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ABSTRACT 

We review recent developments in four areas of computational 

quantum electrodynamics: (1) a new relativistic two-body formalism 

equal in rigor to the Bethe-Salpeter formalism but with strong calcu- 

lational advantages is discussed; (2) recent work on the computation 

of the decay rate of bound systems (positronium in particular) is 

presented; (3) limits on possible composite structure of leptons are 

discussed; (4) a new multidimensional integration program (‘VEGAS’) 

suitable for higher order calculations is presented. 

(tI.nvited talk presented to the Fourth International Colloquium _ 
on Advanced Computing Methods in Theoretical Physics, 
Saint Maximin, France, March 21-23, 1977.) 

*Work supported by the Energy Research and Development Administration. 
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1. INTRODUCTION 

One of the most critical testing grounds of quantum electrodynamics involves 

the bound state spectrum of the pure QED systems, positronium (e+e’) and 

muonium &+ey) . Although the ground state splittings have now been measured 

to a part per million or better, calculations-which require the covariant Bethe- 

Salpeter equation-have been left far behind. In part, this has been due to the 

lack of a tractable, systematic computational procedure using the Bethe- 

Salpeter equation. A crucial difficulty has been the absence of known anaIytic 

bound state solutions to the equation-even for an approximate interaction 

kernel. 

In this talk, we will report on a new approach by Lepage’ to the two-body 

relativistic bound state system which is equal in rigor to the Bethe-Salpeter 

formalism, but which has important calculational advantages. Outstanding 

among these is the existence of a Coulomb-like kernel for which the exact 

analytic solutions of the bound state equation are known. A systematic pertur- 

bation theory has also been derived, and this has led to new results for the 

2 log o!‘l relativistic recoil contributions to the ground state splitting of 

muonium and positronium. 

Because of these new developments, it now appears that bound state compu- 

tations can be carried out systematically through the ppm level. Thus the 

quantum electrodynamics of off-shell electrons and muon as well as the field 

theoretic formulation of the relativistic two-body problem can be checked to - 

this new level of accuracy. Other applications, to the Lamb shift of muonium, 

the spectrum of pi-muonium (r+p-), as well as other areas of particle physics 

(e.g., charmonium spectrum) also suggest themselves. 
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In this talk we shall also briefly review recent developments in the calcula- 

tion of the decay rate of orthopositronium. 2 We also discuss the implications of 

the successes of QED for limits on possible lepton substructure. 3 Finally a 

new numerical integration technique which has advantages for the very high 

dimension integrals encountered in QED is discussed.4 

II. RELATIVISTIC BOUND STATES-A NEW FORMALISM’ 

A general result from relativistic field theory is that the bound state of two 

spin l/2 particles is exactly described by the full Bethe-Salpeter equation 

(It-ml)(j?-)f-m2)Xl? = K+ 

where K is obtained from the sum of all two particle irreducible kernels? (shown 

in Fig. lb for QED). In the rest system F=O, and P”=En. The challenge for 

computation is to determine the eigenvalues En (i. e. the bound state energies) 

to ppm accuracy. In practice one would want a systematic method for deter- 

mining En to the desired accuracy. Ideally the equation would be written in such 

a way as to allow algebraic computer analysis. 

The problems in dealing with the Bethe-Salpeter equation though are myriad. 

For example, an exact solution for any kernel applicable to QED has not been 

available, thus making perturbation theory fraught with peril. Even so, it is 

known that the single one-photon exchange kernel (in any gauge) is a remarkably 

poor approximation to the relativistic problem. In fact, one can readily show 

that all crossed ladder kernels (to all orders in perturbation theory) are needed 

to obtain the required Dirac equation in the ml or m2-o0 limit. 5 A further 

tone includes in K those diagrams not obtainable by iteration of lower order 
graphs. In general K also includes self energy corrections to the fermion 
propagators and renormalization counter terms. 
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complication is that the Bethe-Salpeter equation depends on two off-shell vari- 

ables pJ=k2, pi=(P-k)2 and is difficult to interpret. In a sense the Bethe- 

Salpeter equation contains too much information-more than what is required to 

obtain the bound state spectrum. 

An important advance, pioneered by F. Gross, 6 is to realize that the bound 

state spectrum (i. e. , the singularities in J3 = J- P2 of the two-body Green’s 

function) is independent of the value of the off-shell legs. Thus Gross writes an 

equivalent equation, equal in rigor to the Bethe-Salpeter equation, with one leg 

on-shell (Fig. 2). The kernel R is irreducible in the sense that it contains no 

two-particle cuts with line 1 on-shell, and it is obtained from the Bethe-Salpeter 

kernel as shown in Fig. 2b. In fact R is the full two particle T-matrix with pole 

contributions, a’(k2-mi) , removed from each loop integration. 

The Gross equation has the Dirac form 

(F-K-m2) $@I = / d3e 
2EpW 

3 iqn- P) @ P) (*I 

where $ is a 4@2 component spinor (i. e. , Pauli matrix representation for spin 

of on-shell particle 1) and “K is defined via 

t- 
U($u(l) = X(l)KX(l) 

An awkward feature of this equations is the presence of the variable k. = 

on the left hand side. However, as pointed out in Ref. 1, this can be remedied by 

multiplying through by r’(F+k-m,), giving simply 

with P2+m2-m2 
g, 0 2p2 1 

0 
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Remarkably, this has the form of a standard Dirac equation (with a generalized 

potent&l), but it is the exact equation for the Bethe-Salpeter amplitude with one 

leg on-shell. In fact if one now chooses as the initial approximation the Coulomb- 

like kernel 

one has the standard Dirac equation for particle (2) in a Coulomb field 

where 22 2 =e ml/PO and E is given above. One obtains the standard Dirac- 

Sommerfeld spectrum (z=%k2)) and Dirac-Coulomb wavefunctions. Thus for 

this simple choice of kernel one finally has an exact solution for a Bethe- 

Salpeter wavefunction. It is important to note that for ml-~,. 

g2 - e 2 

ml 2 UEEm2-er +$+ -m -e 
0 0 2 

(E = ml+m2 - PO) 

and so the simplest kernel gives the Dirac-Coulomb limit as ml-cQ [The cor- 

rections of order m2/ml agree with the Grotch-Yennie results: obtained by 

approximating k. - ml+X2/2ml in an effective potential equation similar to 

(*).I. 

Since an exact solution is known to lowest order, a straightforward pertur- 

bation theory can be developed from ft-K, to compute the spectrum to the desired 

accuracy. 
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III. APPLICATION: GROUND STATE SPLITTING 

MUONIUM AND POSITRONIUM 
-h 

The ground state splitting due to the spin-spin interactions of a hydrogenic 

atom is given in lowest order by the Fermi formula (y=Za mlm2/(ml+m2)): 

E F @+a,) @+a,) 

= g s (l+a,)(l+a,) 
3 mlm2 

where al and a2 are the anomalous magnetic moments of the two spin l/2 con- 

stituents. Through the years Dirac binding corrections of order (2~)~ EF, radia- 

tive corrections of orders c~(Zcr)E~, ((Y(ZcQ210g2Za), Ir(ZcQ210gZa!, Q(ZQ)~)E~, 

and recoil corrections of order (Zcu) m2/mlEF have been systematically evalu- 

ated,* but the terms of order (ZCY)~ m2/ml EF from the Bethe-Salpeter formalism 

(relativistic recoil) have been extraordinarily difficult to obtain. At present, 

theorists have set a temporary goal of calculating the terms of order 

(z(u12 1% tz@ m2/ml EF f although it should be emphasized that all terms of 

order (ZC~)~ EF will be required to make comparisons with experiment within the 

experimental precision. Further it should be noted that terms of order 

tz,)2’rn2/rnl log (m,/m,) EF are present and will be important for the muonium 

comparison. Progress has recently been made in calculating individual a3EF 

contributions; an example is a new result by Cung, Fulton et al. for the three -- 

photon annihilation kernel in positronium. ’ 

A summary of Lepage’s results’ for the a2 log Q! EF contribution to the 

ground state splitting of positronium and muonium is shown in Fig. 3 (annihila- 

tion contributions obtained by Barbieri and Remiddif’ and by Ower?‘are not 

shown here but give a coefficient - 5/2). The contribution of (a) (from the 

. 
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difference between the Coulomb interaction and Ko) agrees with a recent calcu- 

lation&y Cung et al. 12 -the spin interaction comes from the small components 

of the wave function. The two transverse photon contribution (e) agrees with 

the result of Fulton, Owen and Repko. 13 The contributions of (f) and (g) agree 

10 with the results of Barbieri and Remiddi, and Fulton, Owen and Repko 13 

respectively. The contributions of graphs (b), (c) and (d) are new results 

obtained by the formalism described above. Previous calculational methods, 

lacking a 0 th order solution of the Bethe-Salpeter equation, cannot readily deter- 

mine contributions such as (d) which require two iteraction of the interaction 

kernel. 

It is believed this is now the complete set of cz2 log a! EF contributions. It 

is reassuring that the me/mp terms in the last column of Fig. 3 cancel, reflecting 

the fact that it is immaterial which particle is put on the mass-shell in this new 

. formalism. 

A summary of the current experimental and theoretical results for the 

spectra of muonium and positronium is given in Table I. The agreement is 

remarkable-the experiment-theory differences are within the nominal order 

expected for the uncalculated terms ((r2 E 

for muonium) . 

F for positronium, o2 me/mp log(me/m&EF 

As an example of the types of terms encountered in the calculation, the one 

transverse exchange kernel leads to a structure forx2 andT2<<m2 

-rn 

-1 
d3k -m 

Q2+Y212 I Ce2+Y2J2 Ik-m12 

giving a logy/m contribution. In the loop diagrams of Fig. 3 one does the k. 

Integration as a contour integral, picking up all poles except the reducible con- 

tributions . 
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It is expected that all terms of order a2 me/mp log (me/mp) EF can be 

readily identified and computed. The goal of computing all terms of order 

a2 EF looks more arduous, but much of the calculation should be amenable to 

algebraic computer analysis since 

(a) 

@I 

the perturbation theory has been systematized; 

the spin projection analysis and numerator algebra can be 

performed automatically. 

Hopefully the bound state calculations can be systematized to the same extent 

as (g-2) calculations. It should be noted that some of the a2 EF contributions 

will probably require a Bethe-type sum-over-states calculation. 

The new formalism will also clearly be useful for analyzing other bound 

state problems, as we have discussed in the Introduction. Further work on the 

analysis. of high order corrections within this bound state formalism is in 

progress. Some clues may also be provided to the formal question of what 

happens to bound state solutions in QED when (Y becomes large. 

IV. ORTHOPOSITRONIUM DECAY’ 

The rate for positronium in the Is, J=l state to decay into 3 photons is 

particularly important since it is the only annihilation decay rate of a pure QED 

system measured to better than 1% precision. In fact experiment has now 

reached the . 1% level and it now appears that there is a serious discrepancy 

between theory and experiment. 

To lowest order, neglecting radiative and relativistic corrections, the 

positronium decay rate (Fig. 4) is 
-‘I 

= 7.2112~10~ set -1 . 
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The complete decay amplitude can be written in exact form as: 

where qBs is the full Bethe-Salpeter amplitude and Af irred is the entire set of 

Feynman graphs for e+e- - 3y, excepting two particle reducible graphs obtained 

by iteration of the Bethe-Salpeter kernel. Thus, if qBS is approximated by 

solving the Bethe-Salpeter equation with only the Coulomb exchange graph 

(Coulomb ladder approximation), then Airred does not include the exchange of 

Coulomb photons between the e+, e-. Working to relative order Q, all contribut- 

ing graphs for A irred are shown in Fig. 4a to 4g. All contributions are 

assumed renormalized where required. Notice that even for on-mass lines, 

a/H irred is not infrared divergent; all log A contributions must cancel by 

18 Kinoshita’s theorem, or by charge conjugation arguments. 

In a new analysis by Caswell, Lepage, and Sapirstein (CLS), 2 it is noticed 

that it is actually very useful to include in ,A irred the contribution due to the 

exchange of a Coulomb photon. When this extra graph is convoluted with $Bs 

in the nonrelativistic (Schrcedinger) approximation, one simply obtains back the 

lowest order contribution, lYo. However, as shown by Fulton and Martin 19,13 

the first iteration of the Coulomb kernel with the Schraedinger vertex function 

and external free Dirac propagators yields the relativistic two-body wavefunction 

corrections with sufficient accuracy for the order (YI’~ calculations. The calcu- 

lation to this order then simply reduces to 

T = zjm(%O) Re “Kb f [ -1 on-shell (FO ) 
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where the &‘s are computed with on-shell spinors for the e+ and e-. The 

rest&is obviously gauge invariant, and the Feynman gauge can be used for 

convenience. 

The CLS results for the self-energy, and vertex corrections (c/KbWe) agree 

with earlier results by Holt and Stroscio (HS); 20 however for the annihilation 

kernel 

i 

-. 5 f .2 HS 

rf=;; 0 “I? -.741 f .017 Pascual and de Rafael 21 

-.809 f .004 CLS 

and for one photon exchange 

r 
8’ 

=ro+fro 2log-&-2 
( e ) 

+fro 
5.8 f .4 HS 

-5.90 f .07 CLS 

The PO term in I’ 
g1 

is computed from an explicit l/v term in & ,. 
g 

The next 

term is associated with the infrared structure of the kernel and can be done 

analytically. The remaining term disagrees in sign with the Holt and Stroscio 

result, and leads to a significant change in the theoretical results. 

The comparison of theory and experiment is as follows: 

&(e+e - 3Y) 

7.09 f .02 x lo6 see-l Gidley et al. 22 (Vacuum 19 76) -- 

7.104 f .006 x lo6 set” - Gidley et al. 23 -- (Powder 1976) 
r expt = 7.262 f .015 x lo6 see-’ Coleman et al. 24 -- (Gas 1973) 

7.269 .015 lo6 set -1 Hughes et al. 25 f x -- (Gas 1973) 
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that is if r expt =ro l+sa 
( 7r expt ’ 

- .I 

-7 &l Gidley et al. (Vacuum) -- 

a expt = -6.4% 0.4 GidIey et al. (Powder) -- 

3.5 f 0.9 Coleman et al. , -- Hughes et al. (Gas) -- 

compared to 

-10.35 f 0.07 Caswell, Lepage, Sapirstein (1976) 

atheory = 1.86 f 0.45 Stroscio, Holt (1974) 

Comparing the new CLS result, r theory = 7.0379(12) x 106/sec, and the most 

precise measurements (extrapolated to a zero powder density environment), 

there appears to be a serious discrepancy of almost 10 standard deviations! 

It is of course extremely important that this discrepancy be understood. We 

note that the nominal size of the next contribution from QED (order a2 log CY -‘ro) 

is -. 002 x lO’/sec. 

The current status of the parapositronium decay 

rJ,O(e+e- - 2~) 

r -1 
expt 

= 7.99(11) n set Theriot et al. 26 -- 

5h = 7.98 -1 n set Harris (1957)27 . 

V. QED LIMITS ON LEPTON STRUCTURE3 . 

It is truly extraordinary that the experimental determination of the g factor: 

ge = 2(l.001159652410(200)) (Ref. 28) 

gp = 2(1.001165922(9)) (Ref. 29) 

is predicted by QED correctly through eleven significant figures for the electron 
30 and nine for the muon. Note that there is no a priori reason for a spin l/2 

particle to have g near 2 (as witnessed by the nucleon). The Dirac value holds 
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only if the fermion is elementary. Thus, suppose the electron was actually a 

compo$te structure-a bound state of say two or three more %ndamentall sub- 

units. Then the coupling to an internal charged current leads to the general 

contribution to (g-2)/2 of 

where m* is a characteristic internal mass, the mass of the first excited state, 

or continuum threshold. Alternately, we can use the Drell-Hearn-Gerasimov 31 

sum rule: 

where op A 
ye 

is the photoabsorption cross section with parallel (antiparallel) 

photon and target spins. In general <CD -6 cy/m*2 I 1 for the contribution of the 

excited states of the bound system. This contribution (together with the modifica- 

tion of the near-threshold region of “rc() again gives ae -@(me/m*). Taking this 

effect to be less than the uncertainties in g gives a bound 

m*z5x104GeV for the electron 

m*L3x106GeV for the muon . 

Thus the precision measurement of g-2 leads to an important limit on possible 

lepton substructure. 3 

VI. A NEW ALGORITHM FOR MULTIDIMENSIONAL INTEGRATION4 

One of the most important computational problems facing physicists today 

is the evaluation of multidimensional integrals with complicated and sometimes 

poorly behaved integrands. One approach, introduced by Sheppey and developed 

by Dufner and Lautrup, 32 employs iterative and adaptive Monte Carlo integration. 
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This algorithm (known variously as SHEP, RIWIAD, SPCINT, . . .) has enjoyed 

widespread usage in 
33 

of an integral is 

I 

theoretical physics. The simplest Monte Carlo estimate 

/ 

1 M 
= 

0 
dnx fF) N & c f(zi) 

i=l 

where the random 

tion volume. The 

r 

points {zi} are uniformly distributed throughout the integra- 

variance of this estimate is approximated by 

To reduce o2 for M fixed, Sheppey~s algorithm uses stratified sampling: the 

integration volume is divided into Nn hypercubes using a rectangular grid, and 

a two-point Monte Carlo integration is performed in each hypercube. The 

variance is minimized by adjusting increment sizes along each axis (over several 

iterations) such that the contributions to a2 from each interval are equal (= a2/N). 

Thus SREP concentrates hypercubes where f(z) is large and changes rapidly. 

In high dimensions the number of increments per axis (N) SREP uses is 

severely limited by the number of integrand evaluations @I): 

M = 2Nn 

Thus SHEP is no longer able to adapt in high dimensions. This handicap can be 

avoided through use of importance sampling rather than stratified sampling. To 

illustrate, consider the one dimensional case. The variance o2 can be reduced 

by making a variable transformation x====(y): 

I = (l dx f(x) = jl o cty !z’tY) fMY)) N & E g’(Yi) f@tYi)) 
i=l 

where the points (yi) are uniformly distributed. 
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It is well known that a2 is minimized when 

1 -= If(x) I 
g’(Y) 1 x=&Y) 

/ 

(**I 
Wf(x)l 

0 

In a new algorithm called VEGAS, 4 g’(y) is chosen to be a step function with N 

steps: 

g’(y) = N AL 
1 

i.e., xi&g x <x. 
1 

. 

=b x = g(y) = fki (Ny - (i-l)) + ‘2 Axj 
j=l 

Over several iterations the increments ki are adjusted such that relation (**) 

is approximately satisfied, and o2 minimized. In higher dimensions the 

separable variable change xi = gi(yi) i=l, . . . , n is used where now the optimal 

.th g$qi) is defined by projecting the integral on the 1 axis. 

VEGAS must concentrate integrand evaluations where the integrand is 

largest, whether or not it is flat there. Thus given the same number of incre- 

ments per axis, SHEP should be superior. However the number of increments 

per axis is independent of the number of integrand evaluations in VEGAS, and 

so VEGAS is always adaptive, in any dimension. Thus VEGAS becomes con- 

siderably more efficient then SHEP in high dimensions (nL4). 

In Table II VEGAS 

spherically symmetric 

gration volume: 

is compared with SHEP for a test integral having two 

Gaussians equally spaced along the diagonal of the inte- 
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The integration was done for n=2,4,7,9 with a=O. 1. The ’ optimal standard 

deviation l quoted in this table is the standard deviation computed on any itera- 

tion after the optimal grid has been achieved. Results averaged over 15 itera- 

tions are also presented. As expected, SHEP is more efficient for n<4 while 

VEGAS is superior for n> 4. 

VEGAS can be (and has been) further improved through use of other well ’ 

known methods of variance reduction (stratified sampling, antithetic variates, 

quasi-random numbers , . . . ) applied to the smoothed integrand f(g(y)) g’(y). 

For example, rather than choosing M random points uniformly distributed on 

05 ye 1, the sampling can be stratified by selecting two points in each of M/2 

equal subintervals of [0, l]- such an algorithm would be very similar in per- 

formance to SHEP in low dimensions while remaining adaptive in arbitrarily 

high dimensions. Note that the optimal definition of g’(y) may differ from that 

I given above when additional variance reduction is employed. 

Much work remains to be done on the development of general purpose 

34 muRidimensiona1 integration routines. J. Friedman at SLAC is developing a 

new Monte Carlo routine which employs n-dimensional minimization techniques 

to locate important peaks in the integrand and concentrate function evaluations 

there (using stratified sampling) 35 This procedure has the advantage that it is 

less likely to miss peaks, even if they are very narrow and high. Furthermore 

hypercube subdivision and error estimates do not rely upon Monte Carlo esti- 

mates of the variance of the integrand (which can be misleading-for peaky inte- 

grands and small sample sizes). 
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TABLE I 

Comparison of theory and experiment for muonium hfs. Uncertainties 

shown in theory due to uncertainties in pP/,up (Ref. 14). Terms of 

@ a2 
( 

- 0.01 MHz have yet to be computed and are not 

included. 

Theory 

3 EF, cu2EF, 
mP 

m 
2(u2eEF log a! -1 

“cl 
Total Theory 

4463.293 (6) MHz 

.Oll 

4463.304 (6) MHz 

Experiment 

Ref. 14 4463.30235 (52) MHz 

Ref. 15 4463.30400 (180) MHz 

Comparison of theory and experiment for positronium hfs. Terms of 

@(cz2me/2) - 0.01 GHz are not yet computed. 

Theory 

2 (u6me log a! -1 

203.3812 GHz 

- .0038 

Total Theory 203.3774 GHz. 

Experiment 

Ref. 16 

Ref. 17 

203.3849 (12) GHz 

203.3870 (16) GHz 
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FIGURE CAPTIONS 

1. (a) The Bethe-Salpeter equation for the bound state wave function. 

@) The kernel for the Bethe-Salpeter equation in QED. 

2. (a) The bound state equation for the wave function with one particle on 

mass shell. (b) The effective kernek li in terms of the usual Bethe- 

Salpeter kernel. 

3. Diagrams contributing to ~(cY~ me/mp log a! -1 EF) hfs in muonium. The 

contribution to positronium hfs is found by setting mp=me. 

4. The orthopositronium decay kernels contributing to O(cyF”). Graphs (a) 

and (g) may be replaced by (g’). 
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