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ABSTRACT

It is natural to generalize the quark-confining string model by introducing
additional terms coming from the Riemann curvature tensor. For simplicity, only
terms linear in the Riemann tensor are considered. In the absence of quark
fields, such terms are trivial (as in two dimensional gravity). In the pres-
ence of quark fields, embedding of the string in four dimegsional Minkowski
space renders such terms non-trivial. We formulate this generalized quark-
confining string in the first order form, from which we derive its second order
form. The coupling between the quark spin and the string curvature via the
connections induces a spin-spin interaction among the quark fields. This gen-
eralized version has a dimensionless parameter k in addition to the quark-gluon
coupling e and quark masses. The original version is recovered as a special

case (i.e., k = 0).
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I. INTRODUCTION

The most expedient approach to the theory of hadron physics is probably
vié the‘;onstruction of theoretical models which incorporate, as many as pos-
sible, physically desirable features. Following this approach, the quark-
confining string (QCS) modell is constructed. The physical picture of the QCS
is intuitively transparent and its mathematical structure well defined. 1In
fact, the QCS is the only known model which is

(1) relativistic invariant,

(2) gauge invariant,

(3) field theoretic (as opposed to quantum mechanicalz), and has

(4) manifest quark-confinement.

In addition, the model seems to have the properties of the parton picture, as
well as Regge behavior and duality. It has reparametrization invariance,
asymptotic linear trajectories and Hagedorn-like spectroscopy. In the non-
relativistic limit, it provides a linear potential between colored quarks.

How seriously one should take the QCS depends on quantitative comparisons
between the model and experimental data. For example, in the non-relativistic
limit, the QCS gives a very reasonable fit3 to the ¢ spectroscopy discovered
recently. The crucial question is, of course, how the model fares for the
various relativistic corrections, such as hyperfine splittings, spin-orbit
couplings, etc. To answer this question, we must first examine the uniqueness
and generality of the QCS. Only after this issue is clarified can we use a
detailed quantitative comparison with data as a test of the model. In this

paper, we address ourselves to this issue. We find that there is a very

natural way to generalize the QCS constructed earlier.
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There are many ways of looking at the QCS. For the sake of definiteness,
“let us adopt the following point of view. Consider quantum chromodynamics
(QéD) iﬁatwo dimensional Minkowski space. Here, quark-confinement is explicit.
Now, let us extend this model to four dimensional Minkowski space. One such
extension gives the standard QCD. However, if we want to retain the explicit
quark-confinement feature, the simplest extension to the physical space is the
QCS. Here the original two dimensional space-time becomes a two dimensional
curved subspace (V,y) embedded in four dimensional Minkowski space. 1In the

original version of the QCS,l

however, the curvature of the string is deter-
mined only by the motion of the quark and gluon fields, and not by the spin of
the quarks. For a curved subspace Vo, it is natural to introduce into the
model a term due to the Riemann curvature tensor. Contrary to two dimensional
gravity, the embedding renders such a term non~trivial when (four dimensional
Dirac) quark fields are introduced.

In the presence of a Riemann curvature term in the Lagrangian, consistency
requires an interaction between the spin of the quark fields and the curvature
of the string via the connections. This automatically induces a spin-spin in-
teraction term among the quark fields themselves. The standard method of de-
riving this spin-spin interaction term in the model is to start from the first

order (Palatini-Cartan) formalism4 developed in General Relativity.

The generalized QCS is given, in the first order form, by
- 42 /_—[L Z,0048 | pdodyy - Tuy - Lpl |
S /1 u V=g |TR(T) + YA (D - e BIT)Y - My - F . (1.1)

i ~HV o, . . . . .
o _'Zrauv ou is the covariant derivative and R is the Riemann

where D = 3
o
scalar. Here the connection Fauv’ the string coordinate Xu, the quark field ¢

(flavor index suppressed) and the gluon field Bi are treated as independent



-4 -

variables. « is a dimensionless parameter analogous to the gravitational con-
stant in two dimensions. Since the equation obtained from the variation of
-

Pyuv is only a constraint equation, we can solve for Fqpv and rewrite the action

(1.1) in the second order form

2
2 — ,.++ . . ) — F
S =f1 u V-g [w;f“(% B — eBiTJ>w - UMy - St smsas"‘e"’1 (1.2)

Here Susa=—%§ﬂﬁa,{é ﬁaw. The parameter «x, the quark-gluon coupling e and quark
masses Mﬁ are the parameters of the model. For k = 0, the explicit spin-spin
interaction term drops out and the model (1.2) reduces to the QCS constructed
earlier}‘ We note that the Riemann scalar term is absent in the second order
form (1.2).

This paper is organized as follows: In Section II, we review the (old)
QCS, in particular the geometric notations and the parallel transport properties
of the quark fields along the string. 1In Section III, we prove that the connec-
tion in the first order formulation in the absence of quark fields is precisely
that derived from parallel transport argument. In Section IV, we introduce the
generalized QCS (1.1) and derive from it the second order form (1.2). Section

V contains some remarks, in particular, on the relation between QCD and the QCS.

Some of the detailed derivations are relegated to two appendices.

II. REVIEW
A. Notations
The coordinates of the string XU are functions of the two parameters ua,

which provide an arbitrary coordination of the world sheet,

]

0,1,2,3 (2.1)
o= 0,1

X =X (u*
y u(u) u

The induced metric for the two dimensional (string) subspace is given by

gO,B = T(X]JTBU = TG,. TB (2'2)
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aXy
where Tuu = BGE = XUV* are the tangent vectors. The quark fields are four

component Dirac fields in Minkowski space. They are confined along the string:

-

The original QCS is defined by the action1

S =d/;2u(9%
=ﬁ2uﬁ‘g{a

Here g = det[gyg] and dzuaV—g is the invariant volume element on the world sur-

B

o 1% j n3) _1ni Lies (2.4)
,{(zaa—eBaT> M]w TFI o F }

B

1

face. A% gaB;fB = Tﬁyll where g®° is the inverse of gup and yu are the (4x4)

Dirac matrices.

VAo = VA 0g - (93

T3 are the matrix generators of SU(3) color group with structure constants f"k
1]

[jj,TkJ = ifjszQ. BjB(ua) are color gauge fields in the internal coordinate

space and

i i i ijk . k
= - + e f B 2.
Fog = %58 BBBOL e » Ba (2.5)
The Dirac equation follows from the action (2.4):
1% 4 -i:(/_ z‘o‘) —e#® Il — M)y =0 (2.6
( & 2/—g 8 ‘“ o v )

where the flavor index is suppressed. To prepare ourselves for the introduction
of Riemann curvature scalar into the Lagrangian, we shall review in detail the
parallel transport properties of a quark field along the string.

First, let us consider the parallel transport of a vector quantity Vu(ua)
along the string. We can then derive the parallel transport of a Dirac field
by demanding that the current E}uw = Ju(ua) parallel transports as a vector
quantity. This gives the connection for the Dirac fields. The equivalence of

the first and the second order form for this connection is then demonstrated.
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Throughout, o,B,Y,8,n = 0,1 are the internal indices; u,v,p,*,0 = 0,1,2,3 are
the Minkowski indices; a,b,c = 2,3 are the indices for the normals (to be de-

fined) and i,j,k = 1,2,...,8 are the color SU(3) indices.

B. Parallel Transport of a Vector and a Spinor Quantity

The "Christoffel symbol of the second kind" is a function of the induced
metric gug, OF equivalently

{og} = Vo (2.7)

a|6

At each point of the string, two normals ni(ua), a = 2,3 can be defined such

that T *n_= n,*n, = 0 and n2 =n n*=-1. With these, one can write the flat
o a 2 3 a ay a

Minkowski metric nuv in the following form

o a
- T - 2.8
nuv Tu v nunv ( )

. , . , . a
The covariant derivative of Tau defines the symmetric curvature tensors haB:

T N po_.a _au 9.
Tollg = Tale IGB’TY Byg™ (2.9)

. ; ; . . . ab
and the derivative of the normals introduces the antisymmetric torsion Vg ¢

n, = n?, - vabnb = h? TB (2.10)
pi;e ~ ujo o w eBw

Using Eq. (2.8), any vector quantity VU can be written as

o a a
Vu = Ver Tau ~ Ven nU
=V -v¥® =V +vV (2.11)
o " pu nu
where
Venl=v > =0 : (2.12)
P n

Varying Vpu and using Eq. (2.9), we obtain

sV
pu

(V) 1 + VoSt
ou oy

o

o apd 2 B
(V “Bruu + V°%h Bnu)Gu (2.13)
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Varying Vnu and using Eq. (2.10), we obtain

§V_ = —(sv®)n? - v¥sn?
- nu u H
= -v@he % 4+ ya_ p3lsyB 14
{ thTU v ;Bnu Su (2 )
Since we are\considering parallel transportation only, V“H8 = Va'B = 0; hence
- Y- ..ay.al.a 8
cSVu [(V T )nu (Ven )Tu]haBSU (2.15)

Let us now consider the spinor field.? An infinitesimal displacement of a

spinor field along the string is defined to be

i UV o
= = S .
Sy 4-wauv0 Y Su (2.16)
. , UV ifu v . —
where wauv is the connection and o = 51& s Y ]. Demanding wyuw to transform

as a vector quantity, we have
— _ _ist v o
s(Fr) = - [Mv, |vuy,, s | (2.17)

Comparing Eqs. (2.15) and (2.17), we obtain the connection as a function of the

curvature tensor

w = ha (TBna - naTB)
auv aB\ v uv
_ .4 B a
B haﬁ,ﬁ 1y (2.18)

where the antisymmetry in p,v is explicit. The covariant derivative for spinors

is now completely defined

=3 +=h2 nareouv i (2.19)

Contracting Da with %a gives the first two terms in the Dirac equation (2.6).



C. The Riemann Curvature Tensor

The Riemann curvature tensor in V2 is defined by

-

Y - Y _oY .9
Wllalle T Tullsl]e T R sag™y (2.20)

Using Eqs. (2.9) and (2.10), it is straightforward to express RGBY5 in terms of
6

the curvature tensors

a.a a. a
haYhGB - haéhyﬁ (2.21)

Rugys =

which has only one independent component, namely R Eq. (2.21) is called

0101°

the Gauss-Codazzi equation.

III. RIEMANN CURVATURE TENSOR
In the first order formalism, the Riemann curvature tensor is expressed

as a function of the connection Wopy»

- _ i MV _ i wvl _ 1 18y
[Du’DB] [8@ éwauv o] ,88 4mBUV c ARuvaB 1o} (3.1)
or

= - o} - o
Ruqu wuuvIB wﬁuvlu + wBu Yoo wau chv (3.2)

This Riemann tensor is a mixed tensor: it is an antisymmetric rank two tensor
in both the Minkowski space and the internal coordinate space Vy. (The relation
aof this mixed Riemann curvature tensor with the Riemann tensor introduced in
Section IT will be given later.) To comstruct a Lagrangian from this Riemann
tensor, we must contract the indices using the dynamical variables available.

In the absence of quark and gluon fields, the only variables present are the

string variables. Thus, if we consider only terms linear in Ru in the

Vo

Lagrangian, R 8 must be contracted with the tangent vectors Tau. There are

uvo

two ways of contraction:

- op_Bv
R=1t"1 RuvaB (3.3)
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and
* _ uval

o]
[

Va8 (3.4)

where =

quaB -

N

€ (3.5)

HVPA TaTB
p A
In this section, we shall consider the following preliminary model (where

the constant C is added solely to render the model non-trivial)

s =d/§2uv£;;{}l~ R + L ¥ - c}
“1 K2
=ﬁ2u le,+2, - /= c} (3.6)

Here Kk, are dimensionless parameters, reminiscent of the gravitational coupling
constant in two dimensions. The Lagrangian is a function of XU and wuuv’ which
are treated as independent variables. Varying with respect to wa“v, we obtain

1

ag aa 1 ag b
K1 {h gl nly, - B [eh, na]uv} TS Canley P T o

K2

+ w O{L[TOL,TB] +—1—euB€ n? nb}
Bu 'S ov K ab” v o

1 2
+w, ° ;L‘[TG,TB] - —J;-eOLB € .n° nb } =0 (3.7)
RBv Ky uo Ko ab” W o
where
e . =vV-ge e =-e2 o1 (3.8)
af ofB 01
and quus can be written in terms of ni (823 = e23 = 1)
quaB=__}:eaB £ naunbv (3.9
2 ab
We note that'quaBU = -1.

uvaB -

Eq. (3.7) is linear in wauv and hence is a constraint equation. To solve
it, let us project out the various components of wauv’ using its antisymmetric

property
= —u (3.10)
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and Eq. (2.8):

w® = waBY[

b
v TB,Ty]uv + 2 [na,nb]uv + wasa[TB,na]uv (3.11)

-

Substituting this into Eq. (3.7), we find the w®BY and w®ab terms disappear.

Equating the terms for [TB’na]uv’ the following solution emerges

wfY3 = 28y (3.12)
We make two observations: (1) the solution (3.12) is independent of Kys and
(2) waBY and wuab are not determined. To gain more insight into (2), let us

substitute Eq. (3.11) into Eq. (3.2). It is straightforward to obtain
= [Y,18 a8
RuvaB [r > T ]UV {Rasyé(wuyé) + hayhss}

a _b ay, b
+ [n , T ]UV {Raba8<waab) + hB hay} (3.13)

where the following Gauss—-Codazzi equation is used

a a
h - = 3.14
aB:y hay:B 0 . ( )
The symbol ':" stands for total covariant derivative, e.g.,
ag _ aB B | ay _ab bB
v Mo -V IC{, +{o¢y}v \)OLV (3-15)
and
n )
R = + 2 - 3.16
aBYG(wuBY) “ays| |8 “8yn “a 6 Chad ( )
RabaB(waab) = Yyab:g + ZwBac ®ybe ~ (a<+>B) (3.17)

Let us now consider the string equation of motion. The string equation is

simply Ba( Gﬁi) = 0.

8T
o
&
& _ 5 [c o 4 2 By 2 G*O‘B]TB (3.18)
st ™ 1 K2 H
a
Here the "FEinstein" tensors are defined as
¢ = r*® - 2% (3.19)
g*oB - graB _ 1 aBpx (3.20)
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where 8
_ Y
Rau = vaaBT
aB a_Bu o BY
R = R = R
HT ¥ (3.21)
. *0.8 .
and similarly for R . Since both Rasyd and RabaB have only one component,
namely ROlOl and R2301’ we have
B = g*B o g (3.22)
Hence the string equation reduces to
aB aB ac_a
+ = =
24 HOLTBU g TBUHOL hO(, nu 0 (3.23)

This means waBY and W,gp DEVer enter physics. Thus, without loss of generality

we can set them to be zero, so that

Capv = hZB[TB’na]uv (3.24)

which is jdentical to that given in Eq. (2.18). (Actually in the parallel

transport argument presented in Section IT the connection w , ¢an also be
au

5
and w, terms. Since they do not affect physics

augmented by arbitrary W, ab

By
we have set them equal to zero.)
From Egqs. (3.13) and (3.24), we find
- a .arvy § b .ayra b
Rwus(maw) L WS AR oo * LI LRSS (3.25)

Projecting onto V igs identical to that given in Eq. (2.21).

2’

the resulting Ry6a6

Hence we have completed our demonstration of the equivalence of the connection
obtained from the action in the first order formalism with that obtained by
parallel transport argument. For C = 0, the model (3.6) becomes trivial, as
is obvious from Eq. (3.22). In the generalized QCS, the constant C will be

taken to be identically zero.

IV. THE GENERALIZED QUARK-CONFINING STRING
In this section we shall introduce the Riemann curvature tensor into the
original quark-confining string Lagrangian (2.4). We start from the first
order form where the connection is treated as an independent variable and then

proceed to derive the second order form by solving for the connection. Since
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we demand that physics should be independent of the choice of parameters ua,
the Lagrangian is invariant under the reparametrization ¥ > vu(uﬁ). In partic-
ulér R*ézl,uo) = —R*(-ul,uo) implies the exclusion of R* in the Lagrangian if
this discrete reparametrization is included in the reparametrization invariance.
We shall neglect R* in the following discussion until the end of this section.
In Section III we observe that the connection wuuv connects only to the
[TB,na]uv part of the quantity E%acuvw. Hence, if there is any feedback on the
connection, this occurs only in the [TB,na]UV components. Therefore, we write

the generalized QCS in the following form

2
- 2 - 1 —ofie i i _ T _F ouv ’
S -/:i u v-g [KR(F) + £ {53, - eBT )w VMY - TS (1.1)
where
GOV %a(imguv +gMVey = SaBa[TB,na]u\) (4.1)
"V is the [tg,n2]"Y projection of i
"V = ~1#°4%[1g,na]Wy (4.2)
so that
sefa — goPall LT fad g (4.3)

From now on, we shall refer to the action (1.1) simply as QCS. The Riemann cur-

vature temnsor R is given by Eq. (3.1) with wauv replaced by T

uvof (Fauv)

apv’
Varying this action with respect to Fauv’ we obtain
aB
rsuc[ra,rﬁ]w - erG[T@,TB]w - hg [t®,n2],y
ao auv
+ ng[1B,n3], + k8™ = 0 . (4.4)
Let us decompose T into
VAIRY
= @ + k (4.5)
(ATAV ouv apv
where Wyyy 18 given by Eq. (3.24). kuuv can be written as
= B,16 B n2 a b .
L kopslthsT Ty * kyga [tB,0%], + &, [2%,0°] (4.6)
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Using Eqs. (3.24), (4.1), (4.5) and (4.6), Eq. (4.4) becomes

e R T (4.7)

or

xeBa _ jaBat _ KSBaa - _ (g%Ba (4.8)

Ba B

where the explicit form (4.3) for s® is used. We note that S*°2 has the fol-

lowing property
avya a_1a sﬁyas a

S S = = 4.9
By 283 Sy (4.9)
aBy oab . . . .
k and k of the connection are left undetermined. 1t is straightforward
to show (see Appendix A) that kaBG and kuab do not come into any of the equa-

tions of motion. Hence, without loss of generality, we can set them to be zero

and obtain

k = -kS§S
o

oy (8,031, (4.10)

Ra
Let us make two remarks: (1) For more than one flavor of quarks, we have,

for flavor index 2

.

_ 1
Saga ~ §_ 8

IR RE NS
and (2) if, in the first order formalism, we have used instead of Sauv,
QoMY _ % ﬁ(iaouv +Ouvfa)w _ Qauv

then the equation obtained from the variation of o implies the vanishing of
both QOLBY and QOLab (where Qauv is decomposed according to Eq. (3.11)). This
in turn implies the vanishing of the current Ja = @ﬁ;w, which is clearly unac-
ceptable.

Substituting Eqs. (3.24) and (4.10) into the Riemann scalar R(T'), and using

Eq. (4.8), it is straightforward to obtain

R(T) = R(wauv) - k2gaBag (4.11)

aBa

and
I S P ST

apv aBa auv (4.12)
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Substituting Eqs. (4.11) and (4.12) into the action, we obtain the second order

form: 9
A, s=/§1u/_—g‘

+ w

. . 2
1 — afie —
SR@(ry )+ w%“(%aa - eB;Tl)w - MYy - {—

SOHV 4 g%Bag }
oAUV aBa

(4.13)
As shown in Section III, the Riemann scalar R(w) does not enter into any of the
equations of motion and hence can be dropped from the Lagrangian. The second

last term vanishes by symmetry arguments

w, S = -2y %% -0
ouv afa

so that the action (4.13) reduces to the final second order form (1.2)

S ='/c‘12u &, + g KSZ) (4.14)
where Z, is the Lagrangian of the QCS with k = 0 (see Eq. (2.4)).
The quark equation of motion obtained from the action (1.2) has an extra
piece proportional to «
[,f“(iaa - eBa) + %750‘ o ™ M—%Kifaifsﬁasasa Y =0 (4.15)
The gluon equation is identical to that in the original QCS

o Ba

_ B
F. o + efijkBjaFk = ey T,V (4.16)

The energy momentum tensor of the action (1.2) is given by

o 1 &
P o= —m=—
u V=8 STyH
oB ca_a
- 4.17
T TBH + Vv nu » ( )
where -
Tf = W“(—%as - eBB)w + (—%—EJ2 + Ksz)g“B (4.18)
and

v =-$ﬁa¢£8a-eBa)w Y A (4.19)
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The following notations have been used,

2
g08 _ _ a 6(8%)

Eaa) T
uéw

1 ab{_Rab _ o0Bb Bda o
3 YB (Y Y ) +Y YBG

(4.20)

1= - _L B B
where YaBa—'§W[fa¢B]ﬁaw,Yaab:= w%a ﬁaﬁbw and YGBY_Ew[%aﬂ%]%Yw' B" = BiTi and

Ejeae' Decomposing the string equation lela = 0 into tangential compo-

F, =
jag

nents and normal components we obtain

%8 4 yeaRdk g (4.21)
|ld [0
af,a oa _
T haB + Vv o - 0 (4.22)

It is straightforward to prove that the tangential components (4.21) vanish
identically (see Appendix B) and hence are not equations of motion. Their van-
ishing is, of course, a consequence of (continuous) reparametrization invari-
ance. The proof for the first order form (1.1) is equally straightforward. It

is also easy to show that the normal components of the string equation in the
first order form are identical to those in the second order form (see Appendix A).

We note that if we include the R* term in the action (1.1)

I » T rry + 2r*ay (4.23)
K K K
1 2
the action in the second order form becomes
K. K 2
s = [d%u |&, + —1 2 /g2 (4.24)
Klz + K22 i

V. DISCUSSIONS
In general, one can add into the QCS Lagrangian any number of interaction
terms which preserve Lorentz, gauge and reparametrization invariance. However,

the fact that the parameter space is a curved space-time suggests naturally the
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introduction of the Riemann curvature term into the string Lagrangian. For
simplicity, only terms linear in the Riemann tensor are considered. Such terms
aré tri;;al in the absence of quark fields; but, in the QCS, such terms are non-
trivial. This is because the quarks are four dimensional Dirac fields.

We have shown that the quark-confining string model constructed in this
work differs from the earlier version only by a spin-spin interaction term.
Among other things this term contributes to the hyperfine splittings in hadron
spectroscopy. If we consider the QCS model (1.2) in two dimensions, this extra
piece drops out (since there are no normals, we have -n?n? = n_ - %7 = 0)

TRV v U ov
so that QCD is recovered in two dimensions.

In four dimensions, if we take the point of view that the QCS is a phenom-
enological model of QCD, we can interpret the color gauge fields in QCD to be
parametrized in the QCS as shown in Table 1. The gauge field dynamical degrees
of freedom are geometrized. A comparison of their transformations under the
gauge and Lorentz groups is shown in Table 2.

Intuitively, gluonic structure in QCD is expected to show up in scattering
experiments in the near future. However, according to the QCS picture, there
is no such gluonic structure. Experiments will certainly clarify this situa-
tion and reveal more on the relation between QCD and the QCS.7

The application of the generalized QCS to the ¢ spectroscopy, in particular

the relativistic effects, is under study.
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In this appendix we show that the tangent-tangent component, k

normal-mermal component,
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APPENDIX A

To prove this we start with the connection Fa y -

in its most general form

r
auv

The Riemann curvature tensor R (

replaced by Fauv

RaBuv

where

' (I—-BYa)

ab Ya
Rg (r,"

Y8 Y$ -
af (FB )

R ab(FBab

aB ) =

ya -
R Tauy?) =

ouv

The quark

Eq. (1.1) in the first order form are the same as given in Eq.

(4.16) respectively.

B 8§
TQBS ﬁ s T ]Uv +

TRVIeAC)

can be written as

1

B a a b
PaBaEr ,I )uv + Faab n",n ]uv

) given by Eq.

48 and

kaab » of the connection do not appear in the string

+ k

ouv auv

(A.1)

(3.1) with By

r = 5[R ERLEE WA YS] RN

oHV

1

Ya
aB (rauv

]

) [r,

Ya ad
[Foc (2n® (o <g]

PBGa)] _

_ Ya, 5. b b _ N
_[ra (ZhYB+I’BY )] [oeB]

[,p Y0 8 G ]_
_MB rom + 2T .8 [a<B]

4T ac r bc4_2F ab

78 o a :B]— [ae]

_ Y da .a
2Fa5 (I‘B h

. B

Ya ab ab
+_[0L8 (Tg™) + R, (T, )][na,nb]w

a-juv

$
8 ) - ZFa

(A.2)

(A.3)

ab

(r, Y- haBY)] - [oop] .

and gluon equations of motion obtained from the action

Varying Eq.

(1.1) with respect to Ty

(4.15) and

ives
u g

(A.4)
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where
- 798 _ 08 _ 2haYBs°‘Ya (A.5)
and
~ - ca -~ oa
Vaa — V + V A.6
1) 2) (4.6)
~ aa ca yoa
¥ =v*® 4+ 25 A.
N 2y (A.7)
~ Sa Sa Sa
@ _affx Y™ o Vst ik Y >
2) y$ &y ')
b
¥ (k ab goyb o, ab oya )] (A.8)
Y Y
o

T (Eq. (4.18)) and Vaa(Eq. (4.19)) are obtained from the action (4.13) in the

~ second order form. 1In arriving at the above equations we have used Eq. (3.14),>‘

4.5), 4.9), (4.15), (4.20), (A.2) and (A.3). We observe that k and k
B8 aab
appear only in %(z)aa. But ﬁ(z)aa vanishes identically

~ oa
v =0 (A.9)
(2)
) . . . . aya ady
The proof is straightforward and is facilitated by decomposing S and k
into the following forms
aya 1 oy 8Ba
=-se eGB S : (A.10)
ady ays 1 8y, o _nB Bna
k = - = & - + A.11
A ze (egky Heg k) (a.11)

Thus k and k b do not come into the string equations. Since they also do
o aa

8¢

not appear in the Dirac and gluon equations we conclude that they play no physi-

cal role in the QCS model and can be ignored without loss of generality.
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. . $
The string equation Ba Py 0 can be decomposed into tangential and
o

-

normal components. We obtain

+ Vdahaas =0 (A.12)

~aB. a _
T "h B +V o 0 (A.13)

It is straightforward to show that Eq. (A.12) follows from the Dirac equation
(4.15) and the gluon equation (4.16). It is equally simple to show that the
normal components Eq. (A.13), obtained here in the first order form, are iden-

tical to those in the second order form Eq. (4.22) by using

vea _ gveb pa DS (A.14)
fyto Sy o

Thus all the equations of motion obtained from the action (1.1) in the first

order form are identical to those obtained in the second order form.
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APPENDIX B

-

The tangential components of the string equation P]JOLHOL = 0 will be

shown in this appendix to follow from the Dirac equation (4.15) and the

gluon equation (4.16). Since gaBHa= 0 , the tangent components (4.21)

can be written as

o aa -
T BHOL+ Vv haOLB 0 (B.1)

Let us first comnsider the quark part of TOLBHOL; after some rearrangements,

we obtain

(245, )10 E[f‘”“ (3% e By Tj)"]na

=W°‘Ha5‘;w+(ﬁ!af“)f);w—%wa”s*iw (B.2)
=< o - o
+1PDB ¢4 3, W)—eWBBHaZ( ¥
where BB = BBjTj Using the Dirac equation (4.15), this becomes
-, o< R~ =,
(vx Dg LP)HOL— ¥4 HBDOL Y - e UX TijjuB .
B.

+ iK\_D(A‘B)w

where A = %fyid ﬁa SycSa. It is straightforward to demonstrate the following

2 - - aa . a = .
BB(S)+1 w(A‘B)w Z has 0 (B.4)

Using Eq.(B.3) and (B.4),the left hand side of Eq. (B.1l) becomes
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o - >0,
TBHa+wdaD whaw

>
T(E? 0 | pios 4 54% 03y
—(agB—F F86>“a—elp7deJFaB

= L piad 3 piod

ay
2 ad]lB_ F F,

] -
Feancx efijLBkyJL jaB

il

1., a8
-=F, F, . + F, + F,

23(36@![6 188 a Ja6116>

= 0
where the gluon equation (4.16) is used and
ay -
fjki Fi FjaB 0

follows from the fact that FjaB has only one component:

g FOl = F,

It is equally straightforward to prove that the tangent

the string equation in the first order formalism also vanish

(B.5)

(B.6)

(B.7)

components of

identically.
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TABLE CAPTIONS

~An iﬁterpretation of the relation between QCD and the quark—confining

string (QCS). For example, the second line should read: the piece in
A: that is responsible for the color electric interaction (which pre-

sumably gives quark-confinement) is parametrized by the two dimensional

color gauge fields B;.

Table for the transformations of the fields under the color, the Lorentz
and the reparametrization groups. A blank box implies the field is
invariant under the particular transformation. A check mark implies the
field transforms under the particular group in the appropriate repre-

sentation. Rep. stands for reparametrization group.
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Table 1
Qe Qcs
V(x) — (u™)
color electric interaction —>» B;(us)
i X (u™)
A (Xv) W gluon degrees of freedom Em— in
H (color independent)
{ color magnetic interaction _— k §2
(color independent
spin-spin coupling)
Table 2
QCD Qcs
Group
i i, B o o
By | ey | B@) | ve | X e
SU(3) v v v v
0(3,1) v v v v
Rep. v -




