4 
Z [j -6hj = e 

2n2 c - a- 

e g2 
nn’ ‘n Dn-nfTnr p c Tnon[j]]- I-h-i;% hn] 

e e (2.23) 

= Z [j] (2.24) 

Note that (2.20) is gauge-invariant, order by order, inp; that is, any cut- 

off in Yn preserves exact gauge-invariance. We can consequently define an 

exactly gauge-invariant we&-coupling expansion by imposing a cutoff on 2. 
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Section III 

Fe examine the weak coupling representation. We set jni = 0, as this does 

not change the bulk properties (phase diagram) of the system. We make a low 

temperature expansion’ about the gauge-invariant naive vacuum given by rn = 0, 

and obtain (for d dime.nsions) 

EQD Q n n-n’ n’ 

n In=-cc 

21r2 47r 2 
--Do -DO 

=1+2Nde g2 C’e g2 l 4 
‘i coshDn -ht 

2n 2 
Do 

47r 2 
- 2 --Do 

0 -$QnZ=Pe g 0 0 +2e g2 cash Dn - 1 

Note for I n I >> 1, we have (d > 2) 

(3.1) 

(3.2) 

(3.3) 

1 
Dn h, - .d-2 (3.4) 

Therefore, for some R >> 1, 
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c ( cash D n - 1) 1 c (cash D, - 1) 
- .n#O InI >R 

I 

N4-d 2<d<4 

N c D2 - Qn N d=4 (3.5) 
Inl>R n 

constant d >4 

Hence, we see that QnZ /Nd is divergent (as N - 00 ) for d 5 4. To uader- 

stand the reason for this divergence (Le., whether it arises because this theory 

undergoes a phase transition for g2 < g:, or whether this divergence arises 

due to an incorrect choice of the naive vacuum), we have to study the phase 

diagram for the system. 

We are interested in the limit of g2 -0. First, note that for g2 = 0, the 

gauge field becomes a massless free scalar field. To see this, let en = gQn. 

Then, from (2.8) (with jni = 0), we have 

4-00 
ni 

= (constant) r[ 
I- - i C (bi”d2 

n I 
d+ne 

-00 

since qn becomes a continuous variable ranging from -CO to -I- 00 in the limit of 

g2 = 0. Note that th e massless free field is a lattice system at the critical point, 

and has infinite correlation length. The low temperature expansion of (3,3) can 

be generated by making all the discrete variables {Qn } continuous in (2.8), c 

cept for a finite number of In’s, which are kept discrete. 
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The g2 = co phase is well-defined. From (3.1), defining en = Q,/g, we 

have 

+oO 
Z(g2 = 00) = (const)n I 

-27r2 c (tpn-n’+n! 
Wne 

n, n’ 

n 
-Co 

The propagator for the above system is non-zero only between nearest neighbors, 

giving a correlation length of unity. The correlation length for the system at 

g2 = 0 is infinity. Hence, the existence of (at least) two distinct phases is an 

exact result, We investigate if the phase transition from finite to infinite 

correlation length takes place at g2 = 0, or at some finite gz > 0. If the phase 

transition takes place at g2 = 0, then QnZ/Nd will have a finite limit for all g2 > 0 

and Nd -. CCI 0 

The crudest (and easiest) first approximation for the phase diagram is given 

by mean field theory. 199 In this approximation, one replaces the entire field 

theory by a problem involving only one degree of freedom. 

Recall, from (2.8) 

2 
A = -% c (Qn -Qn a+2 

ni 
(3.6) 

Consider a particular lattice site n. Replace the interaction of Qn with its 2d 

nearest neighbor’s, by the effective interaction of Qn with a constant background 

field of strength M, Then, for this one site _- 

A - -g2d(Q-M)2 

and 

+CC 

ZMF = Qzmao c eA= +* c e- g2d (Q - IQ2 
Q =-a 

(3.7) 

(30 8) 
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Let 

+a0 2 
f(M) + c Q e-g dtQ -M) 

2 

MF Q=-cc 
(3.9) 

Since M is the background field which is self-consistently created by all the {Qn{ , 

we have the following mean field equation for M 

M = f(M) (3.10) 

which fixes M as a function of g2d; i. e., the solution of (3.10) gives M = M(g2d). 

Note f(M + n) = f(M) + a (n = integer), so we only consider ME (0,l). The solu- 

tion of (3,lO) for g2 # 0 is rather trivial, since, from (3.9), 

f(k) =1-f; , 
( ) 

or 

f(S) = ; . (3.11) 

Hence, we see from (3.10) and (3.11) 

M=; (3.12) 

forallg2# 0. 

To investigate the g2 = 0 behavior, note for g2 =O lr2 -- 
2 

f(M)=M-f- -%- e gd 
g2d 

Therefore, for g2 = 0, we see that F(M) = M; this gives all Me (0,l) as solutions 

of the mean field equation (3.10). Hence, there is a singularity (instability) of 

the system at g2 = 0, The singularity of the system at g2 = 0 indicates the 

phase transition to the free massless scalar field, A numerical calculation 
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shows that (3,13) is good for g2d c 0.4, Hence, the system is exponentially 

closehto the g2 = 0 massless free field phase for 0 <g2d < 0.4, The crossover 

from strong to weak coupling representation is for 0.4 < g2d < 0,6. We sche- 

matically plot 5 = correlation length as a function of g in Fig. 3. 

The mean field calculation in general is not reliable for quantitative in- 

formation, although it is usually good enough to describe, qualitatively, the 

phase diagram of the system, We hence make the tentative conclusion that the 

divergence we found in perturbation about the g2 = 0 naive vacuum is due to the 

phase transition of the system at g2 = 0, and that defining a perturbation about 

the correct vacuum will give a convergent expansion of L kn Z for all g2 > 0. 
Nd 

A more detailed study is required to confirm these expectations. 

I am indebted to Y. J, Ng, F. Martin, S. Doniach, M. Weinstein, 

M, Nauenberg, M. Wortis, and M. Peshkin for helpful discussions. 
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Appendix A 

#ere we shall prove that 

+oO 
Z[j]= 17 C (A- 1) 

nf N Qn=-~ 

In the first place, for a precise definition of the modified action, note that for a 

periodic lattice 

(A* 2) c f 0 = 
n nij 

or 

f =- f 
Nij N nij 

Hence, eliminating f nij 
from the action gives 

eA= 
-2dni 

n#N i Qni=-~ 

and finally for Z [j] from (2.5) 

(A. 3) 

‘2 

.) 

- jniJ2 
I7’s 
ni e ijk “j ‘.nk , 0 

(A. 4) 

(A. 5) 

where the primes mean that n # N. 

We make a change of variables so as to saturate the constraint imposed by 

Kronecker d-functions. We choose the axial gauge 
1,lO ; for d = 2 + 1, factorize 

the lattice into domains as illustrated in Fig. 1. Make the following transforma- 

tions (see Fig. 1): 
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i 

Q .nj = Tnj + cTj Qn (j f i) 

nE Dti) 
Q ni = tiiQn; Tni = 0 

(A. 6) 

In the new 

thatg (Tnji 

have 

variables, the Kroaecker 6-functions reduce to the restriction 

be zero; hence, dropping the superfluous Kronecker 6’s, we 

(A. 7) 

+cO C’ (‘iQn - jni12 
= ;‘,c ni 

-- me 
n 

(A. 8) 

We will usually ignore (in this paper) the special behavior of the lattice 

site n = N. 
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Appendix B 

9% obtain the Coulomb force, we have to compute 

using only the Coulomb part Fc [j] . I’ is a planar contour restricted to the 12 
iB . 

plane ; let e n1 = l e (see Fig. 2). 
n n+? 

In d = 2 + 1, the planar loop can be represented (up to a gauge transforma- 

tion) by the following choice of 

L-l 

j,i= ‘i3 c 6 A=(j . 
Ql,P2 =o n, 8Lrl+12 2 i3 3n (Be 1) 

Note ! jn j is nonzero on the planar grid of points enclosed by the contour I?. 

That is, 

iz B 

<e IT 

Then, for the Coulomb part 

iE B 

<e r *>, F 01 = e c 

Using ( jni } given by (B. l), and using (2,lO) gives 

F [j]= -< C 
-7r 

Ir 
ljq12 

where 
j,= n e-lqn jn c 

= 1-e 
-i qlL 

l-e 
-iq2L 

l-e 
-Ml 

l-e 
-iq2 

(Be 2) 

(Be 3) 

-(B. 4) 

03.5) 
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We compute Fc for the case L >> 1. Keeping only the leading order effect, 

one can show (for d = 2 + 1) 

Fc[j] = - -$ L In L + 0 (L) 03-3 6) 

I thank F. Martin for helpful discussions on this section. 



-21- 

REFERENCES 

1, & G, Wilson, Phys. Rev, D 10, 2455 (1974). 

2, K. G. Wilson, Lectures at Erice Summer School, 1975. 

3. M. J, Lighthill, Introduction to Fourier Analysis, etc. (Cambridge 

University Press, 1964) 0 

4. J. Villain, J, Phys. 36, 583 (1975), 

5. A. M. Polyakov, Phys. Lett, z, No. 1, 82 (1975). 

6, A. M, Polyakov, Nordita-76/33 (19 75) 0 

7, R. Savit, Phys. Rev, Lett. 39, 55 (1977), 

8. T, Banks, R. Myerson, and J. Kogut, preprint #COO-2220-112 (to be pub- 

lished in Nuclear Physics) 0 

90 H, E. Stanley, Introduction to Phase Transitions, etc, (Oxford Press, 

1971) D 

10, B, E, Baaquie, Phys, Rev, D (to be published), 



-22- 

FIGURE CAPTIONS 

1. Eartition of the lattice points into disjoint sets denoted by the domains 

$1 e i = 1, 2, 3. Lattice site N = (N, N, N) is a domain by itself. 

2. Contour product of the gauge field around the contour, which is denoted 

by r, 

3. Schematic plot of the mean field result for the correlation length [ as a 

function of g. 
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