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ABSTRACT 

It is natural to generalize the quark-confining string model by introducing 

additional terms coming from the Riemann curvature tensor. For simplicity, only 

terms linear in the Riemann tensor are considered. In the absence of quark 

fields, such terms are trivial (as in two dimensional gravity). In the pres- 

ence of quark fields, embedding of the string in four dimensional Minkowski 
. - 

space renders such terms non-trivial. We formulate this generalized quark- 

confining string in the first order form, from which we derive its second order 

form. The coupling between the quark spin and the string curvature via the 

connections induces a spin-spin interaction among the quark fields. This gen- 

eralized version has a dimensionless parameter K in addition to the quark-gluon 

coupling e and quark masses. The original version is recovered as a special 

case (i.e., K = 0). 

*Work supported by the Energy Researcn and Development Administration. 

(Submitted to Phys. Rev. D) 
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1. INTRODUCTION 

The most expedient approach to the theory of hadron physics is probably 
h 

via the construction of theoretical models which incorporate, as many as pos- 

sible, physically desirable features. Following this approach, the quark- 

confining string (QCS) model1 is constructed. The physical picture of the QCS 

is intuitively transparent and its mathematical structure well defined. In 

fact, the QCS is the only known model which is 

(1) relativistic invariant, 

(2) gauge invariant, 

(3) field theoretic (as opposed to quantum mechanica12), and has 

(4) manifest quark-confinement. 

In addition, the model seems to have the properties of the parton picture, as 

well as Regge behavior and duality. It has reparametrization invariance, 

asymptotic linear trajectories and Hagedorn-like spectroscofiy. In the non- 

relativistic limit, it provides a linear potential between colored quarks. 

How seriously one should take the QCS depends on quantitative comparisons 

between the model and experimental data. For example, in the non-relativistic 

limit, the QCS gives a very reasonable fit3 to the + spectroscopy discovered 

recently. The crucial question is, of course, how the model fares for the 

various relativistic corrections, such as hyperfine splittings, spin-orbit 

couplings, etc. To answer this question, we must first examine the uniqueness 

and generality of the QCS. Only after this issue is clarified-can we use a 

detailed quantitative comparison with data as a test of the model. In this 

paper, we address ourselves to this issue. We find that there is a very 

natural way to generalize the QCS constructed earlier. 
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There are many ways of looking at the QCS. For the sake of definiteness, 

let us adopt the following point of view. Consider quantum chromodynamics 

(QCD) in two dimensional Minkowski space. Here, quark-confinement is explicit. 

Now, let us extend this model to four dimensional Minkowski space. One such 

extension gives the standard QCD. However, if we want to retain the explicit 

quark-confinement feature, the simplest extension to the physical space is the 

QCS. Here the original two dimensional space-time becomes a two dimensional 

curved subspace (V,) embedded in four dimensional Minkowski space. In the 

original version of the QCS,' however, the curvature of the string is deter- 

mined only by the motion of the quark and gluon fields, and not by the spin of 

the quarks. For a curved subspace V2, it is natural to introduce into the 

model a term due to the Riemann curvature tensor. Contrary to two dimensional 

gravity, the embedding renders such a term non-trivial when (four dimensional 

Dirac) quark fields are introduced. . 

In the presence of a Riemann curvature term in the Lagrangian, consistency 

requires an interaction between the spin of the quark fields and the curvature 

of the string via the connections. This automatically induces a spin-spin in- 

teraction term among the quark fields themselves. The standard method of de- 

riving this spin-spin interaction term in the model is to start from the first 

order (Palatini-Cartan) formalism4 developed in General Relativity. 

The generalized QCS is given, in the first order form, by 

(1.1) 

where D = 3 % -I-lV 
a a - T c%l.lv o is the covariant derivative and R is the Riemann 

scalar. Here the connection I' apJ ' the string coordinate X 1-1, the quark field $ 

(flavor index suppressed) and the gluon field Bi are treated as independent 
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variables. K is a dimensionless parameter analogous to the gravitational con- 

stant in two dimensions. Since the equation obtained from the variation of 
-h 

r @nv is only a constraint equation, we can solve for Tauv and rewrite the action 

(1.1) in the second order form 

S= d2ufi 
/ 

Here Saaa=-g- g+ff,,i$ 'a@' 

2 
- eBdTJ)$ - TM+ - $- + K S,ga~aBa] (1.2) 

The parameter K, the quark-gluon coupling e and quark 

masses M. J are the parameters of the model. For K = 0, the explicit spin-spin 

interaction term drops out and the model (1.2) reduces to the QCS constructed 

earlier. 1 We note that the Riemann scalar term is absent in the second order 

form (1.2). 

This paper is organized as follows: In Section II, we review the (old) 

QCS , in particular the geometric notations and the parallel transport properties 

of the quark fields along the string. In Section III, we prove that the connec- 

tion in the first order formulation in the absence of quark fields is precisely 

that derived from parallel transport argument. In Section IV, we introduce the 

generalized QCS (1.1) and derive from it the second order form (1.2). Section 

V contains some remarks, in particular, on the relation between QCD and the QCS. 

Some of the detailed derivations are relegated to two appendices. 

II. REVIEW 

A. Notations 

The coordinates of the string X c1 
u 

are functions of the two-parameters u , 

which provide an arbitrary coordination of the world sheet, 

xii = Xu(lP) 1-1 = 0,1,2,3 

a = 0,l 

(2.1) 

The induced metric for the two dimensional (string) subspace is given by 

(2.2) 
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where r 
axll 

alJ = s z xq3 are the tangent vectors. The quark fields are four 

component Dirac fields in Minkowski space. They are confined along the string: 

Jli = ~i(""> (2.3) 

The original QCS is defined by the action' 

S = 

(2.4) 

Here g = det[g,B] and d2uaG is the invariant volume element on the world sur- 

face. fa 5 g"fifS Z r:~" where gaB is the inverse of 

Dirac matrices. 

TJ are the matrix generators of SU(3) color group with 

gclB and y' are the (4x 4) 

structure constants f 
ijk' 

LTj,Tkl = ifjkaTa. Bja(ua> are color gauge fields in the internal coordinate 

~ space and 

Fi = 
aB 

a Bi 
ct B 

- aBBi + e fijkBi Bk 

The Dirac equation follows from the action (2.4): 

(2.5) 

(2.6) 

where the flavor index is suppressed. To prepare ourselves for the introduction 

of Riemann curvature scalar into the Lagrangian, we shall review in detail the 

parallel transport properties of a quark field along the string. 

First, let us consider the parallel transport of a vector. quantity Vu(uu) 

along the string. We can then derive the parallel transport of a Dira-c field 

by demanding that the current vyu$ = Ju(ua) parallel transports as a vector 

quantity. This gives the connection for the Dirac fields. The equivalence of 

the first and the second order form for this connection is then demonstrated. 
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Throughout, a,B,y,6,n = 0,l are the internal indices; ~l,v,p,h,u = 0,1,2,3 are 

the Minkowski indices; a,b,c = 2,3 are the indices for the normals (to be de- 

fined) an; i,j,k = 1,2 ,...,8 are the color SU(3) indices. 

B. Parallel Transport of a Vector and a Spinor Quantity 

The "Christoffel symbol of the second kind" is a function of the induced 

metric g,8, or equivalently 

(2.7) 

At each point of the string, two normals n;(uo), a = 2,3 can be defined such 

that rum n = n2'n3 = 0 and n2 =n n n = -1. one can write the flat 
a au a 

With these, 
a 

Minkowski metric n 
PV 

in the following form 

aa 
n = P-r -nn 

l-iv lJ av 1-IV 
(2.8) 

The covariant derivative of -c al-I defines the symmetric curvature tensors h:B: 

(2.9) 

ab 
and the derivative of the normals introduces the antisymmetric torsion v : ci 

where 

a n E n a abnb = ha ,' 
l.l;a da-- u aB u 

Using Eq. (2.8), any vector quantity Vn can be written as 

5 = V-ramp - V=nan; 

= v% - Vana = V + V 
al-I lJ PP nu 

Vp*na = v,.p = 0 

Varying V 
PF( 

and using Eq. (2.9), we obtain 

(2.10) 

(2.11) 

(2.12) 

(2.13) 
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Varying V 
w 

and using Eq. (2.10), we obtain 

6V h w 
= -(sVa)$ - Vasn; 

= - Vaha +tcl + Va 
aB Fi 

(2.14) 

Since we are. considering parallel transportation only, Va 1 lB = Va:B = 0; hence 

6vi-I = (V.r")nE - (V.na)r: hzS6uB 1 (2.15) 

Let us now consider the spinor field.5 An infinitesimal displacement of a 

spinor field along the string is defined to be 

s+= I, 
4 cxpv UPV) &la (2.16) 

where o is the connection and u l-iv-i 1-1 v 
a!Jv -TY'Y - [ 1 Demanding Tyulr, to transform 

as a vector quantity, we have 

(2.17) 

. - 
Comparing Eqs. (2.15) and (2.17), we obtain the connection as a function of the 

curvature tensor 

f hzo bB,na]pv (2.18) 

where the antisymmetry in u,v is explicit. The covariant derivative for spinors 

is now completely defined 

= a + i ha nap(yl-lv 
a 2 ClBuv 

(2.19) 

Contracting Da with tia gives the first two terms in the Dirac equation (2.6). 
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C. The Riemann Curvature Tensor 

The Riemann curvature tensor in V2 is defined by 

T:jlalle - T;l/811cx = Ryw3T~ (2.20) 

Using Eqs. (2.9) and (2.10), it is straightforward to express R 
QBY6 

in terms of 

the curvature tensors 6 

R ClBYS 
= ha ha - ha ha 

ay 6B a6 Y9 
(2.21) 

which has only one independent component, namely R 0101' Eq. (2.21) is called 

the Gauss-Codazzi equation. 

III. RIEMANN CURVATURE TENSOR 

In the first order formalism, the Riemann curvature tensor is expressed 

as a function of the connection w apv - 

. 
or 

(3.1) 

(3.2) 

This Riemann tensor is a mixed tensor: it is an antisymmetric rank two tensor 

in both the Minkowski space and the internal coordinate space V2. (The relation 

of this mixed Riemann curvature tensor with the Riemann tensor introduced in 

Section II will be given later.) To construct a Lagrangian from this Riemann 

tensor, we must contract the indices using the dynamical variables available. 

In the absence of quark and gluon fields, the only variables present are the 

string variables. Thus, if we consider only terms linear in R PVaB 
in the 

Lagrangian, R PVC@ must be contracted with the tangent vectors T 
au- 

There are 

two ways of contraction: 

(3.3) 
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and 

where -CI 

R" = U llVQB R 
WclB (3.4) 

uWa8 = Ip~ p.p 
2 P h (3.5) 

In this section, we shall consider the following preliminary model (where 

the constant C is added solely to render the model non-trivial) 

S =ji?~,{kR+-$R* - c} 

-w2 - Jq c (3.6) 

Here ~~ are dimensionless parameters, reminiscent of the gravitational coupling 

constant in two dimensions. The Lagrangian is a function of X and w which 
1-I ClJlv ' 

are treated as independent variables. Varying with respect to woFIv, we obtain 

L 
Kl 

haBg[ru,na]~v - haag[-cB,nalPv - leclB E 
> K2 

abhbgy [naF Ty 11J.U 

+ %l” { 
k [~a, TB] uv + tea8 Eabnavnbu 

> 

+ %Ja { *[Ta,TBlpu - teas sabna nbo) = 0 
u 

where 

e 
aB Eol = -E 01 = 1 

and UuvclB can be written in terms of n (E23 = 23 = 1) 

(3.7) 

(3.8) 

(3.9) UwM=-~ew3 E 
2 ab 

,w,bv 

We note thatUPva3UuvaB = -1. 

Eq. (3.7) is linear in w 
WV 

and hence is a constraint equation. To solve 

it, let us project out the various components of w auv ' using its antisymmetric 

property 
w =--w 

a!Jv UW 
(3.10) 
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and Eq. (2.8): 

a w 
PV 

= waBy[~B, ~~~~~ + waab [na, nblpv + uaBa[Tg. nalpv (3.11) 

Substituting this into Eq. (3.7), we find the @BY and .uab terms disappear. 

Equating the terms for [rS,na]uv, the following solution emerges 

,&a = hah (3.12) 

We make two observations: (1) the solution (3.12) is independent of K~, and 

(2) muBy and waab are not determined. To gain more insight into (2), let us 

substitute Eq. (3.11) into Eq. (3.2). It is straightforward to obtain 

R = llW.B 

where the following Gauss-Codazzi equation is used 

ha 
aB:y 

- ha ay:B = 0 

(3.13) 

(3.14) 

The symbol ":" stands for total covariant derivative, e.g., 

aB 
V :a 

= va@la + {iy},"y - vEbvbB (3.15) 

and 

R = Waab:B +20 Bat Wclbc - (atfB> 

(3.16) 

(3.17) 

Let us now consider the string equation of motion. The string equation is 

Here the "Einstein" tensors are defined as 

(3.18) 

(3.19) 

G*CIB = R*CCIB _ qg”fiR” (3.20) 
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R =R BV 
alJ !JMT 

= RffTBI-I = R" BY 
lJ Y 

and similarly for R *aB . Since both R 
aBYG 

and R abclB have only one component, 

namely ROIOl and R2301, we have 

G aB = GfcCIB = 0 

Hence the string equation reduces to 

(3.22) 

gaBI la~CBu + gaBTBUlla = hz'ni = 0 (3.23) 

This means w 
8BY 

and w clab never enter physics. Thus, without loss of generality 

we can set them to be zero, so that 

(3.24) 

which is identical to that given in Eq. (2.18). (Actually in the parallel 

6a transport argument presented in Section II the connection w can also be 
(J-W 

5 
augmented by arbitrary w 

@Y 
and w 

clab 
terms. Since they do not affect physics 

we have set them equal to zero.) 

From Eqs. (3.13) and (3.24), we find 

R = hzy hia[rY,r'],, + hLyhT[na,nb]uv (3.25) 

Projecting onto V2, the resulting R y6aB is identical to that given in Eq. (2.21). 

Hence we have completed our demonstration of the equivalence of the connection 

obtained from the action in the first order formalism with that obtained by 

parallel transport argument. For C = 0, the model (3.6) becomes trivial, as 

is obvious from Eq. (3.22). In the generalized QCS, the constant C will be 

taken to be identically zero. 

IV. THE GENERALIZED QUARK-CONFINING STRING 

In this section we shall introduce the Riemann curvature tensor into the 

original quark-confining string Lagrangian (2.4). We start from the first 

order form where the connection is treated as an independent variable and then 

proceed to derive the second order form by solving for the connection. Since 



- 12 - 

we demand that physics should be independent of the choice of parameters u', 

th.e Lagrangian is invariant under the reparametrization ua + v"(uS). In partic- 

ular R*(zl,uO) = - R"(-u',uQ) implies the exclusion of R* in the Lagrangian if 

this discrete reparametrization is included in the reparametrization invariance. 

We shall neglect R" in the following discussion until the end of this section. 

In Section III we observe that the connection w 
al-iv 

connects only to the 

[TB,nal ,,v part of the quantity $~ao'v$. Hence, if there is any feedback on the 

connection, this occurs only in the [rB,na]uv components. 

the generalized QCS in the following form 

S =/d2u 6 ($R(I') + Fka($ya - eBiTi)$ - TM+ 

where 

S ClFlV = +-~(fN~uV + ~~v-fa) + = saBa[TB,na]UV 

zPv is the [rB,na]uv projection of ouv 

Therefore, we write 

2 
$- + r sapv 

UPV 1 (1.1)' 

(4.1) 

(4.2) 

(4.3) 

From now on, we shall refer to the action (1.1) simply as QCS. The Riemann cur- 

vature tensor R LJvaB ( 1 r 
a!Jv 

is given by Eq. (3.1) with wauv replaced by TaPv. 

Varying this action with respect to Tunv, we obtain 

Let us decompose r into 
al.lv 

r =W +k 
al.lv alJv Ql.rV 

where w al.lv is given by Eq. (3.24). kauv can be written as 

k c11.1V = kal36 [T@,~~I~~ + kaBa [TB,nal,,v + kaab[na,nblpv 

(4.4) 

(4.5) 

(4.6) 
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KS 
Baa = k”fia aB (4.7) 

kapa = k”Bat = KS8aa = - KS clBa (4.8) 

where the explicit form (4.3) for S aBa is used. We note that S aBa has the fol- 

lowing property 
S va 

%Ya 

1 c1 6yaS 
= Tg$ s 

a 
6y (4.9) 

kClh and k aab of the connection are left undetermined. It is straightforward 

to show (see Appendix A) that k 
cl66 

and k uab do not come into any of the equa- 

tions of motion. Hence, without loss of generality, we can set them to be zero 

and obtain 
k = -KS 

as.lv c&a 
[rS,na]nv (4.10) 

Let us make two remarks: (1) For more than one flavor of quarks, we have, 

for flavor index R 

and (2) if, in the first order formalism, we have used instead of S QllV , 

then the equation obtained from the variation of I'unv implies the vanishing of 

both Q"" and Q aab (where Qauv is decomposed according to Eq. (3.11)). This 

in turn implies the vanishing of the current Ja = F$'u+, which is clearly unac- 

ceptable. 

Substituting Eqs. (3.24) and (4.10) into the Riemann scalar R(I), and using 

Eq. (4-e), it is straightforward to obtain 

and 

- K2pBas 
da 

(4.11) 

(4.12) 
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Substituting Eqs. (4.11) and (4.12) into the action, we obtain the second order 

+ w sapv aBa 
+KS s 

al.lv 1 clBa ' (4.13) 

As shown in Section III, the Riemann scalar R(w) doe's not enter into any of the 

equations of motion and hence can be dropped from the Lagrangian. The second 

last term vanishes by symmetry arguments 

w s a1J.v =-2w 
aPa 

S da = 
Q!JV 

0 

so that the action (4.13) reduces to the final second order form (1.2) 

(4.14) s = d2u (go + 6 Ks2) / 
J 

whereZo is the Lagrangian of the QCS with K = 0 (see Eq. (2.4)). 

The quark equation of motion obtained from the action (1.2) has an extra 

piece proportional to K 
i 

iaa - eEa) + $if” 1 la - M -$~/icrj~$~S~‘~]$ = 0 

The gluon equation is identical to that in the original QCS 

Fy"i lcl + efijkBj,Fp = eT#STi$ 

The energy momentum tensor of the action (1.2) is given by 

where 

(4.15) 

(4.16) 

(4.18) 
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The following notations have been used, 

Z aa = -n a S(S2> 

v %u 

yBab _ yaBb + Y&6aY 1 c1 86 1 (4.20) 

F 
j@ = E.e 

J ai.3' 
Decomposing the string equation PC1 

4 Ia 
= 0 into tangential compo- 

nents and normal components we obtain 

Taglla a 
+ VaahaB = 0 (4.21) 

(4.22) 

It is straightforward to prove that the tangential components (4.21) vanish 

identically (see Appendix B) and hence are not equations of motion. Their van- 

ishing is, of course, a consequence of (continuous) reparametrization invari- 

* - ante. The proof for the first order form (1.1) is equally straightforward. It 

is also easy to show that the normal components of the string equation in the 

first order form are identical to those in the second order form (see Appendix A). 

We note that if we include the R* term in the action (1.1) 

$R(r) -+ _LR(,)+ lR*(P) , 
"1 K2 

the action in the second order form becomes 
? 

S = 
K12 + K$ 

GS2 1 

(4.23) 

(4.24) 

V. DISCUSSIONS 

In general, one can add into the QCS Lagrangian any number of interaction 

terms which preserve Lorentz, gauge and reparametrization invariance. However, 

the fact that the parameter space is a curved space-time suggests naturally the 
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introduction of the Riemann curvature term into the string Lagrangian. For 

simplicity, only terms linear in the Riemann tensor are considered. Such terms 

are trivial in the absence of quark fields; but, in the QCS, such terms are non- 

trivial. This is because the quarks are four dimensional Dirac fields. 

We have shown that the quark-confining string model constructed in this 

work differs from the earlier version only by a spin-spin interaction term. 

Among other things this term contributes to the hyperfine splittings in hadron 

spectroscopy. If we consider the QCS model (1.2) in two dimensions, this extra 

piece drops out (since there are no normals, we have -n>t = n - 2% 
PV 1-1 av 

= 0) 

so that QCD is recovered in two dimensions. 

In four dimensions, if we take the point of view that the QCS is a phenom- 

enological model of QCD, we can interpret the color gauge fields in QCD to be 

parametrized in the QCS as shown in Table 1. The gauge field dynamical degrees 

of freedom are geometrized. A comparison of their transformations under the 

gauge and Lorentz groups is shown in Table 2. 

Intuitively, gluonic structure in QCD is expected to show up in scattering 

experiments in the near future. However, according to the QCS picture, there 

is no such gluonic structure. Experiments will certainly clarify this situa- 

tion and reveal more on the relation between QCD and the QCS.7 

The application of the generalized QCS to the $ spectroscopy, in particular 

the relativistic effects, is under study. 
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APPENDIX A 

show that the tangent-tangent component, k 
aB6 

, and 

k ctab ' of the connection do not appear in the string 

we start with the connection P = w +k 
a1-lv CllJV Ul.lV 

The Riemann curvature tensor R llvcc~(ral.lv ) given by Eq. (3.1) with w 
al.lv 

replaced by Touv can be written as 

+ 
1 
T Rap 1 

ab(rgya) + Ragab(rBab)] [na,nb]uv 

- RagYa(rapv) [T ,n 3 Y aI-lv 

L4.2) 

where 

R 
a4 

YG(rgYa) = kuYa(2hagG - rB6”)] - [a+@] 

R agab(raYa) = kuYa(-2hbyB + rBybjJ - [a-%31 

Ra~‘(rBY”) = [4rByil ran6 + 2r(ly6 :J - b+~l (A.31 

R agab(rgab) = [4rgac rabC+2raab:J - [wf31 

RaBya(rapv) = bpYaza - 2rarGy(rB6a - hag61 - 2raab(rgYb- haayl] - [~~-f31 . 

The quark and gluon equations of motion obtained from the action 

Eq. (1.1) in the first order form are the same as given in Eq. (4.15) and 

(4.16) respectively. Varying Eq. (1.1) with respect to r al.l gives 

1 -aB -- -==T T 
J-g 62 Bu 

+ Qcanan (A. 4) 

a 
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where 

and 

-aB 'JJ = TaB - 2ha BSaYa 
Y 

$a = ij aa _ aa 

(1) + vu) 

% 
aa = vaa + 2syaa 

:Y 

aa 

v(2) = 
4 k 

K Y6 
ySaGa 

ys 

ayb 

(A.5) 

(A. 6) 

(A.7) 

(A.8) 

T aB (Eq. (4.18))and Vaa(Eq. (4.19)) are obtained from the action (4.13) in the 

second order form. In arriving at the above equations we have used Eq. (3.14), 

(4.5), (4.9), (4.15), (4.20), (A.2) and (A.3). We observe that kafi6 and kaab 
-. aa .., aa 

appear only in V(2) . But V(2) vanishes identically 

aa 
VW 

-0 

The proof is straightforward and is facilitated by decomposing S a-w and k a8Y 

into the following forms 

aya 1 ay 68a 
S z---e 

2 "68 
S 

k a6Y a@ = -k 1 6-r QB = 2 e (-eag k ~ 
+ eBTl 

kBw. 
1 

(A.9) 

(A.lO) 

(A.ll) 

Thus k 
4s 

and k aab 
do not come into the string equations. Since they also do 

not appear in the Dirac and gluon equations we conclude that they play no physi- 

cal role in the QCS model and can be ignored without loss of generality. 
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The string equation 8 - a 6:: = 0 can be decomposed into tangential and 

-cI 
normal components. We obtain 

iaB /,a + iraahaap = 0 

TaBha 
aB 

+ ?oaEa = 0 

(A.12) 

(A-13) 

It is straightforward to show that Eq. (A.12) follows from the Dirac equation 

(4.15) and the gluon equation (4.16). It is equally simple to show that the 

normal components Eq. (A.13), obtained here in the first order form, are iden- 

tical to those in the second order form Eq. (4.22) by using 

Swa 
:y:a = 

gab ha 
6Y 

hb6 a (A.14) 

* Thus all the equations of motion obtained from the action (1.1) in the first 

order form are identical to those obtained in the second order form. 
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APPENDIX B 

The tangential components of the string equation P u u lb = 0 will be 

shown in this appendix to follow from the Dirac equation (4.15) and the 

gluon equation (4.16). Since go' ,,a= O ' the tangent components (4.21) 

can be written as 

Taf3[/a+v 
aa 

haclB = O (B.1) 

Let us first consider the quark part of Ta Bib ; after some rearrangements, 

.we obtain 

(B.2) 

where B 
f3 = BSjTj . Using the Dirac equation (4.15), this becomes 

(B.3) 

where A = $jyf, zia SY6a. It is straightforward to demonstrate the following 

ag(S2) + i $(A,S)J' - Zaahacia = 0 

Using Eq.(B.3) and (B.4),the left hand side of Eq. (B.l) becomes 

._ 
(B.4) 
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= $F ja6 Fj 
4IB 

_ Fja6 Fj 
fi6 lb - ef jk!LBkyF!L 

aY F 
jai3 

1 a6 = -- 
2 Fj 

= 0 

where the gluon equation (4.16) is used and 

f aY 
jki Fi FjaB = 0 

follows from the fact that F aB 
j 

has only one component: 

(B.5) 

03.6) 

g Go1 = f;,, 03.7) 

It is equally straightforward to prove that the tangent components of 

the string equation in the first order formalism also vanish identically. 
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TABLE CAPTIONS 

1. An i;terpretation of the relation between QCD and the quark-confining 

string (QCS). For example, the second line should read: the piece in 

Ai that is responsible for the color electric interaction (which pre- 

sumably gives quark-confinement) is parametrized by the two dimensional 
. 

color gauge fields Bi. 

2. Table for the transformations of the fields under the color, the Lorentz 

and the reparametrization groups. A blank box implies the field is 

invariant under the particular transformation. A check mark implies the 

field transforms under the particular group in the appropriate repre- 

sentation. Rep. stands for reparametrization group. 
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Table 1 

$<xJ 

A; (xv) 

b 

color electric interaction A B;(uB) 

gluon degrees of freedom b xv (u"> 

(color independent) 

color magnetic interaction A K s2 

(color independent 
spin-spin coupling) 

Table 2 

QCD QCS 
Group 

+xv) J, (x,) B&(u') $ (UC11 xv ha> 

SU(3) J J J J 

O(3,l) J J J J 

Rep. J 


