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ABSTRACT 

Migdal’s recursion equation proposed for the Wilson lattice gauge 

theory is studied for its weak and strong coupling behavior. The model 

is then solved numerically for the SU(2) gauge field, and it is shown 

that there is a continuous crossover from the weak coupling (asymp- 

totically free) region to the strong coupling (quark confining) domain. 

The Migdal recursion equation is a crude approximation for the 

behavior of the gauge field in d=4 dimension, and provides a theo- 

retical example of how confinement of quarks could be achieved by the 

gauge field which exhibits asymptotic freedom. 
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In this paper we study Migdal’s recursion formula. 293 This formula gives 

a nontzivial model for the renormalization group equation of the lattice gauge 

field. The recursion equation is exact for the 2-dimensional gauge field, and 

only an approximation for higher dimensions. Migdal’ has given an intuitive 

picture of the approximations made, and Kadanoff3 has used variational tech- 

niques to lYderivell the approximate recursion formula. We will make no attempt 

to justify the recursion formula. We will, however, give an interpretation of 

the recursion formula for higher than 2 dimensions. This interpretation 

is similar to the one given by Migdal. 2 

We will define the recursion equation using the Kadanoff-Wilson “block- 

spin” technique, 5,6 as this makes the equations more transparent. We then 

study the equations for its weak and strong coupling behavior. Up until this 

point, one need not specify the gauge group. However, the most interesting 

feature of the recursion formula is that one can study the entire renormalization 

group transformation (i. e. , the entire sequence of actions generated by the above 

transformation) if one uses a computer. For the numerical solution of the recur- 

sion formula, we used SU(2) for the gauge group. 

1. The Recursion Formula 

We briefly outline the basic features of the Wilson lattice gauge theory. 194 

Consider a Euclidean spacetime lattice of infinite size. Let n specify the lattice 

site, and ~1 the directions on the lattice, The local gauge degrees of freedom 

are the finite group elements U 
w 

belonging to the gauge group, G, which for 

definiteness, can be taken to be SU(n). One can picture each Uw corresponding 

to the unique link going from n to n-t; (b = unit vector in the /.&h direction). 

The gauge field action functional is defined by (prime denotes p# V) 

A GF c x1 Tr(Ww,) 
n w 
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where go is the bare coupling constant and 

-c. W =u u 
WV VJ n+Pv 

UT 9 
n+vp nv 

The theory is quantized by summing (i. e. , performing the path integral of ) 

eAGF over all possible values of all the degrees of freedom. Let dUw be the 

invariant group measure of the group element U 
w ’ 

Then the path integral of 

eAGF is defined by 

Z = FF/ dUw eAGF 
G 

Note AGF is invariant under local gauge transformations, which, for the lattice 

theory, is defined by 

U -vu VT 
w n nj.4 n+jI 

where Vn is also an element of the gauge group G. 

The simplicity of Migdal’s formula lies in that it is defined on a two- 

dimensional lattice. Going to higher dimension involves some approximations. 

So we first examine the 2-dimensional lattice gauge field. Consider an infinite 

2-dimensional lattice. Then the Feynman path integral of the action functional 

is defined by 

Z= n (;IIdUtie 
A~~ [VI 

i=l, 2 

AGF =+ c *r CNn12+wn29 
2go n 

= -$ c Tr (W,-l-WIT) 
2go n 

(1) 

(2) 
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where 

-c. wn E Wn12 = w;Tzl (3) 

= ‘nl ‘n+; 2 ‘k% 1 ‘i2 (4) , , 

For clarity we want to define the renormalization group transformation in 

terms of the {W,>, as they all are independent variables. (This is not true for 

d > 2. ) To do this, perform the gauge transformation 

uti = vn U$+~ (54 

dun1 = dU& = dWh ; dun2 = dV n (5b) 

Uk2 = 1 (5c) 

(We are using the axial gauge. ) 

We briefly discuss the change of variables Unl --Ukl -WA. For the axial 

gauge, we have W; = UAl U;ii 1. Now UAl and Uk+s 1 are both independent 
, , 

variables. Hence, when we vary Uil through the 

to be doing the same, all the time holding U;+; 1 
, 

ante of the group measure, we have dW; = dUAl. 

{Unl, Un2] to {Vn, Uhl) is similar. Note the axial 

U nl 

U n2 = ‘n’;I+; 

gauge group, we consider WA 

fixed. Then, from the invari- 

The change of variable from 

gauge means 

(5’) 

Since all the variables on the right-hand side are independent, we- have 

dunl = dULl and dun2 = dVnO The change of variable in going to a specifi’c 

gauge for a finite lattice is more complicated, and is discussed elsewhere. 194 
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Then 

t”r 
Z = [IJ Jdv,} 

I 
B/-dW; e1’2g’ Tr (W”wn 

l/&$ *r Wn+WLJ 
ZZ 

BJdwne (6) 

We see that the system is totally decoupled, and that the integration vari- 

ables are the {Wn] . Let 

Ao% - 2i2 c Tr (Wn+ WL) : completely local 

On 

Let the initial lattice spacing be ao. The renormalization group defines itera- 

tively a sequence of actions {AI]rZo which describe the behavior of the gauge 

field on lattice of spacings {$a,>. All information of distances less than 2Qa0 

have been integrated out and the action AQ can describe physics only for distances 

greater than Zeao. (The 2 in 2Qao is specific to Migdal’s transformation. ) 

We now define the renormalization group transformation. We will speci- 

fically focus on how to obtain Al from Ao, and then generalize to obtaining 

A Q+l from AQ. Consider the original lattice. We will combine blocks of four 

lattice sites to obtain one new lattice point, which is marked by a circle (see 

Fig, 1). There is a block-spin variable defined on the circled site, and the 

new action Al will be a function of these new block-spin variables. Since the 

new action Al is also completely local, we need consider only one set of four 

old lattice sites and how the transformation acts on them. Label the lattice 

sites as 1, 2, 3 and 4 (see Fig. 2). There is a variable Wn (which is a matrix 

belonging to the gauge group at lattice site n) for each lattice site n. The piece 
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of A0 belonging to the four lattice sites is 

A cell =% $Tr(Wi+WT)=zA(W.J 
2go i=l i 

63) 

The piece of Al belonging to the circled site is then defined by integrating 

eAcell over all the Wits with the constraint that the product of all the Wits, 

i.e., WlW2W3W4 be kept fixed and equal the new block-spin variable W. Note 

W is also an element of the gauge group. The (nonlinear) transformation which 

maps A0 into Al is called the renormalization group transformation. In syrn- 

. bols, we have 

eAblock[wl = ; I dWi 6[W-WlW2W3Wp]eAceU (9) 
i=l 

The d-function for the group elements is similar to the usual d-function, 

i.e., for V in the group space, we have 

f dU s[U-V] = 1 
J 

/ 

(10) 
dU f(U) 6[U-V] = f(V) 

That (9) defines a renormalization group transformation which leaves Z invari- 

ant can be easily seen from (9) and (lo), i. e. , 

/dW eAblock’wl r”7 Ldw. eAcell[W1 = 
J i=l J 1 

since 

= 1 . 

Let u = eiB%a, v = eiC%a ; {Cal is the coordinate of V in the parameter space, 

and{Xa) the generators of the gauge group. Let dU=p (B) g dB”; then an explicit 

representation of 6[U-V] is j&g F NBa-Ca), and S[U-V] has the important prop- 

erty that, for o in the group space, 

6 [qu-v)u+l = S[U-V] (11) 
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We will use only (10) and (11) for our discussion. We return to (9); since Acell 

is a trace function of the Wi’s, we have, for (T in the gauge group 

Ablock lIuWu+l = ~lock[W]: gauge invariant 112) 

(where we have used (11) in obtaining (12)). Hence Ablock is also a trace func- 

tion of the W, and in fact we can conclude by induction that the new action is 

always a trace function of the new block-spin variables, given that the original 

action is a trace function. Let the new (circled) lattice sites be labelled by m; 

then 

Al = c %lock [wm] m 
(13) 

and this completes the definition of the renormalization group transformation. 

We now study (9) in more detail. First note that any product of all the Wits 

gives the same Ablock[W] since Acell [W] is symmetric under any permutation 

of the four lattice sites. Performing the W4 integration gives 

eAblock(W) = 
I dWldW2dW3 e 

Do change of variables: W2W3 = V; dW2 = dV. Then 

e+,lock~) 
= 

Jdw dvdw eA(w1)+A(Vw;)+A(w3) Avtw;- 
1 3 e 

(14) 

Define convolution for functions f(U) and g(U) of the group elements U by 

(feg)fv) E /m f(u) g(utv) (15) 

Then, from (14) and using that A(u) is a trace function of (T gives 

(16) 
eAblock(W) = 

J dV (eA*eA) (V) . (eA*eA) (WV?) 

= (eA*eA*eA*eA) (W) (17) 
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In other words, e 53 lock is given by a four-fold convolution of e* (which refers 

to a single site on the original lattice). From (16) we see that this four-fold 

convolution can itself be performed in two steps; the first step consists of per- 

forming the two-fold convolution (which corresponds to combining two lattice 

sites), and then convolving this function with itself to obtain e *block . This 

interpretation breaks the four-fold convolution into two identical steps of 

performing two-fold convolutions, and is more appropriate for numerical cal- 

culations . 

The reason four lattice sites and not two lattice points were combined to 

define the new effective lattice was to preserve the symmetry of parity. Note 

in obtaining (17) no special assumptions were made about the initial action 

except that it be completely local and a trace function of the local variable. 

This property is true for each iteration, and hence (17) defines the general 

transformation. We note in passing that we could have defined the rather trivial 

renormalization group by integrating out variables at lattice sites 2, 3 and 4, 

and identifying W as W4. However, this W in no sense represents the combined 

“average value” of the fields at the four sites, and leads to trivial results. 

Also, this trivial transformation has no generalization to d>2. 

We now generalize Eq. (17) to arbitrary dimension d which is larger than 

2. To do so, we first discuss what the recursion formula means for d dimen- 

sion. The renormalization group transformation for d>2 is assumed to produce 

a sequence of effective actions A Q which are identical to the original action in 

all respects except that the action at any given site n can be an arbitrary function 

of the fundamental squares on the new lattice. More precisely, it is assumed 

that for each effective lattice with spacing $a,,, we have a set of gauge field 

variables which are defined on the effective lattice and can be pictured to 



-9- 

correspond uniquely to links connecting the effective lattice points. These 

variables range through the gauge group just like the original variables. The 

fundamental square is now defined to be the trace of the product of these 

matrices around a square (see Fig. 3). Then AQ is assumed to be of the form 

AQ = c C’*;v (18) 
n E effective PV 

lattice 

where A(‘) is an arbitrary function of the fundamental square Tr @) 
WV ( 1 

W . A 
WV 

lot of drastic approximations are involved in the ansatz of (18), and are dis- 

cussed in Refs. 2 and 3. 

We are now in a position to discuss Migdal’s model for Am when d>2. Note 

for d=2, the recursion equation combined the squares on four lattice sites to 

produce the effective square W, and Ablock was an arbitrary trace function of 

this variable. (Q) Let Ablock be the effective action for a given lattice point, after 

Q iterations, for 

all w-h v O-h), 

the 2-dimensional case. Then Migda.l’s model is defined, for 

bY 

A(Q) [ 1 ~(1) 2d-2 

e WV = e block : Migdal’s recursion formula (19) 

Note (19) guarantees translational invariance and symmetry under exchange of 

axes for AQ; the effective action An is also gauge invariant with respect to gauge 

transformations defined on the effective lattice, since under such gauge trans- 

formations we have W(Q) -V W(‘) Vt which leaves Tr 
*v n WV n 

invariant. 

In summary, we see that Migdal assumes, for any effective lattice of 

spacing zeao, that AQ is described purely by squares defined on this effective 

lattice. He then gives a prescription (which is nonlinear and nontrivial) of how 

to manufacture these squares for d>2 dimensions from a 2-dimensional lattice. 

This prescription defines a model for the renormalization group of the lattice 

gauge field. 
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2. Migdal’s Model as an Approximation for the Exact Theory 

We discuss the relation of Migdal’s recursion formula to the exact renor- 

malization group transformation for the d-dimensional lattice gauge theory. In 

particular, we will show how Migdal’s prescription for introducing dimension 

arises from a crude approximation of the exact theory. We essentially repeat 

the arguments given by Mjgdal. 2 

For simplicity, start with the original action; let U ncl be represented by the 

link; : . 
n+j? * A closed path (contour) is defined by the trace of product of 

Unclls taken around the contour. The renormalization group transformation 

defined in terms of the W-variables in (9) (for d=2) can also be defined directly 

in terms of link integrations. For d=2, this means combining four L-squares 

to form the new effective SL-square (L = length of a side of the square) by inte- 

grating out from the action all the links which are interior for the BL-square 

(see Fig. 4). This procedure gives the 2L-square as a four-fold convolution of 

the L-square, which is our previous result. 

To repeat this procedure for higher dimensions, we first consider the case 

of d=3. The lattice theory provides in the original action, for each lattice site, 

three L-squares with 2 links common between any two L-squares (see Fig. 5). 

In all, 9 links are needed to define these L-squares. To apply the above pro- 

cedure, we first modify the lattice gauge theory by making all the L-squares 

independent of each other, in effect by introducing three new links (see Fig. 6). 

The renormalization group transformation is now defined by combining 23=8 

L-cubes to form a al-cube. {A L-cube is the three orthogonal contours defined 

on a cube, as shown in Fig. 6. ) The way this is done is to integrate out all the 

links which are interior to the surface of the 2L-cube. The resulting action for 

the 2L-cube depends, in general, on all possible contours on the surface of the 
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2L-cube. Migdal makes the approximation that only the planar contours need 

be rained, and the rest can be simply ignored. Let us examine only the con- 

tours which lie in xy-plane (see Fig. 7). We see that there are two such con- 

tours, with their z-axis being *L/2. Note each planar contour is simply the 

result of the 2-dimensional transformation, and is what we called e % lock . 

However, we see that these xy-contours are also a function of the axis perpen- 

dicular to the plane xy, i. e. , the effective action for the xy-contours is 

*g = e%lock(+ L’2) %lock(- L’2) e e 

To recover the original form of the action, we can at most have a single contour 

in the xy-plane, and so Migdal simply ignores the splitting of the contours in the 

perpendicular direction, and obtains 

Hence this procedure reproduces the ansatz of (18), and the transformation 

can be iterated. 

For the case of arbitrary d-dimensions, we simply need to evaluate the 

number of planar contours we get when we combine 2d L-cubes to form a 2L- 

cube. This is because we ignore all other contours, plus because we ignore 

the separation of these, planar contours in the directions perpendicular to the 

plane. Consider the origin of the coordinate to the unique point which is 

common to all the 2d L-cubes. Consider the plane defined by the pv axes. The 

transverse coordinates of the pv-contours (planar) are specified by a (d-2) 

dimensional vector, which is of the form x1= (k, f, . . . , 
6 

&)a % . Hence, the 
) 

d-r2 

number of planar-contours is 2 d-2 (since this is the number of xis). Ignoring 
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the separation of these contours gives for the new effective action, for any site 

We see this is simply Eq. (19) with Q=l; since the ansatz is repeated for each 

iteration, this equation is valid for arbitrary number of iterations. 

To recapitulate, the approximations of the exact theory made by Migdal 

are, for each iteration, 

(a) Modification of the lattice gauge field action 

(b) Ignoring all but the planar contours when evaluating the 

effective action 

(c) Ignoring the splitting of the original planar contour into 

2d-2 planar contours. 

Migdal claims that these approximations are reasonable when L is less than 

the typical Compton wavelength of bound states, and that these approximations 

lead to a description of the critical behavior of the field (for d=4) which is good 

to -30%. 

3. Weak and Strong Coupling Approximations 

We study Migdal’s recursion formula for special values of the input coupling 

constant. We first study the strong coupling limit, as this is simpler than the 

weak coupling limit since, for d=4, the lowest order result suffices. 

Let GI=g$Z; the strong coupling approximation means studying (19) for 
,^ 

G1>> 1. Let 

Al= $j- c Tr o;Vn+Wi) 
1 n 

(20) 
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We are going to generate the sequence of actions {AQ}&. That is, the initial 

actio*is A 1. Let 

V(1,W) = e 
(1/4G1) Tr(W+W?) 

(21) 

At2) 

V(2,W) = e nclv (22) 

Then, from (19) 

V(2,W) = [(v(l, .)*Vtl, l )*V(l, .)*VtL m912 
d-2 

(23) 

We evaluate V(2,W) in two steps; let 

VVP, 7) = (vu, - )*V(l, l l)(T) 

Then 

= J doV(1, o) V(l, 0’7) (24) 

VP, Y = mw, l )*VW, mm} 

2d-2 
(25) _ 

We now evaluate VV(1, 7). Let the gauge group be SU(2) ; then Tr(U) = Tr (UT) 

giving 

(26) 

Letting Gl >> 1 gives 

VV(l,T) = J dWe 
1/2G1 Tr(W) + 1/2Gl Tr(W?T) 

const. / dW Tr2(W) = ‘- (27) 



(28) 

where d Q =dimension of the Qth representation. In our case, we are using the 

fundamental representation and hence dQ=2, giving 

J dW Tr (W) Tr (wtT) = i Tr(T) 

Therefore 

vv(l, 7) 5% (Const.) e 
twq 2a iTr(cr) 

(2% 

and, repeating the convolution with VV(l, 7) as the input function gives 

[ $&$-~~TQW~ 
V(2, W) = (const.) e 

l/33, Q(W) 

Hence 

= (const.) e 

G2 = 

The obvious generalization of (31) is 

G I-!-l 
zz 28-d G 

I (32) 

& 
(30) 

28-d G 4 
1 

strong coupling approximation 

(31) 

We see that the sequence of actions, labeled by the coupling constant GI and 

having the functional form V(I, W) = exp {Tr(W)/2GI} goes to the strong 6oupling 

fixed point for which G* = ~0, i. e. , V(m ,W) = V* (W) = 1 (provided we started with 

a GI >> 1). We also see that this fixed point is stable for all dL8, and hence we 

need not go to higher order to determine the stability/instability of the fixed 

point for d=4 (which is what we are interested in). 
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We now study the weak coupling sector. In this case, we have to do a 

seco@ order calculation for the coupling constant renormalization, since to 

lowest order in d=4 dimensions, we shall find GI+l=GI and hence cannot deter- 
I- 

mine the stability/instability of the weak coupling fixed point. 
1 
The weak coup- 

ling fixed point is given by V*(W) = 6 [W-l] which is equivalent to 

To do the second order calculation, we start with lim 
G1+O 

the action 

V(1, W) = exp 

and compute 

&- HI Tr(W-1) +m Tr2(W-1) 
I I I 

V(I+l,W) = exp 1 HI+1 - Tr(W-1) + - 
2GIi-1 2GI*l 

Tr2(W-1) 
I 

(33) 

(34) 

The weak coupling approximation is valid for GI, GI+I CC I, which in turn 

implies Tr(W-1) N O(GI) , We take HI = 0 (1). For notational simplicity, let 

G=GI andH=HI. From (24) 

VV(1, T) = /- dU V(1, U) V(I, Ul-T) 

E &J eE(U,T) 
I (35) 

where 

EtU,T) = 243 -!- Tr(U-1) + 2 Tr2(U-1) 

+ & Tr(UT?-1) + & Tr2(UTt-1) 

Make the change of variables 

U --) UT 42 = us 

dU = d-UP 

.‘. W&T) = JdUf eEtuqsT) 

(36) 

(37) 

(33) 
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and, dropping the prime on U gives 

E(U,T) = & Tr(UT l/2 + ury1/2 _ 2) 

+ gG m - 1) + Tr2(UT -u2 - 1) 1 (3% 

Let 

u = eiXi.Z T = eiGz 

= cos u+ i;. C sinu (5 Pauli matrices) 

Then 

and 

T1/2 + Td2 = 2 ’20s (T/2) 

Tr(UT *l/2 ) = 2{ COS U COS (T/2) T 6. q sin u sh(T/2)) 

(40) 

(41) 

We work in spherical coordinates for c Let us choose the z coordinate 

axes for z and 7 such that G points in the 3-direction, and let.x=c. p. Then, 

the measure on SU(2) is given by 

/ 
dU=L 

/ 

7r 

27r2 0 
sin2u duL1 dx &” d$ ($ = azimuthal angle) 

1 * ZZ- J sin2u du 
7r 0 J 

.+1 
dx 

-1 
(42) 

since E(U, 7) is not a function of 4. Let (TE T/2; then.from (39)-(41) we have 

E(U, 7) = y$ (COSU cosu-1) 

+&a4 (cosu coscT+ x sinu sino 
C 

- 1)2 .- 

+ (cosu cosu - x sinu sino -1)2 1 
= ~(COS~ cosu-1) + F 

[I 
(cos u cos ~7 - Q2 + x2 sin2 u sin2 g 1 

(43) 
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Note that Tr(W-1) = O(G) implies u, g = 0( fi); hence the second term in (43) is 

O(G)and its exponential can be expanded in a power series, giving 

VV(I, T) = /dU eE(“‘) 

du sin2 u e2(cos CT cos u - 1)/G 

cosu cosv- q2 + x 2 gsin2u sin2a + O(G2) 1 
_ (const.) ’ 

J 
du sin2 u e2 cos u cos u/G 

7T 
(cos u cos (7 - 1)2 

0 

+$$ sm2u sin20 + O(G2) 1 (44) 

Let 

vv(I, 7) = eXp{C(T)} 

2H’ 
zexp COST-l) + -&CosT-1)2 

Then, as shown in Appendix A (Eq. (A. 13)) 

1 -=- 
G’ 

iG -; -; H + O(G) 

Rewriting the above equations gives 

G’=2G [I+(;.,, G +O(G3) )I 
+ 06) 

: Recursion equation 

(45) 

(46) 

(47) 

(48) 
,- 

we perform the COnVohtion once more Using w(I, 7) as the inpUt function; let 

VW, W) = (VvtL - ))* cW(I, - ))tW 

sexp cos W-1) + g (cos w-l)2 I (49) 
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Then using (48) gives 

G” = 2G'[1+(;+5H') “3 

=4~ [1+(+++]+ o(G~) (50) 

(51) 

From Migdal’s prescription for introducing dimension into the recursion 

formula, we have 

V(I+l,W) = [VA(I,W)]2 
d-2 

(52) 

E exp I ---% G cos W-l) + 2HI+1 - (cos W-l) 2 G 
I 

(53) 
I+1 1+1 

Hence, from (49)-(53)) we have 

G 1+1= 2 
2-d Gl? 

(54) 
2HI+l/GI+l = 2d-2(2H”/Gf7) 

and using (50)) (5 1) gives 

+ 13 
( 

15 
T+T+Il+ +l? 

(55) 

HI+l = 16 ’ H 
( > I-; +WI) 

(using the fact that G=GI, H=HI). We study (55) for d=4; for d<4, the coupling 

constant G I is increasing to lowest order, and the second order result is.-inec- 

essary. For d=4, we have 

G 1+1= GI + ( 9 + %HI) G12 + O(G13) 

HI+1 = $(HI - t) + WI) 

(56) 

(57) 

[Note that our result does not agree with Migdalvsl’ result.] 
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We first examine what effect the HI term has on GI+I. From (57) we have 

-h 

HI+1 = -$&+a- 1 
12 + W1) (58) 

Since HI= O(l), we see that HI very rapidly goes to the fixed point H* = - -& . 

Let HI N H*; then from (56)) we have 

GI+l = GI + GI” > GI (59) 

Hence, we see that the instability of the weak coupling fixed point G*=O is not 

affected by the HI term present in (56). From (56), we see that G*=O is the only 

fixed point (using the fact that GI > 0, which implies GI > 0); the fixed point is 

independent of HI, given that HI=O(l). The fixed point function for G*=O is 

V*(W) = S[W-11. We conclude that, starting from the input initial action 

AI(W) = (cos W-l)/GI, GI << 1, we have GI+I > GI; that is, the G*=O fixed point is 

once unstable, and one leaves the fixed point with each iteration. We note in 

passing that the instability of the G*=O fixed point crucially hinges on the non- 

Abelian nature of the gauge group. This is clearly seen in this model by noting 

that the piece $GI” in (56) arises from the invariant measure of the gauge group. 

If this term had been absent in (56), the G*=O fixed point would no longer be 

unstable; in fact, if one does the second order calculation for the Abelian case, 

one finds that GI is still marginal, and no conclusions of the stability/instability 

of the G*=O fixed point can be drawn. 

Examining (56) or (59), we could naively expect that the sequence of coupling 

constants converge to the strong coupling fixed point (for which G*= 03). Our 

computer program shows that in fact this is exactly what happens; and that, for 

dL4, there are no other fixed points for Migdal’s recursion equation except for 

the unstable weak coupling fixed point and the stable strong coupling fixed point. 
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The region for GI which lies in between the weak coupling region and the strong 

coupli.g region we call the intermediate coupling region. We will use this 

terminology in the next section, 

We briefly discuss the recursion equation for d= 4 + E > 4 (E N 0). From (55)) 

using HI=H*=--z&, we have 

GI+l = 2 4-d GI (l+ GI) 

= 2-‘GI (l+GI) 

The fixed point equation is 

G* = 2-eG*(l+G*) 

giving the following fixed points 

0, 2e-1, CQ 

The fixed point GE = 2E - 1 is twice unstable. For GI < GE, GI ~0 as I -.M and 

for GI > GE, GI --tw as I-R Both the fixed points G*=O or ~0 are now stable, 

and the system undergoes a phase transition at G=Gz. Hence, the asymptotically 

free domain of G- 0 is now separated by a phase transition from the strongly 

coupled domain of G-w, and for d=4+e, we cannot continuously go from the 

asymptotically free theory to the strongly coupled theory; that is, for d>4, the 

gauge-field cannot simultaneously exhibit free-like behavior at short distances, 

and strong coupling behavior at large distance. However, as E -0, the Gg= 2e-1 

fixed point coalesces with G*=O fixed point making it once unstable (since GI> 0), 

and leaving us with a gauge-field which has no phase transition separating the 

weak from the strong coupling sector. 
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4. Numerical Solution of Migdal’s Model 

Recall from (24) and (25) we have 

W&T) = Ida V(I,Tr(~))V(I,Tr(atT)) (24) 

= 
/ doV(I, Trtu)) V(T, TrtW (24') 

and from (25) 

VCrt-1,~) = { /dWW(r, TrCOV)) Wt& TrOiVTH} 
2d-2 

(25 ‘) 

where, in obtaining (24’) and (25’), we have used (a) that V(I, 7) and VV(l, 7) are 

trace functions of 7 and (b) for SU(2), Tr(o’) =Tr(cr) and d(ot) = d&r-l) = do. Note 

also, since the invariant measure is always 20, V(I+l, T)LO if V(I, T)LO. This 

POSitiVi~ Of v&T) enSUreS that the effective action is always real, given that 

V(l, T)LO. This property is good for convergence of numerical calculations. 

We now study the equations (24’) and (25’) numerically. Since (25’) is essentially 

the same as (24’) except for the additional step of introducing dimension, we 

focus on (24’). For notational convenience, we consider V(I, 7) to be a function 

Of; Tr(?-). From (42) and with a simple resealing, we have 

1 Tr 
/ sin2 c du J 

+1 
ZZ- dx 

7r 0 
(60) 

-1 

(since the integrand is always independent of @) . Note x= cos 0 ; choosing the 

spherical coordinate system for g such that T is in the 3-direction, we have 

-$ Tr(o) = cos o 

(61) 

+-r(UT) = COSU COST -X Sinu Sin7 
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:. w&T) =;I’ 
4-l 

sin2 u dg V(1, cos a) / dx v(I, Cost Cos T-X Sin0 SinT) 
0 -1 

We make a change of variable; let 

Cost = COST COS 7 - X Sinu Sin7 
(63) 

. . . -Sin [ d< = -(Sin0 Sin 7) dx 

We now determine the upper and lower limits of integration for variable <. 

x=+1: cost = cos ((T+T) 

:. (=a+T?.-nOd2n 

zmin {(T + 7, 27r - n-T) (64) 

x= -1: cos c; = cos (g+T) 

Note 6 e [O, 7iJ, since o, 7 E [0, n] 

= (l/q u-t7 mod 27r 
:. vv(I, 7) = sinT J sino do V(I, cos (r) J sin 5 d[ V(I, cos [) 

0 Ig-TI 
(65) 

Let 
u+T mod 2n 

wtIim, 7) =Jc Tl d[ sin5 V(I, cost) (66) 

Then 

vv(I,T) =g/” do Sin0 V(& cos Cr) W(I;O, 7) 
0 

(67) 

The two integrations to be performed numerically are (66) and (67). The 

change of variable made in (63) is important for the numerical calculation. As 

things stand in (62)) for the x integration we need the function V(I, o) at points 

which are not the same as the points necessary to perform the o-integration 

(given that we are performing the integration on a grid of points). Also, what 
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Eq. (62) gives us is the function VV(I,T) at grid points which are to be used for 

performing the c-integration. Hence, if we are to use values of the function 

V(1, o) or VV(I, a) at grid points which are computed by our recursion formula, 

then Eq. (62) cannot be used. And if we use some interpolated value of V(1, T) 

to perform the x-integration, the errors introduced are uncomfortably large. 

The way out is to perform the change of variable from x to [; the resulting 

Eq. (65) uses the value of V(I, T) only at the grid points which are fixed and 

which are the same as the ones used for performing the g-integration. Hence, 

no interpolation for values of V(I, T) are necessary. Also, in computing W(I;a, T), 

the limits on the integral always fall on the fixed grid points, and no interpola- 

tion for the value of V(I, 7) is made. To summarize, the change of variable 

from x to [ allows us to perform, for each iteration, both integrations (66) and 

(67) on the same fixed grid points for which the recursion formula gives values 

of the computed function. 

We now discuss the computer program; the equations (24), (25) are ideally 

suitable for a numerical solution. Each step in the recursion is identical as 

far as the structure of the integrals go. What changes with each step is that 

the input function changes from V&U) to V(I+l,o). Since the function V(I+l,o) 

is itself computed from V(I, a), this computed function is simply taken as the 

input in calculating V (I+2, “) , etc. To start the recursion, we need the initial 

function V(l, 0). But V(l, c) is simply the bare action exponentiated, i. e. , 

V(l,o) = exp 
1 
-&- Tr(o-1) . Hence, the single parameter that can be varied is 

1 I 
the input coupling constant G1. The only other variable in the recursion equa- 

tion is the dimension d. 

For the purpose of performing the integrations numerically, we have to 

discretize the variables (r and [. The range of integration, for the first step 
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in the recursion, is divided into a total of N number of lattice points. The 

total-number of lattice points may vary with each step in the recursion; the 
th total number of lattice sites for the I step in the recursion is denoted by N(I). 

The number N is input, whereas N(I) is fixed by the computer program. The 

only other input for the computer program is the maximum number of iterations 

to be performed, denoted by M. 

In summary, we see that for the computer program, we have four variables, 

namely G1, d, N and M. 

Consider the case of G1w10w3; then V(l,o)=exp & 
1 

lTr(g-l)}N exp{T}. 

In other words, V(l, a) rapidly goes to zero when o >>zr With this in mind, 

we choose, for each iteration I, the total space of integration S(1). Choose 

S(I=l) such that V(l,a) 2 GF on all points inside this space. The choice of 

V(l, N)- G12 is necessary to do the second order calculation of GI for d=4; for 

d<4, G12 can be replaced by say . 001 without any large errors. For reasons 

to be explained later, S(I) must be of the form 7r/2n (n= integer); for G1 small, 

S(l)- 3 ml. The computer program is slightly more complicated and S(I) may 

not be of the form 7r/zn for the first few steps. Given S(I) and N, the lattice 

spacing for the integration points are then determined. Qualitatively, S(I) < 7r/2 

for the weak coupling region, n/2 < S(1) < 7r for the intermediate coupling region. 

As discussed above, the initial lattice spacing is fixed such that V(l, N)- . 001. 

We choose to normalize the computed functions such that V(I, 1) =VV(I, 1) = 1. As 

the iteration is performed to compute V(2, u), V(3, o), etc., the interval of (r on 

which these functions are >V(l, N) also increases (since for d<p the coupling 

constants GI are increasing). We hence extend the use of Eq. (67) to compute 

the function VV(1, T) for values of T until the point when VV(I, N(I))5 V(l, N); this 

defines N(I) (LN). This procedure of increasing the total number of lattice points 
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is continued until N(1) > 2N; when this happens, all the odd lattice points are 

dropped from the calculation, and the lattice spacing is consequently doubled. 

Also, the doubling of the total number of lattice points m times implies 

S(I) = 7r/2n-m. The procedure of increasing the total number of lattice points is 

continued until S(I) = r; when S(1) = 7r, the number of lattice points is permanently 

fixed, and the S(1) no longer is allowed to increase. 

This method of doubling the lattice spacing is crucial in allowing one to go 

from the weak to the strong coupling domain. The reason being that if the lattice 

spacing was kept fixed at its initial value, we would eventually need about 2 10 

lattice points to cover the interval [0, n] if we were starting from the weak 

coupling sector. This would make the calculation extremely expensive and from 

the economics point of view inaccessible. 

The total number of lattice points N(I) was always arranged to be even so 

that Simpson’s rule could be used for integration purposes. Two different 

schemes were used for integration. The function W(I;o, 7) was computed using 

Simpson’s rule. Let f([)=sin[ V(I, cost); then from (66) 

w&g, 7) = I 
(a+~) mod 2n 

f(t) d5 = w&T, (7) (68) 
IO-71 

Since W(I;a, 7) is symmetric under C +-+ 7, we need only consider the case of 

CT >T. Then 

I 
(u+T) mod 27~ 

w(I;c, 7) = fC9d5 3 
g-7 

which shows that the interval for [-integration is 

(a) 27 for u’+T < 7r 1 
(b) 2(7r4) for u-t-7 > T I 

(69) 
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In other words, we always have an even number of intervals over which we need 

to peJform the [-integration. This makes the [-integration ideal for using 
3 

Simpson’s rule. Consider the simple example of evaluating 
/ f(t) d< . Simpson’s 
1 

rule states that 

/ 

3 
f(t) d[ = (const.) 

1 
(76) 

A straightforward extension can be made for arbitrary number of even intervals. 

/ 

7r 
The trapezoidal rule was used for evaluating dasina V(I, COSU) W(I;o, T). 

0 
The reason being that the trapezoidal rule is more accurate for evaluating the 

integral of a periodic function over its period, than is using Simpson’s rule to 

do the same. The integral being considered can easily be recast into an integral 

over [-n, n]. However, the gains of using the trapezoidal rule are minor, and 

we mostly preferred it due to its simplicity. 

The reason for using Simpson’s rule for W(1; U, 7) was that if one used the 

trapezoidal rule instead, then in going from the weak to the strong coupling 

domain, large systematic errors were introduced. The new scheme resolved 

this problem. 

The definition of the coupling constant for the entire trajectory was made 

by assuming that the functional form of the effective action was 

VE(I, cos a) = exp 2HI + (cos o-1) + - 
GI 

(cos a-1)2 (71) 

The coupling constant GI was then determined by using the above ansatz and 

could be evaluated by comparing the numerical value of the computed function 

V(I, cos a) at three lattice points. The ansatz is exact for the weak and strong 

coupling limits, and is a natural interpolation for the intermediate region (where 

neither the weak nor strong coupling approximations are valid). For the 
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intermediate region, we evaluated GI for a number of adjacent points, and 

found that the variation was -10%. A We took the coupling constant GI to be the 

one evaluated using V(I,2), V(I, 3) and V(I,4). 

The numerical accuracy of the computer program was checked with the 

weak and strong coupling analytic results. The program was accurate, for 

each iteration, to 1% when calculations were performed with -15 lattice points. 

The computer program produces the sequence of functions V(I, a) from 

which GI can be computed. Table I is a typical result. In Fig. 8 these results 

are plotted graphically. 

Numerical Results 

(I) For dL4, there are only two fixed points for the recursion equations, 

i.e., G*=O and G*=w ; there are no other fixed points. The G*=O fixed point is 

unstable for d<4 and the G*=m fixed point is stable for d&3. 

(II) The sequence of coupling constants for different initial values of G1 lie 

on the same trajectory; changing the value of G1 simply shifts the sequence of 

coupling constants along the trajectory on which the other sequences lie. The 

renormalization group trajectory for the sequence of coupling constants (GI}yZo 

has three distinct regions, namely the weak coupling regime, the strong coupling 

regime and the intermediate region (where neither the weak or strong coupling 

approximations are valid). These three are smoothly connected and can be 

identified only qualitatively. By convention, we identify the intermediate region 

to be such that the deviation from the weak and strong approximations is 210%. 

We then numerically found that, for d=4 (the numbers depend on d) 

(a) Weak coupling regime is for 0 ( GI < 0.3 

(b) Intermediate regime is for 0.3 5 GI < 1.5 

(c) Strong coupling regime is for 1.5 5 GI ( a,. 
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(III) The sequence of effective actions are monotonically increasing func- 

tionsJrecal1 we normalized the effective actions such that V(I, 1)~ 1); that is 

V(l-tl, Qy, a) * Since V(I==J, Q) =V*(at) = 1, we see that the sequence of effec- 

tive actions converge uniformly to the stable fixed point action. In fact, we 

found that to -15% accuracy 

V(1, o) = exp 
I I 

+( cos o-1) 

for all I. 

(IV) The fixed point reached by the numerical calculation depends on the 

total range of integration used for the intermediate and strong coupling regimes. 

The exact theory gives 0~~5 7r. In the numerical calculation, if the range 

0 < Q < a (a > r or a < r) was used, then a fixed point was reached which was - - 

different from V*(o) = 1. This is the reason why S(1) had to have the form 7~/2~; 

because after doubling the lattice spacing n times, we end up with S(I)=r. And 

calculations on this S(I) lead to the correct fixed point. The range 0 <CJ < 7r -- 

means that each group element is covered once and only once in the integration; 

and we see that the strong coupling fixed point is very sensitive to the entire 

structure of the non-Abelian gauge group. This fact is also apparent in the 

exact lattice gauge theory, where the strong coupling expansion involves the 

entire gauge group. 

5. Conclusions 

Migdal’s recursion formula is, in essence, a scheme for coupling constant 

renormalization. The physical interpretation of GI is that it is strength of the 

gauge field felt by particles which couple to it, say quarks, when these quarks 

are separated by a distance of 2’ao (a0 = original spacetime lattice spacing). 

For the sake of discussion, let G1 = 10m3 for a0 CI lo-l6 cm. (Asymptotic 
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freedom tells us that G1-0 as a0 -0. ) Then the recursion equation shows that 

.as we-separate the quarks to larger distances, the strength of gauge field in- 

creases continuously. The fact that the model has an unstable weak coupling 

fixed point and a stable strong coupling fixed point (for d=4) implies that the 

quarks behave almost like free particles at short distances, and become strongly 

coupled at large distances. The absence of any other fixed points shows that the 

weak and strong coupling behavior of the gauge field is not separated by any 

phase transition, and the quarks go continuously from their short distance weak 

coupling behavior to their strongly coupled behavior (which gives rise to the 

bound states of the quarks). Also, since the coupling constant becomes arbi- 

trarily large for an arbitrarily large distance, we see that the quark-antiquark 

separate to a definite distance, after which the quark/gauge field system pro- 

duces pions since this becomes energetically more favorable than any further 

separation of the quark-antiquark in question. This explains why we cannot 

separate quarks in a bound state to arbitrary, macroscopic distances. 

Of course, in the above discussion, we have assumed that the qualitative 

behavior of the pure gauge field is not destroyed when the quark field is coupled 

to it. Given this .assumption, we see that Migdal’s model provides a theoretical 

example of our physical ideas of quark confinement, and gives a simple example 

of an asymptotically free field going over to a strongly coupled system. As is 

well known, this rather remarkable behavior is peculiar to non-Abelian gauge 

fields and is shown by no other known quantum field. 
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APPENDIX A 

H-e we compute 

VV(I, 7) = IT sin2u du e’(COSu COSU-1)/G 
0 

x 1+$ 
c 

2 4H 
COSU ~0~0-1) +s sin2u sin2a+0(G2) 1 (A. 1) 

This computation will give the result stated in (46). (Recall U= T/2. ) Let 

a = cosa/G 

: 0(1/G) (A. 2) 

Since u, u= 0( <G) we have 

ti) 2(cos Q cos u-1)/G = B(cos a-1)/G - au2 + (const. )G f O(G2) 

sin2u = u2 + (const.)G + O(G3) 

(ii) = u2 [l + O(G2)] 
_ 

(iii) (cosu coso-l)2 = (COS~_u2 - (cow-l)u2 + O(G3) 

(iv) sin2 u sin’u = (sin2 a)u2 + O(G3) 

Let 

P = 1+ qj (cos,_1)2 

(coso-1) 

(A. 3) 

(A. 4) 

(-4.5) 
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Then, using (A. 1)-(A. 5) gives 

7r 
vv(I f T) = e2(cos~-wG 

J o duu 2 e -au2 [P + Qu2] (A- 6) 

c! e2(cos o-l)G ; -+m 

J du u2 ewaU 2 [P+Qu2] 
4=0 

= (const. ) 
e2(cos u-1)/G 

cos3’2 CT 
cos a-1)2 

+ 6H 1 5 sin2 U - (cow-l)} + O(G2)] (A. 7) 

But 

w(i, ‘d = exP (c(T)} 

Therefore, up to a constant 

C(T) = 2(cos a-1)/G - i ln(cos (7) + cos u- 1)2 

+6H 3sin2@ 
1 

1 
- (cosa-1) + O(G2j 

I 64.8) 

Recall 

u=~/2=0(&) . 

. 2 . . sin g= -1 2 (cos T-1) 

cosu = + ; (cos T-l) 

h COSU = 2 (COS T-1) -I- o(G2) 

(A. 9) 

(A. 10) 

(A. 11) 
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Therefore 

- ~(7) =[&-$-ZH] (cosT-l)+-&[H-~](cos~-l)2 (A. 12) 

But 

c(T) = cos T-1) + F (COS T-1)2 

Therefore we have 

1135 -=-,- 
G’ 2G ~3-5~ 

(A. 13) 
2H’/G’ = (H - +)/4G 
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TABLE1 

Coupling Constant Renormalization in Migdal's Model 

G1= ,015, H1= H* = -l/12, d=2 

N -16 wk 
GI+l= GI 

wk wk l+GI 

I = No. Iterations GI Gyk/GI 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 
11 

12 

13 

14 

15 

16 

17 

18 

19 

20 
21 

22 

23 

24 

25 

.01500 

.0152 

.0154 

.0157 

.0159 

.0162 

. 0165 

. 0167 

.0170 

.0173 

.0176 

.0179 

.0183 

.0185 

.0189 

.0193 

.0197 

.0201 

.0205 

.0209 

.0214 

.0218 

.0223 

.0228 

.0234 

1.0000 

1.0091 

1.0098 

1.0098 

1.0097 

1.0097 
1.0099 

1.0106 

1.0106 

1.0105 

1.0105 

1.0108 

1.0116 

1.0116 

1.0116 

1.0115 
1.0114 

1.0120 
1.0119 

1.0117. _- 
1.0115 

1.0126 

1.0133 

1.0131 

1.0128 
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I GI 

26 

27 

28 

29 

30 

31 

32 

33 

34 
35 

36 

37 

38 
39 

40 
41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

51 

52 

53 

54 

55 

56 

57 

. 0239 

. 0245 

.0252 

.0258 

.0264 

.0271 

.0278 

.0288 

.0295 

.0304 

.0323 

. 0335 

. 0347 

. 0359 

.0373 

.0387 

.0404 

.0421 

.0439 

.0459 

. 0482 

.0506 

.0533 

. 0564 

.0598 

.0637 

.0680 

.0731 

.0791 

.0860 

.0943 

. 1044 

1.0125 

1.0068 

1.0108 

1.0131 

1.0152 

1.0172 

1.0095 

1.0128 

1.0144 

1.0169 

1.0142 

1.0158 
1.0151 

1.0146 

1.0139 

1.0180 
1.0192 

1.0185 

1.0173 

1.0159 

1.0143 

1.0124 

1.0265 

1.0265 

1.0241 

1.0210 
1.0174 - 

1.0326 

1.0305 

1.0248 

1.0171 

1.0070 
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58 . 1176 

59 . 1337 

60 . 1550 
61 .1882 
62 .2342 

63 . 3113 
64 .5362 

65 1.0432 
66 11.4017 

67 251 218.1458 

0.9908 

0.9731 

1.0403 

1.0181 

0.9740 

0.8978 
0.7391 

0.4734 

0.0624 
-- 

(All the numbers above have been rounded off) 

In the graph of GI vs. I, we’ve plotted the 

figures of the table starting from I=39 (see 

Fig. 9). 
Table I was calculated by making the pro- 

gram run six steps at a time. The second last 

coupling constant was then used as input for the 

next six steps. 



- 37 - 

FIGURE CAPTIONS 

1. qock-spin construction for Migdal’s model. Four old lattice points are 

combined to form a new lattice point; circled sites form the new effective 

lattice. 

2. Block-spin construction for a single new block-spin variable at the new 

lattice site (which is circled). 

3. The effective fundamental square for the gauge field after Q iterations; 

the square has side 2Qa0, where a0 is the original lattice spacings. 

4. Link picture for forming a 2L-square from four L-squares. 

5. Configuration of squares for the exact lattice gauge theory. 

6. Approximation of the exact theory made by Migdal. 

. 

7. The planar contours formed by combining 2” L-cubes to form a 2L-cube. 

8. Graph of coupling constant renormalization trajectory, with GI vs. I, 

where I = number of iterations, and GI is the effective coupling constant 

for the gauge field. 
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