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1. INTRODUCTION 

TEere exist no degrees of freedom corresponding to the gauge fields in two 

space-time dimensions. The most appropriate gauge choice is, then, the so- 

called axial gauge, ’ which not only eliminates all the nonlinear interactions 

among the gauge fields, but also yields a constraint equation which eventually is 

used to eliminate the unphysical gluon degrees of freedom (leaving only genuine 

dynamical degrees to work with). Of course, the desire to clarify the quantum 

nature of the system (a theory without ghosts) is not without an expense: mani- 

fest Lorentz invariance is given up. Lorentz invariance must be verified by 

explicit calculation. 

The criterion for Lorentz invariance is the famous Schwinger algebra. 2A 

sufficient condition for invariance under proper Lorentz transformations is that 

the Hermitean energy density operator TOO(x) obeys the following equal-time 

commutator: 

Too(y) = 1 [ Tol(x)+Tol(y) 1 dxs(x-y) (1) 
which is supplemented by the condition that Too(x) should not have an explicit 

dependence on the coordinate x. With this supplemental condition, the equiva- 

lence of this relation to the inhomogeneous Lorentz algebra 

[H,P] = 0 

[H,K] = iP 

@a) 

(2b) 

[P,K] = iH 

can easily be seen from the integrated form: 

PC) 

//dx dy 9 [Too(x), Too(y)1 + iP = 0 (3) 
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Here P, H and K are defined in the usual way 

-c. 
H = /dx Too(x) 

P = I dx To1(x) 

K = x”P - J dx x Too(x) 

(4) 

In a recent very ambitious paper, a on the color confinement properties of 

two-dimensional quantum chromodynamics (TDQCD), Li and Willemsen claimed 

that TDQCD is invariant under inhomogeneous Lorentz group in all sectors (in 

their phraseology, the Lorentz algebra and the conservation of the stress energy 

tensor is satisfied before taking matrix elements between the physical singlet 

states). We show in this note that TDQCD is Lorentz invariant only in the color 

singlet subspace and therefore reach the conclusion that the only meaningful 

sector of TDQCD is the color singlet sector (of course, for a reason different 

than (or rather additional to) those of Ref. 3). 

II. LORENTZ INVARIANCE OF TDQCD 

Restricting themselves to only symmetric Green’s functions for the equations 

of motion for the A0 component (after the gauge choice A1=O) 

azAi(x, t) = -g jt(x, t) (5) 

they obtain an anomalous term on the right-hand side of Eq. (1): 

d(x, y) = ig2 (B2 - a) CabcQc {F&(x, 9, F;+y, t,) 

Here, b is the coefficient of the x+y term in their symmetric Greenvs function: 

V(x,y) =-f Ix-y! + B(x+y) + C (7) 

We shall later comment on the implications of having a term B’(x-y) in V, clearly 

violating the property that V is symmetric in x .- y. 
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The integrated anomaly (which contributes to the right-hand side of Eq. (2b) 

is - 

A=JJ b dy Y dtx, Y) 

=i$ @” -$) CabCQC/+dy(y-x) ~~l(x),F~l(y)) (8) 

Let us introduce the dipole moment and quantum pole moment operators 

Da=/dxx j:(x), qa= / dx x2 j;(x) and calculate the anomaly. First note that 

by using V as given by Eq. (7), we obtain (quantizing in a box (-L, L)) 

dx Ftl(x) = g D a + 2L Bg Qq (9) 

J b 1 
dyyF01(3T)=pq b-;gL2Qb 

A =; ig4 (B” - +) CabcQc [-2LB {Qa,Qb} . 

+2LB Q ,q + D ,q ( a ") { a ") - L"{D~,Q~]] (11) 

The first term in square brackets does not contribute, in view of the antisym- 

metry of the structure constants of the Lie algebra. The contribution of the 

fourth term also vanishes, as seen by application of the algebra of charges and 

dipole moments : 

[ 1 Qa, Qb = i CabcQc 

[ 1 Qa, Db = iCabCDC 
producing finally: 

A = $ ig4 (B2 - ;) CabcQc FLB {Qa,qb} -I- [Da,qb}] 

(12) 

(13) 
._ 

(14) 

These two terms persist. Choosing B =&l/2 to make this vanish, ruins trans- 

lational invariance as is also noted in Ref. 3. On the other hand, the choice 
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B=O, designed to save translational invariance, will not make the anomalous 

terms”vanish 

1 . AB,O=-~lg 4 CabcQc p,g”) 
(15) 

Thus the only natural way to satisfy the Lorentz algebra is to restrict ourselves 

to the color-singlet sector. 

Now let’s go back to the question of translational invariance. With V(x, y) 

given by Eq. (7), the change in the Hamiltonian under spatial displacements is 

&VI = 
a + Bg2 QaQa (16) 

and this vanishes only when B=O (for color nonsinglets). The claim is made in 

Ref. 3 that, if we relax the restriction that V should be symmetric, then a term 

B’(x-y) in V, instead of B(x+y) would give rise to a translationally invariant 

theory if it was not for the violation of charge conservation. It.may be encour- 

aging to note that this new term in the propagator does not really violate charge 

conservation. This can be easily seen by noting that the additional terms in the 

Hamiltonian due to this new term in with B’ are: 

HB’ 
= LBt2 g2 Q”Q” - B’g2QaDa (17) 

This commutes with Qb, as can be seen by using the algebra (12)-(13). 

The incorrect conclusion in Ref. 3 that this new piece in the propagator 

violates charge conservation was based on current conservation equations derived 

from the Lagrange equations of motion. These however do not follow from the 

operator formulation based on the Hamiltonian obtained by use of the new propa- 

gator. Now let us see whether this new propagator really guarantees transla- 

tional invariance. First observe that the color-electric field now is 

Fadl =B’gQ”+$ / dy Q(x-Y) j@ (18) 
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Then, using 

we get 

[P, H] = -iB’g2 QaQa m-9 

as can also be seen directly from Eq. (17). The only way this commutator can 

vanish along with the anomalous term in the Schwinger commutator is again by 

setting Qa=O. 

CONCLUSION 

We have shown above that TDQCD is invariant under the inhomogeneous 

Lorentz group only in the color singlet sector. Of course, whether this repre- 

sents an additional argument for confinement in the theory depends on whether 

one is willing to take the “kinematical” consideration of Lorentz invariance to 

be of importance in this context. 

As a closing note, let us remind the reader that in Ref. 3 the authors re- 

markably enough also found confinement, although they thought Lorentz invari- 

ance held in all sectors of the Hilbert space. In their paper, the condition Qa=O 

followed as a consistency condition stemming from the axial current conservation 

anomaly, so it had a dynamical, rather than a %.inematicalf~ origin, 
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