PION-NUCLEON AMPLITUDES

AROUND THE ZERO-MOMENTUM POINT*

Paolo M. Gensini**
Stanford Linear Accelerator Center Stanford University, Stanford, California 94305

Abstract

From an optimally stable extrapolation of πp elastic amplitudes, correctly containing all observed SU_{2} non-invariances in the hadron spectrum, we determine $G^{2} / 4 \pi=13.16$ and $\Sigma_{\pi N}=40 \mathrm{MeV}$. The first value confirms a previous, independent determination by Samaranayake and Woolcock, equally taking into account SU_{2}-symmetry violations; the much larger, widely accepted values for the second, around 60 MeV , are shown to be due both to the incorrect hadron spectrum and to the amplitude used in their derivation.

(Submitted to Phys. Lett. B)

[^0]A year ago we presented preliminary results of an extrapolation of $\pi \mathrm{p}$ elastic amplitudes to very low momenta [1]. Those results, from the Carleman weight function technique developed by Ciulli and co-workers [2,3], had to be optimally stable, i. e., their error bounds had to saturate the Nevanlinna lower bound [3].

We wish to discuss here an analysis of more accurate and exhaustive extrapolations of the same data $[4,5]$, whose complete details will be presented elsewhere [6]. The method consists [2,3,6] of evaluating the integrals

$$
\begin{equation*}
\widehat{\mathrm{T}}_{\mathrm{j}, \mathrm{n}}=\left(2 \pi \mathrm{i} \mathscr{G}_{\mathrm{j}}(0)\right)^{-1} \int_{\Gamma_{1}} \mathrm{z}^{\mathrm{n}-1} \widehat{\mathrm{~F}}_{\mathrm{j}}(\mathrm{z})(1+\mathrm{z}){ }^{\beta} \mathrm{j}_{\mathscr{G}_{\mathrm{j}}}(\mathrm{z}) \mathrm{dz} \tag{1}
\end{equation*}
$$

($\mathrm{n}=0$ or 1) where $\Gamma=\Gamma_{1} U \Gamma_{2}$ is the unit circle in the variable

$$
\begin{equation*}
\mathrm{z}\left(\omega^{2}, \nu^{2}\right)=\left(\sqrt{\nu_{\mathrm{t}}^{2}-\omega^{2}}-\sqrt{\nu_{\mathrm{t}}^{2}-\nu^{2}}\right)\left(\sqrt{\nu_{\mathrm{t}}^{2}-\omega^{2}}+\sqrt{\nu_{\mathrm{t}}^{2}-\nu^{2}}\right) \tag{2}
\end{equation*}
$$

for real ω^{2} (with the ν^{2}-plane cut from ν_{t}^{2} to ∞), and \widehat{F}_{j} are the experimental histograms for the functions F_{j}, defined in Table I, on the portion Γ_{1} of the cut.

The weight functions \mathscr{G}_{j} are constructed, from the errors ϵ_{j} and the bounds M_{j} for the products $F_{j}(z)(1+z){ }^{\beta}{ }_{j}$, so that $\left|\mathscr{G}_{\mathrm{j}}\right|$ will be proportional to $\epsilon_{\mathrm{j}}^{-1}$ on Γ_{1} and to $\mathrm{M}_{\mathrm{j}}^{-1}$ on Γ_{2}; using the Schwartz -Villat formula, we have $[2,3,6]$

$$
\begin{equation*}
\mathscr{G}_{\mathrm{j}}(\mathrm{z})=\exp (2 \pi \mathrm{i})^{-1}\left(\int_{\Gamma_{1}} \ln \left(\lambda_{\mathrm{j}} / \epsilon_{\mathrm{j}}\right) \frac{\zeta+\mathrm{z}}{\zeta-\mathrm{z}} \frac{\mathrm{~d} \zeta}{\zeta}+\int_{\Gamma_{2}} \ln \left(\lambda_{\mathrm{j}} / \mathrm{M}_{\mathrm{j}}\right) \frac{\zeta+\mathrm{z}}{\zeta-\mathrm{z}} \frac{\mathrm{~d} \zeta}{\zeta}\right) \tag{3}
\end{equation*}
$$

The Cauchy theorem in the z-plane unit circle Γ gives then the equalities, within the Nevanlinna bounds $\delta_{j}=\lambda_{j} / \mathscr{G}_{\mathrm{j}}(0)$ for all n,

$$
\left.\left.\left.\begin{array}{rl}
\rightarrow \hat{I}_{j, n}= & \widetilde{F}_{j}\left(\omega^{2}, \mathrm{t}\right) \delta_{0, n}+\frac{\mathrm{G}^{2}}{4 \pi}\left[d_{\mathrm{j}} \delta_{0, n}+\right. \\
& +\frac{r_{j}}{\omega_{\mathrm{B}}^{2}-\omega^{2}}\left(\delta_{0, \mathrm{n}}-\mathrm{z}_{\mathrm{B}}^{\mathrm{n}^{\prime}}\left(1+\mathrm{z}_{\mathrm{B}}\right)^{\beta}\left(\frac{\nu_{\mathrm{t}}^{2}-\omega^{2}}{2}\right)_{\mathrm{t}}^{2}-\omega_{\mathrm{B}}^{2}\right. \tag{4}
\end{array}\right)^{1 / 2} \frac{\mathscr{G}_{\mathrm{j}}\left(\mathrm{z}_{\mathrm{B}}\right)}{\mathscr{G}_{\mathrm{j}}(0)}\right)\right],
$$

where we have used the decomposition $F_{j}=F_{j}^{B o r n}+\widetilde{F}_{j}$, and written

$$
\begin{equation*}
F_{j}^{\text {Born }}\left(\omega^{2}, t\right)=\frac{G^{2}}{4 \pi}\left(d_{j}+\frac{r_{j}}{\omega_{B}^{2}-\omega^{2}}\right) \tag{5}
\end{equation*}
$$

with ω_{B}^{2} and z_{B} denoting the neutron pole position respectively in the ν^{2} and in the z -planes.

The "Born-term stripped" amplitudes $\widetilde{\mathrm{F}}_{\mathbf{j}}$ have been computed in the intervals $\mu^{2} / 2 \geq \omega^{2} \geq 0$ and $2 \mu^{2} \geq|t|$, retaining all known SU_{2} non-invariant effects, but such evident second-order $e_{\circ} \mathrm{m}$. effects as the Coulomb corrections and the radiative capture channel, which are explicitly subtracted; we have then kept non-zero mass splittings both in the $\Delta\left(3 / 2^{+}\right)$complex [4] and in the nucleon doublet (affecting deeply the expressions for $F_{j}^{B o r n}$) as well as the $\pi^{-} p$ unphysical range from the charge-exchange channel [7].

The $\mathrm{n}=1$ integrals for the $\mathrm{B}^{(+)} / \omega$ amplitude yield the value for the $\pi \mathrm{N}$ coupling constant

$$
\begin{equation*}
\mathrm{G}^{2} / 4 \pi=13.161 \pm 0.137 \tag{6}
\end{equation*}
$$

much smaller than usually quoted values [8], confirming the only previous estimate including SU_{2} violations [7]; since these latter are now clearly evident in the physical region [4], we feel that the "traditional" value for G has to be reconsidered.

The $\mathrm{n}=0$ integrals, corrected according to (4), give the "Born-term stripped" amplitudes [9] whose values can be found tabulated in ref. [6] ; here we shall parametrize these results with simple one-particle, on-mass-shell exchanges [8], normalized to the zero-momentum theorems [10]; these allow a reduction of the number of free parameters, with respect to two-variable polynomial expansions, once we use our information on $\pi \mathrm{p}$ resonance parameters and such phenomenological ideas as vector-meson dominance (VMD).

To fix the normalizations, we can use current algebra and PCAC at zero pion momenta [10]

$$
\begin{align*}
& \lim _{2} q_{1}^{2}, q_{2}^{2}, \omega^{2} \rightarrow 0 \tag{7a}\\
& \widetilde{\mathrm{~A}}^{(+)}\left(\omega^{2}, t=0 ; q_{1}^{2}, q_{2}^{2}\right)=-2 \Sigma \Sigma_{\pi} / f_{\pi}^{2}, \\
& \lim _{2}^{2}, \widetilde{q}_{2}^{2}, \omega^{2} \rightarrow 0 \tag{7b}\\
& \widetilde{\mathrm{~A}}^{(-)}\left(\omega, t=0 ; q_{1}^{2}, q_{2}^{2}\right) / \omega=1 / \mathrm{f}_{\pi}^{2}, \tag{7c}\\
& \lim _{2}^{2}, \widetilde{\mathrm{~B}}^{(-)}\left(\omega_{2}^{2}, \omega^{2} \rightarrow 0\right.
\end{align*}
$$

moving away from the point $q_{1}^{2}=q_{2}^{2}=\omega^{2}=t=0$ along the line $\omega^{2}=0$, $\mathrm{t}=\mathrm{q}_{1}^{2}+\mathrm{q}_{2}^{2}, \mathrm{q}_{1}^{2}=\mathrm{q}_{2}^{2}$ we can avoid divergencies connected with s and u -channel discontinuities and write a simple phase representation for $F_{j}\left(\omega^{2}=0, t\right)=F_{j}(t)$

$$
\begin{gather*}
F_{j}(t)=F_{j}(0) \prod_{z}\left(\frac{t_{z}-t}{t_{z}}\right) \exp \left(\frac{t}{\pi} \int_{4 \mu^{2}}^{\infty} \frac{\phi_{j}(s) d s}{s(s-t)}\right)= \\
= \pm F_{j}(0)\left(1+\epsilon_{j}(t)\right) \tag{8}
\end{gather*}
$$

where a minus sign enters only for $A^{(+)}$and $C^{(+)}$, which both have an Adler zero, and expect, at least for $t \leqslant 4 \mu^{2}, \epsilon_{j} \simeq 0\left(t / 1 \mathrm{GeV}^{2}\right)$. Then the zero-momentum theorems become, on the mass-shell,

$$
\begin{align*}
& \widetilde{\mathrm{A}}^{(+)}\left(0,2 \mu^{2}\right)=2 \Sigma \Sigma_{\pi \mathrm{N}}\left(1+\epsilon_{+}\right) / \mathrm{f}_{\pi}^{2}+\mathrm{G}^{2} / \mathrm{m}_{\mathrm{p}} \tag{9a}\\
& \widetilde{\mathrm{C}}^{(+)}\left(0,2 \mu^{2}\right)=2 \Sigma_{\pi \mathrm{N}}\left(1+\epsilon_{+}\right) / \mathrm{f}_{\pi}^{2} \tag{9b}\\
& \lim _{\omega \rightarrow 0} \widetilde{\mathrm{C}}^{(-)}\left(\omega, 2 \mu^{2}\right) / \omega=\left(1+\epsilon_{-}\right) / \mathrm{f}_{\pi}^{2}-2 \mathrm{G}^{2} /\left(\mathrm{m}_{\mathrm{n}}+\mathrm{m}_{\mathrm{p}}\right)^{2} ; \tag{9c}
\end{align*}
$$

all other amplitudes are proportional to the ratio $\epsilon_{j} /\left(m_{n}-m_{p}\right)^{n_{j}}$, with $n_{j} \geq 1$, and therefore hard to predict, due to our poor knowledge of the numerator and the smallness of the denominator.

Assuming the Adler zero to lie at $t=q_{1}^{2}+q_{2}^{2} \simeq \mu^{2}$, regardless of the momenta, and neglecting far-away zeros, we can estimate the corrections $\epsilon_{ \pm}$at the lowest order in μ^{2} from Watson's theorem and $\pi \pi S$ and P waves [11] as $\epsilon_{+} \simeq 0.101$ and $\epsilon_{-} \simeq 0.069$, with $a \sim 10 \%$ "theoretical" uncertainty.

We have then only three free parameters to normalize our amplitudes at $\omega^{2}=0$ and $t=2 \mu^{2}$, the so-called Cheng-Dashen-Weinstein (CDW) point [12].

We then assume their ω^{2} and t dependence to be described by low-mass exchanges in the s, u, and t -channels. Limiting ourselves to masses $\mathrm{m}^{2} \lesssim 2 \mathrm{GeV}^{2}$, we can expect only the exchanges listed in table 2 to contribute appreciably to these dependences.

The s and u-channel exchanges $\Delta\left(3 / 2^{+}\right)$and $N^{*}\left(1 / 2^{+}\right)$can be evaluated in a narrow-width approximation [8] from resonance parameters, including the observed SU_{2} non-invariances [4] as $\mathrm{M}\left(\Delta^{++}\right) \neq \mathrm{M}\left(\Delta^{0}\right)$ and $\mathrm{G}\left(\Delta^{++} \mathrm{p} \pi^{+}\right) \neq \mathrm{G}\left(\Delta^{0} \mathrm{p} \pi^{-}\right)$, determined directly from our input [4,5]. Once their contributions (we shall
always conveniently normalize them to zero at the CDW point) are subtracted, we expect that no appreciable ω^{2} dependence should remain in the C-odd amplitudes and in $\widehat{\mathrm{B}}^{(+)} / \omega$ (indicating with a "hat" the subtraction of the normalized Δ and N^{*} contributions), and this is confirmed, within errors, by our extrapolations.

The only appreciable t-channel exchange in C-odd amplitudes remains the $\rho\left(1^{--}\right)$meson, and we use VMD to fix its couplings as [8]

$$
\begin{equation*}
\mathrm{G}_{\rho \pi \pi}=\mathrm{G}_{\rho \mathrm{N} \overline{\mathrm{~N}}}^{\mathrm{V}}=\mathrm{f}_{\rho}, \quad \mathrm{G}_{\rho \mathrm{N} \overline{\mathrm{~N}}}^{\mathrm{T}}=\left(\mu_{\mathrm{p}}-\mu_{\mathrm{n}}\right) \mathrm{f}_{\rho} \tag{10}
\end{equation*}
$$

and all C-odd amplitudes reduce to a single free parameter, $\widetilde{\mathrm{B}}^{(-)}\left(0,2 \mu^{2}\right)$, which we have determined with a fit at $\mathrm{t}=2 \mu^{2}$ only, allowing then checks of both the Adler-Weisberger relation (9c) and of VMD (10).

C-even amplitudes $\widehat{\mathrm{A}}^{(+)}, \widehat{\mathrm{B}}^{(+)} / \omega$, and $\hat{C}^{(+)}$should then be described by $\epsilon\left(0^{++}\right)$and $f\left(2^{++}\right)$exchanges [13] in the t channel; the second should account for both the residual ω^{2} dependence in $\widehat{\mathrm{A}}^{(+)}$and $\widehat{\mathrm{C}}^{(+)}$and the t dependence in $\widehat{\mathrm{B}}^{(+)} / \omega$, leaving the ϵ exchange to give the t dependence in $\widehat{\mathrm{A}}^{(+)}(0, t)$ and $\widehat{\mathrm{C}}^{(+)}(0, t)$.

Such a six-parameter parametrization agrees rather well with our extrapolations but for $\widetilde{\mathrm{C}}^{(-)} / \omega$, where a strange hump at $\mathrm{t} \leq 0$ had us worried for quite a while。However, the appearance of a similar, smaller feature in $\widehat{\mathrm{C}}^{(+)}$and the position of the two have allowed us to track them back to a probable under-estimate of the errors on the S_{11} wave in ref. [4]. Indeed such effects are washed out by an increase in these errors, but due to the arbitrarity of such a correction, we choose to present our results without further tampering.

A very interesting result can be derived from the zero-momentum theorem (9b) with our estimate of ϵ_{+}, i.e., the value for the sigma term

$$
\begin{equation*}
\Sigma_{\pi \mathrm{N}}=40 \pm 9 \mathrm{MeV} . \tag{1}
\end{equation*}
$$

This value being about 20 MeV below the usually quoted values [8], the reader may wonder at the source of such a huge discrepancy. This source becomes, however, clear once one notes that those values were obtained in the limit $m_{n}=m_{p}$ from the non-spin-flip amplitude $\mathrm{T}^{(+)}$, for which, in this limit, we have

$$
\begin{equation*}
\widetilde{\mathrm{C}}^{(+)}\left(0,2 \mu^{2}, \mathrm{~m}_{\mathrm{n}}=\mathrm{m}_{\mathrm{p}}\right)=\widetilde{\mathrm{T}}^{(+)}\left(0,2 \mu^{2}, \mathrm{~m}_{\mathrm{n}}=\mathrm{m}_{\mathrm{p}}\right)+\frac{\mathrm{G}^{2}}{\mathrm{~m}_{\mathrm{p}}} \frac{\mu^{2}}{2 \mathrm{~m}_{\mathrm{p}}^{2}-\mu^{2}} \tag{12}
\end{equation*}
$$

instead of the exact answer $\widetilde{\mathrm{C}}^{(+)}\left(0,2 \mu^{2}\right)=\widetilde{\mathrm{T}}^{(+)}\left(0,2 \mu^{2}\right)$, obtained keeping track of the n-p mass difference. This introduces a spurious correction, i.e., to take a specific case,

$$
\begin{equation*}
\left(1+\epsilon_{+}\right) \cdot\left[\Sigma_{\pi N}\left(m_{n}=m_{p}\right)-\Sigma_{\pi N}\right]=19 \mathrm{MeV} \tag{13}
\end{equation*}
$$

for Langbein's value [14] $\mathrm{G}^{2} / 4 \pi=14.3$, bringing our value (11) to an "on-massshell, SU_{2}-symmetric" value $\left(1+\epsilon_{+}\right) \cdot \Sigma_{\pi \mathrm{N}}\left(\mathrm{m}_{\mathrm{n}}=\mathrm{m}_{\mathrm{p}}\right)=63 \pm 10 \mathrm{MeV}$, to be compared with his estimate [14] of $61 \pm 16 \mathrm{MeV}$.

We hope that what we have here called $\Sigma_{\pi N}\left(m_{n}=m_{p}\right)$ will no longer be confused with the true sigma term $\Sigma_{\pi N}$ appearing in the theorem (7a), ending for good the speculations about its "abnormally large" value, while the new value for G should end those on an equally "abnormally large" correction $\epsilon_{G T}$ to the Goldberger-Treiman relation [16]. Indeed, our value leads to

$$
\begin{equation*}
\epsilon_{\mathrm{GT}}=1+\mathrm{g}_{\mathrm{A}}(0)\left(\mathrm{m}_{\mathrm{n}}+\mathrm{m}_{\mathrm{p}}\right) /\left(\sqrt{2} \mathrm{f}_{\pi} \mathrm{G}\right)=(1.3 \pm 1.1) \times 10^{-2} \tag{14}
\end{equation*}
$$

consistent with estimates of the 3π discontinuity for the axial divergence form factor, $\epsilon_{\mathrm{GT}} \sim 0\left(\mu^{2} / 1 \mathrm{GeV}^{2}\right)$, and a world almost symmetric under chiral $\mathrm{SU}_{2} \times \mathrm{SU}_{2}{ }^{\circ}$

The same cannot be said for chiral $\mathrm{SU}_{3} \times \mathrm{SU}_{3}$; indeed, in terms of such a
symmetry broken by a $(3, \overline{3})$ piece in the Hamiltonian [17], our value (11) corresponds to a contribution by its unitary-singlet piece of as much as $1 / 3$ to the average baryon-octet mass. We shall then expect no particular success from perturbations around a chiral $\mathrm{SU}_{3} \times \mathrm{SU}_{3}$ symmetry limit; however, our value is not so far from expectations in such a model [18] to upset our belief in generalized, octet PCAC. Indeed, kaon PCAC results in a $(3, \overline{3})$ model are not as far from physical reality [19] as the big naive scale $\epsilon_{8} / \epsilon_{0} \simeq-1.25$ would lead us to believe. Whether this success is connected to the existence of a much larger "basic scale," set by some underlying, even worse broken, chiral $\mathrm{SU}_{\mathrm{n}} \times \mathrm{SU}_{\mathrm{n}}(\mathrm{n} \geq 4)$ symmetry, or to an as yet unforeseen dynamical accident, it is beyond our purpose and our means to speculate.

This work, and my leave from Universita' di Lecce, were made possible both by a joined grant from the North Atlantic Treaty Organization and Consiglio Nazionale delle Ricerche, and by the warm hospitality of Stanford Linear Accelerator Center and Stanford University. To all, I am deeply indebted and grateful.

References and Footnotes

［1］P．Gensini，N．Paver and C．Verzegnassi，Lett．Nuovo Cimento 15 （1976） 409 。
［2］S．Ciulli and J．Fischer，Nucl。Phys．B24（1970）537；G。Nenciu，Lett． Nuovo Cimento 4 （1970） 96.
［3］S．Ciulli，C．Pomponiu and I．Sabba－Stefanescu，Fiz．El．Chast．At． Yadra 6 （1975）72，and Phys．Rep。 17 （1975）133。
［4］J．R．Carter，D．V．Bugg and A．A．Carter，Nucl．Phys．B58（1973） 378.
［5］A．Donnachie，R．G．Kirsopp and C．Lovelace，Phys．Lett． 26 B （1968）161， and report CERN－Th。－838（1967），unpublished．
［6］P．M．Gensini，Report SLAC－PUB－1944（1977），submitted to Phys．Rev。D．
［7］V．K．Samaranayake and W．S．Woolcock，Nucl．Phys．B48（1972） 205.
［8］N．M．Nagels，J．J．DeSwart，H．Nielsen，G．C．Oades，J。L．Petersen， B．Tromborg，G．Gustafson，A．C．Irving，C．Jarlskog，W。 Pfeil， H．Pilkuhn，F．Steiner and L．Tauscher，Nucl。Phys。B109（1976） 1.
［9］In our notation $C^{(\pm)}$will be the spin－averaged amplitudes，and we shall call the non－spin－flip amplitudes $\mathrm{T}^{(\pm)}$．
［10］S．L．Adler and R．F．Dashen，Current Algebras（A。W。Benjamin，Inc．， New York，1968），and references therein．
［11］B．Hyams，C．Jones，P．Weilhammer，W．Blum，H．Dietl，G．Grayer， W．Koch，E。Lorenz，G．Lütjens，W．Männer，J。 Meissburger，W．Ochs， U．Stiexlin and F．Wagner，Nucl。Phys。B64（1973）134。
［12］R．F．Dashen and M．Weinstein，Phys．Rev． 188 （1969）2330；T．P．Cheng and R．F。Dashen，Phys．Rev。Letters 26 （1971）594。
［13］No clear indication has appeared of a second $\pi \pi$ resonance in the $J=I=0$ state；we assume our $\epsilon\left(0^{++}\right)$to be the＂$\omega$－like＂component of an＂ideally
mixed" nonet, in accord with $M(\epsilon) \simeq M(\delta)$.
[14] W. Langbein, Nucl. Phys. B94 (1975) 519。 More references on "derivations" of $\Sigma_{\pi N}$ can be found in ref. [8]; what we say here applies to all the recent ones but Moir et al. [15], who, however, use a critically unstable "discrepancy function" formalism [3,6].
[15] D.C.Moir, R.J. Jacob, and G.E.Hite, Nucl. Phys. B103 (1976) 477;
D. C. Moir, Ph. D. Thesis, Arizona State Univ. (1975), p. 41.
[16] These speculations should, in our opinion, be filed together under the same heading as those on the A_{2}-splitting and the η-decay charge asymmetry。
[17] M. Gell-Mann, R. J. Oakes and B. Renner, Phys.Rev. 175 (1968) 2195;
S. L. Glashow and S. Weinberg, Phys. Rev. Letters 20 (1968) 224.
[18] B. Renner, Phys. Letters 40B (1972) 473.
[19] P. Gensini, Nuovo Cimento 17A (1973) 557.

Table 1

j	F_{j}	j	r_{j}	d_{j}
1	$A^{(+)}$	3/2	$-\frac{4 \pi \omega_{\mathrm{B}}\left(\mathrm{~m}_{\mathrm{n}}-\mathrm{m}_{\mathrm{p}}\right)}{m_{\mathrm{p}}}$	$-\frac{4 \pi\left(m_{n}-m_{p}\right.}{m_{n}+m_{p}}$
2	$\mathrm{B}^{(+)} / \omega$	-1/2	$4 \pi / \mathrm{m}_{\mathrm{p}}$	0
3	$A^{(-)} / \omega$	0	$-\frac{4 \pi\left(m_{n}-m_{p}\right)}{m_{p}}$	0
4	$\mathrm{B}^{(-)}$	0	$4 \pi \omega_{\mathrm{B}} / \mathrm{m}_{\mathrm{p}}$	0
5	$C^{(+)}$	3/2	$-\frac{4 \pi \omega_{\mathrm{B}}\left(\mathrm{~m}_{\mathrm{n}}-\mathrm{m}_{\mathrm{p}}-\omega_{\mathrm{B}}\right)}{\mathrm{m}_{\mathrm{p}}}$	$-\frac{4 \pi\left(m_{n}-m_{p}\right)}{m_{n}+m_{p}}$
6	$C^{(-)} / \omega$	0	$-\frac{4 \pi\left(m_{n}-m_{p}-\omega_{B}\right)}{m_{p}}$	0

Table 2

Channel(s)	Exchange($\mathrm{J}^{\text {PC }}$)	Mass (MeV)	Coupling Constant(s)
s, u	$\Delta^{+}\left(3 / 2^{+}\right)$	$\underline{1231.1}$	$\mathrm{G}\left(\Delta^{++} \mathrm{p}^{+}\right)^{2} / 4 \pi=\underline{14.9}$
s, u	$\Delta^{0}\left(3 / 2^{+}\right)$	1232. 5	$\mathrm{G}\left(\Delta^{0} \mathrm{p} \pi^{-}\right)^{2} / 4 \pi=\underline{15.3}$
s, u	$\mathrm{N}^{*}\left(1 / 2^{+}\right)$	1466	$\mathrm{G}\left(\mathrm{N}^{*} \mathrm{~N} \pi\right)^{2} / 4 \pi=\underline{\underline{2}, 06}$
t	$\rho\left(1^{--}\right)$	772.3	$\mathrm{G}_{\rho \pi \pi} Q_{\rho \mathrm{N}} \overline{\mathrm{~N}}^{\mathrm{V}} / 4 \pi=\underline{2_{\circ} 26}$
			$\mathrm{G}_{\rho \pi \pi} \mathrm{G}_{\rho \mathrm{N} \overline{\mathrm{~N}}}^{\mathrm{T}} / 4 \pi=\underline{10.6}$
t	$\epsilon\left(0^{++}\right)$	993	$\mathrm{G}_{\epsilon \pi \pi} \mathrm{G}_{\epsilon} \mathrm{N}^{\mathbf{N}} / 4 \pi=28.7 \pm 10.5$
t	$\mathrm{f}\left(2^{++}\right)$	1271	$\mathrm{G}_{\mathrm{f} \pi \pi} \mathrm{G}_{\mathrm{f} N \mathrm{~N}}^{(1)} / 4 \pi=.24 \pm .64$
			$\mathrm{G}_{\mathrm{f} \pi \pi} \mathrm{G}_{\mathrm{fNN}}^{(2)} / 4 \pi=-.39 \pm .64$

$$
\begin{array}{lr}
\lim _{\omega \rightarrow 0} \widetilde{\mathrm{~B}}^{(+)}\left(\omega, 2 \mu^{2}\right) / \omega & -3.107 \pm 0.206 \\
\widetilde{\mathrm{C}}^{(+)}\left(0,2 \mu^{2}\right) & 0.719 \pm 0.297 \\
\widetilde{\mathrm{~B}}^{(-)}\left(0,2 \mu^{2}\right) & 8.643 \pm 0.229
\end{array}
$$

All underlined parameters have been fixed during our fits.

[^0]: * Work supported in part by the Energy Research and Development Administration
 ** On leave of absence from Universita' degli Studi, Lecce, Italy.

