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Abstract 

We propose an analytic parametrization of all data for the pion form factor, 

which can explicitly accommodate, consistent with inelastic unitarity, both 

higher vector-meson states and a smooth inelastic continuum, in a rather eco- 

nomical way, This parametrization automatically gives the asymptotic behavior 

expected for a quark-antiquark bound state and is free of complex zeros. 

We find the best fit to the data to contain no ~‘(1250) signal and a possible, 

broad, p”(1600), but with rather small coupling to the photon and to the I= J=l 

T-T system. 

(Submitted to Phys. Rev. D) 

*Work supported by the Energy Research and Development Administration. 

**On leave of absence from Istituto di Fisica, Universita di Lecce, Lecce, 

Italy. 



-l- 

I. Introduction 

The last five years have seen a substantial improvement in our knowledge 

of the pion form factor F,(Q2), and now a very large range of momenta, 

10 GeI? 2 Q2 ,? -4GeV2, has become accessible to experimental investiga- 

tion. l-10 Such a dramatic increase in experimental information both at time - 

likelm8 and spacelike 9,lO momenta has not been matched by an equal progress 

in our theoretical understanding of its detailed features. In the absence of a theory, 

the step next to the collection of experime.ntal information is to attempt its clas- 

sification via some phenomenological parametrization; this has of course already 
11-17 been attempted by several authors, but in most cases either on smaller 

portions of the measured range 11-15 or in a language difficult to translate into 

the more familiar concepts of resonant contributions and underlying back- 

grounds. 16,17 

A few recent analyses 18,19 use almost the same experimental information 

we use here, but we differ from them in two poi.nts which we think must be 

stressed. First, th,ls analysis weighs separately the “elastic”, p-meson peak 

region and the regions of time and space-like Q2 where the effects of higher 

inelastic channels should be mostly felt, in an attempt to separate the two effects. 

Second, we can rely on new, more accurate information in the time-like region, 

which allow us to put more severe limitations oa the couplings for possible, higher 

broad vector mesons. 

We can summarize our theoretical requirements by saying that Fr(Q2) has 

to be a real-analytic function in the Q2-plane cut from 4,u2 to infinity, obeying 

the unitarity relations 

ImF,(Q2) = A* (Q2) FTtQ2) + dQ2) 

= A tQ2) F; (Q2) + 8 (Q2) (1) 
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on the cut, where A (Q2) is the J = I = 1 T - T partial amplitude and the inelas- 

ticity function o(Q2), defined as 

g(Q2) =C n + rr A;Tdn (Q2) Fn (Q2) P, (Q2) (2) 

(here pn(Q2) is the phase -space factor for the n-th t,ntermediate state in the 

sum), vanishes below Q2 = sin, the first inelastic threshold. 

Furthermore, general beliefs in the nature of hadronic constituents and of 

their interactions lead to expect an asymptotic behavior 2o (up to powers of 

Qn Q2, QnQn Q2, etc. ) 0 
-1 

Fn (Q2) - (Q2/M2) , (3) 

with some “typically hadroaic” mass scale M = B (1 GeV). 

Such a behavior will indeed be built in our parametrization; the result we 

obtain shows, in our opinion, that more “exotic” behaviors are for the moment 

unnecessary. 

Despite the wealth of experimental data, our understanding of the detailed 

electromagnetic structure of the pion has not gone far beyond the initial attempts 

to solve, more21’ 22 or less23 successfully, the two-pion approximation to the 

unitarity equations, when (T = 0. But if we wish to account for the features of 

F,(Q2) at least in the range of Q2 already accessible to experiment, we have to 

try for a solution of Eq. (l), consistent, in the same range, with the available 

information on TT scattering 24-26 and inelastic annihilation channels 0 7,8,27-30 

It must be noted, however, that such information is not enough to construct the 
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inelasticity o(Q2) from its definition (2), but o.nly to give the upper bound 31 

c( e+e- 
l/2 

= 7r ) lol 5 
-.hadrons)I=i - a(e+e-+ + - 

(r( e+e- - P+P-, I 
(l- q;f2, 

(4) 

where nil is the elasticity of the I = J = 1 partial amplitude A (Q2)0 

Since our interest is purely phenomenological, we shall limit ourselves to 

building a model for Fn (Q2) which could satisfy automatically relations (1) and 

(3) and displaying explicitly possible higher vector meson states. This will 

then give a test on the presence of such states consistent with general principles, 

unlike some which can be found even in the most recent literature, which violate 

even the most elementary requirements of analyticity and unitarity. 32 

As it is well known, very little problems exist for the solution of (l)-(2) if 

S. in is well above any strongly coupled resonance. The hypothesis that s. > rn: ln 

is so common in phenomenological analyses of the 7~ I=1 channel that we mention 

it here only because it plays an essential role for our parametrization; we shall 

also show in the next section how one must deal with inelasticity in an optimal 

way D 

27,29,33 Of course, due to the high inelasticity of the proposed states, only 

a detailed study of Eq. (1) can ensure that their production phase relative to the 

p-meson is consistent with unitarity and analyticity, and this is what the next 

section will be dealing with. 
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2, Inelastic Unitarity and its Infinite Tautologies 

It is well known that a knowledge of both A and u overdetermines the solu- 

tions to Eq. (1); it is much less known that such solutions can be written, apart 
34 

from the well-known polynomial ambiguities of Om&s-Muskhelishvili equations, 

in infinite tautological forms. 

Let us begin rewriting Eq. (1) as 

F,(Q2) = S(Q2) F;F: (Q2) + 2 i c* (Q2) 

= S” (Q2)-l b; (Q2) + 2 i. u(Q2)] , (5) 

where S = 1 + 2 i A = nll exp 2L611, and, introducing the arbitrary, complex 

phasea!, as 

FJQ2) = SJQ2) FG (Q2) + 2 i $ (Q2) o (6) 

with the following definitions: 

sa = s * cos2 a + (s*)-l 2 sin a! 

a*, = 0”” cos2 01 + (s*)-l 2 asin o 0 

Let us now introduce an arbitrary continuation $ of the phase-shift al1 from 

the elastic region into the inelastic one Q2 > s in’ subject to the only limiting 

condition lim $I = 611 (mod 7r), and the corresponding Omn& function G(Q2), 
r 11-1 

properly normalized at Q2 = 0, 

@(&2) (7) 
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Writing Fn (Q2) = G(Q2) 0 .Q4 (Q2), where S2 
@ 

(Q2) is then real-analytic in 

the Q2 plane cut from s in to infinity, we derive the unitarity equation for 0 
4)’ 

fi+Q2) = SJQ2) flz tQ2) exp I-2 i + tQ2)] + 

+ 2 i+(Q2) G (Q2) O (8) 

This equation clearly displays two classes of tautologies: the first class 

generated by the introduction of arbitrary complex phase 01(Q2), which does not 

evea need to be continuous on the cut, and the second generated by all possible 

continuous choices for (p(Q2), obeying only the limiting condition for r) 11’ l 
on the inelastic cut. 

Equation (8) has not in general a simple solution; however, we can eliminate 

the tautologies of the first class fixing Q! = o. so that the first term on the right- 

hand side of Eq, (8) becomes simply a* 
v 

namely 

[ 

exp 2i (4 - 611) - rlll 112 

0 =cxo =ta.il 1 -nll exp2i($-611) “11 1 ’ 

for which choice Eq. (8) becomes then 

a*(& 2 1 C l- vll exp2W - 6 1m%=2Re 11) 1 
l 1 - 21 ) + tQ2) 

and the most general solution to Eq. (1) 

FTtQ2) = 
+tQ2) Pz (Q2) 

pzm x 

(9) 

will then have the form 

I 
1 

1+ 
2 Q2Pz (0) 

. 
7r 

1 sts - Q2) 1 
S in 
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where we have collected all zeros of Fn in the polynomial factor Pz, so that 8 
+ 

can then tend, without loss of generality, to a positive constant as Q2 tends to 

infinity. 

Tautologies of the second class are still present, since C$ is still completely 

free for n 11 # 1; were a(Q2) known, we could choose a $ = $. such as Im52 
+ 

= 0 

everywhere, and obtain then the “OmGs solution” F T = @(Q2) Pz (Q2)/Pz (0). Since 

there have been in the recent past many attempts “’ l2 (including one of our own35) 

to treat y = arg a(Q2) as a very small “perturbation!‘, 12,36 let us have a closer 

look at the behavior of Go = arg Fr (mod r) for small y0 We have from Eq. (9) 

Go= tan-l ‘ys ’ - 771pos wll+yJ 
sin y + 7j 11 sin (2&11 + y) 

and q. can differ arbitrarily, evea for very small but nonvanishing y, from arg A, 

around any resonance or whenever 611 approaches any multiple of r/2. 

The hypothesis y << 611 for Eq. (9) is then bound to give highly unstable pre- 

dictions, whose local success may be purely accidental and whose failure is in- 

stead highly probable. We wish, however, to point out that our problems are not 

limited to our ignorance about a(Q2) outside of specific models, but are also in 

our too limited knowledge of A(Q2), and in particular of its phase 8 = Arg A in the 

inelastic region, 

We shall then propose to use the tautologies still present in Eq, (9) not to 

simplify its formal solution, but to minimize the effects of our ignorance of A. 

If we regard the introduction of the OmGs function G(Q2) as a way of separating 

the supposedly understood elastic channel from the mysteries of the high-energy 

inelastic contributions, we may expect that, in order to conserve the information 
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contained in our measurements of IF?, I, we shall have to use that contiauation $J 

of 6 11 into the inelastic region which is less affected by the uncertainties on 

IAI and8. 

t may be related to A by the general linear transformation 

c$ = arg (A eip + p e i ?) , 

whea the parameters p, y and p are constants, the condition lim 
q11-l 

cp = 611 

(mod n) requires p cos y = sin p and p sin y = 0. If we are interested in the 

region Q2 2 1 Ge v2 , where the phase 8 of the partial amplitude is practically 

unmeasurable since IA I is very close to zero, we have to fix p so that d$/ Id0 I 

has an absolute minimum for small but nonzero IAI. This happens for p =.j~r/2, 

which corresponds to the “old” Goldberger-Treiman choice 23for +, 

$I = $GT = arg (1+ iA) 0 (10) 

In the case of the r-r P-wave, it can be easily checked that almost all in- 

elastic phase-shift analyses 
2426 indeed give values of GGT close to each other 

and to a simplep-tail ?i la Gounaris-Sakurai. 
22 Note that stability of qGT at the 

p-meson is automatically ensured assuming sin > rni: the rather good experi- 

mental bounds on the p-meson inelasticity (typically < 2 X 103) corroborate the 

hypothesis, common to all analyses, 
24-26 that no inelastic channel opens below 

the w r threshold. 
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what if s. = 16~~ m and the four-pion continuum gives a small, non-vanishing 

co.ntribution to Eq. (2) ? Again the condition for $ to be stable with respect to 

uncertainties in IAI and 8 gives, for points close to A=i in the Argand plot, the 

condition p=p=O and 

which is nothing but what we had to choose using Watson’s final-state-interaction 

theorem. 

Of course keeping p, y and p constant we cannot accomplish maximum 

stability of # everywhere on the Argand plot. But since for Q2 > sin $I is subject 

only to a condition for >l - 1, we can always find three continuous functions of 

Q2, satisfymg p cos y = sin ,8 and p sin y = 0 anywhere %l reaches unity, that 

will ensure stability of $I with respect to experimental uncertainties, at least in 

a portion of the Argaad circle. 

With the choice sin 2 (mw+p)2 > rni and $ =eGT, 52 + is defined, in terms of the 

inelasticity function, by the equation 

Re (T 
rmS2+=1m52GT= IGGTlll-i-iA] ’ (11) 

unfortunately, even the bound (4) becomes soon useless as new I = J = 1 channels 

open, such as p’na (or pee ) and p+pV9 
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However, constructing a phase $GT and its Omn& function GGT, we can 

rescale the measurements for I Fr I and obtain thus f’experime.nta.l’f information 

on I fiGT I. This can, in turn, be analyzed in terms of functions, analytic in 

the Q? plane cut from s in to infinity and consistent with what we expect from 

Eq. ( ll), in order to gain some indications on possible resonant structures at 

c. m. energies from 1 to 3 GeV. 

3. The Representation and its Fit to I Fn I data 

@(Q2) has to be a solution to the elastic unitarity problem 

Im+=@A=A*@ 
(12) 

ImA= IAl 

at Q2 S Sin; since we have already observed the closeness of c#I,, to a simple 

Breit-Wigner tail (see Fig, l)* we shall assume GGT to be a solution to elastic 

unitarity at all Q2, and write,’ a resonant N/D decomposition for A 

A = N (Q2)/D tQ2) (13) 

where we recall that both D and N are real-analytic functioas ia cut Q2-planes, 

with cuts running respectively from 4p.‘: to co and from 0 to -00. A solution for 

‘GT , properly normalized at Q2 = 0, is then 

aJ 
GT = b (0) Pz td,] / [D tQ2) Pz (o)] , (14) 

with z complex zeros in the Q2 plane, If aGT has to satisfy the asymptotic con- 

dition (3), we must then have 

z+ 1 
lim I D (Q2) / (Q2) I = constant 

Q2- oo 

(15) 
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(up to powers of J!nQ2, PnlnQ2, etc.), and, for Q2 2 4/J2 

ImD (Q2) = -N (Q2) (16) 

so that in principle the left-hand cut discontinuity of N(Q2) will determine, to- _. 

gether with the complex zeros in D (Q2), all the dynamics of the TT system. 

We shall then write a simple one-level resonant formula for D, parametrizing 

it as (fixing z = 0, i.e., no zeros in FK) 

D (Q2) = a + bQ2 + c h(Q2) o 

where 

h(Q2) =2 Q2 -t +--J+ (l-G&) [its’, -wP”,I ; 

here f and C$ are defined as 

and 

+tQ2) =k (En) $ for x = A-- 

n=O 
t Q2 , 

with t threshold of the resonating 2-body channel, 8* orbital angular momentum 

in that channel, and R is a skewness parameter to be fixed by the scattering 

length (for the elastic channel only). 

D (Q2) then obeys the asymptotic constraint (15) automatically, and has a 
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resonance of mass M and width I’ if 

ReD(M2) = 0 , 

ImD(M3) = -MI’ ; 

requiring furthermore 

3 
P all= lim 

Q2- 4p2 

fixes all parameters in D (Q2) up to an arbitrary normalization,, 22 

Due to the high inelastic threshold sin 1 (mm + /J)~, we can directly fit the 

formula we obtain thus, i.e., 

D(Q’;M,I’;t, R;L*) =M2-Q2-MI’ h(Q2) - Reh(M3) 

Im h(M2) - (8Re h /8Q2) 
2 

MI’ 

(17) 

to the unnormalized e+e- - T+T- cross section at the p-meson peak; including 

p”-w mixing and constraining R to give p3a11 N 0.048 (i. e, D the “current 

algebraic” value), a fit to the results of Benaksas et al, ’ gives for the param- 

eters in D,(Q2) = D (Q2; 

“P 
= 772 

rP = 136 
9 

r 
mP, P 

; 4p2, R; 1) 

MeV 

MeV 

R/~/A& = 90.85 

reproducing the results of the original paper. 1 
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Note that R/dsu2 can be varied considerably without spoiling the fit on the 

p-peak: only the region from just above threshold down to very low space-like 

Q2 is really sensitive to this parameter (or, alternatively, to p3a11). However 

this region has data coming from four sources with different systematic uncer- 

tainties, i. e. , e+e- annihilation, inverse electroproduction, electroproduction 

at threshold, r*e- scattering; these last tend to have, in most recent fits, too 

large an importance, due to their narrow binning and their very low statistical 

errors 0 

As we can see from Fig. 1, +GT(Q2) gives also a good fit to $GT values from 

the recent analysis by Hyams et al., 26 and we shall then use it as the “elastic” 

contribution to Fa, to derive, from the measurements of Ref. 2-10, I nGT(Q2) I 

outside the p-meson peak. 



-13- 

A plot of I OGT I versus the variable x = rnz(Q” - mi) shows marked, sys- 

tematic deviations from unity, which we choose to explain as inelastic effects; 

since all expected vector mesons have to be highly inelastic, from both the 
24-26 3739 

analysis of the elastic channel, and their detection in inelastic channels, 

we decompose DGT into the sum of one or more resonant terms +i(Q2) and a 

smooth “background” B(Q2), and write, to enforce normalization at Q2 = 0, 

aGT tQ2) = 2 + 0 [BtQ2) - B(O;1 + C al ~~tQ2) - pi to)] 0 
1 

(18) 

Resealing the variable x to % = x(Q2)/x(si,) = (sin - m;)/( Q2 - m”,) , we shall 

parametrize a “background” from sin to infinity as 

B(z) = -2 -‘Z)mBn (1 - l/T) - Qm(%) 1 (1% 

which has the smooth discontinuity 

across the inelastic cut, and where Qm is a polynomial of degree m - 1 fixed 

by the condition $izm B(x) = constant, and both the scale p and the threshold 

behavior can be accommodated to fit the data. 

Recalling the definition (2) for a(Q2), we expect an inelastic resonance pi 

to appear as a Breit-Wigner-shaped structure (over some background) in Rea, 

and, taking formula (17) and imposing R = 0, we can write 

pi (Q2) = 
Dp) 

XDi (Q2) 
, (20) 

where Di (Q2) = D (Q2; Mi, lTi;ti,O; li). Note that we must then have the inequality 
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= 1 -F ai Di(0)/mi - 1 1 - p B (0) 2 0 if complete absence of 

complex zeros in Fr has to be guaranteed. 

Since formulae (17 - 20) introduce a wealth of free parameters, let us 

restrict our search to those effects whose existence may be inferred from other 

process es. Two higher vector mesons have been claimed, a p’ (1250), claimed 

bothinpp -+ w lr’,- annihilation3 * and by a compilation of e+e---+ $7rW9,” 

data 2g’33 
37,39 

, and a p” (1600)) found in r+n-lr+n- photoproduction and 

e+e- 
+ -+- 27 -7r7r7l.71, and shown to be mainly in a p’r’a- state, 27,39 Of the 

two, only the p”(1600) shows up in 7r-7r phase-shift analyses, 24- 26 where it 

seems necessary to satisfy backward dispersion relations D 40 with an inelasticity 

of at least 75%. Note that recent measurements of e+e- -+ 4~ at Novosibirsk7 

do not contain the strong ~‘(1250) signal claimed by Ref. 29 and 33, while a pre- 

vious CERN-Frascati experiment 28 failed to see any clear indication of either 

~‘(1250) or p”(1600), Looking only for these two effects, since the interferences 

we are looking for in the “elastic” 7r7r channel will not be very sensitive to the masses, 

we can fix Ml = 1,25 GeV/c’ (with X& = mW + p and dl = 1) and M2 = 1.60 

GeV/c’ (with 4 = mp + 2~ and I2 = 0), since the two main decay channels are 

claimed to be p’ -+ o 7r and p” -+ p ~7r, while for sin in B(Q2) we shall try either 

choice s in = tl or sin = t2” 

The only free parameters left are then the threshold exponent m in B(Q2), 

the widths. lYl and F2 and the scale factors p, ol and 02” 

Our data selection for I OGT l includes: (a) at Q2 > m: , three potnts from 

AC06atQ2 > 0.8Ge v2 , 23 preliminary data from VEPP-2M7 up to Q2 = 1.69 Ge 3 , 

13 points from the Bologna-CERN-Frascati collaboration4 from 1.44 to 9,O GeV2, 

and the SPEAR measurement at the $-resonance, 8 and (b) at Q2 < $ , the lowest 

energy point from ACO, 5 three points from analysis of inverse electroproduction2 
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7r- p - e+e-n, one from an electroproduction sum rule at threshold,3 four ob- 

tained at very low Q2 < 0 re-binning the original 7re elastic scattering results’ 

and 17 points, down to -4 Ge v2 , from electroproduction isovector contrfbutions 

in the t-channel” (including a reassessment of previous CEA41 and Corne1142 

results) e 

From Fig. 2 we may easily isolate the main features of I Q I: it tends to 

be systematically above unit at positive, sufficiently large x (at least for x > 0.1) 

and below it in the interval 0 > x > -1 (implying then a mean-square radius 

larger than expected from the approach a la Gounaris-Sakurai of Eq. (14 - 17)- 

see Table I for a comparison with experiments at low Q2- and an asymptotic 

scale smaller than Dp (0) N m;)O Note that these two effects are correlated by 

analyticity to predict an essentially non-negative discontinuity for W across the 

inelastic cut Q2 > s in in Eq. (9); their relative size and shape are further useful 

to constrain the size and (less) the shape of such a discontinuity. 

Furthermore, data from Adone suggest the presence of at least one strong 

dip in I Q I at x = 0,3 (region where this experiment has the highest integrated 

luminosity), or Q2 = 2.5Ge v2 o 

The best fit to the whole set of 66 points with a pure smooth background as 

given by formula (19), is obtained with m = 3 and sin = t2 = (mp + 2~)~ for a 

value ,8 21 2,1, and gives a very low probability of 3.6 X 10 -3 ; however, the 

elimination from the fit of the points at 0 > Q2 > -1.5 GeV2 (where there seem 

to be some inconsistencies between data at very close values of Q2) produces 

the more acceptable probability of 2.6 x 10m2* At a purely statistical level, we 

do not have compelling evidence for additional time-like structures beyond 

Q2 = Sin , since most of the x 
2 

for the previous fit on all the 66 points came 

from data at Q2 < 0. 
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However, such a fit does not follow the detailed features of I Fn I at 

Q2 > 1.8 GeV2. We then insert the p' and p" states at their “claimed” masses 

of 1.25 and 1.60 GeV/c’ , in addition to the same background 21 : we find that the 

data reject any appreciable content of p' (1250)) but the dip in 

I Sl I displayed by Adone data4 requires the inclusion of a p” (1600) in the fit 

with a marked preference toward a rather broad state, r2 z 750 MeV, much 

broader than the p" seen in the rr71 phase shifts. 
24-26 

The best fit for the width is reached (independent of lYl as long as it is not as 

big as lY2, but no one has ever claimed a p' much broader than the p 
29,33,37,39 

1 

for the “coupling constants” 

Q!l( = -1.14 g p,an/fp’ 1 = 0.00 

3 t= -1.12 g p’lxT/fpll) = -00 15 

(where finite-width effects have been included in the parentheses to translate our 

on i.nto the coupling constant ratio gn/fn used in “extended’* vector-meson 

dominance models), with a “background strength” p ‘v 5,5, which has, however, 

a strong, negative correlation to 01 2’ 
as a consequence of analyticity and our 

ignorance of arg !L The probability of such a fit is rather high, reaching 

5,l X 1o-2 on all the 66 points (despite the decrease in the number of degrees 

of freedom); if only the data outside the region 0 > Q2 > -1.5 Ge v2 are con- 

sidered, the probability of the fit reaches the rather satisfactory value 0.23. 

This remarkable improveme.nt comes mainly from the time-like region 

Q2 b s in: from Fig, 2 - 4, one can see that data in the “elastic region” Q2 < sin 

(both time- and space-like) do not constrain strongly the behavior of I 52 I on the 

inelastic cut, Therefore, any claims .of the presence of higher vector mesons 

based on analytic extrapolation techniques, 16,17 which expand either Fn or S2 
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in series of functions of some variable z (Q2) (which converge everywhere but 

on the inelastic cut), are particularly unstable, since only convergence in the 

mean exists on the cut, 
43 

and the shape of G on the cut will be critically de- 

pendent on the particular truncation criterion used. 

Particularly it becomes difficult to decide if a rapid variation in Im a has 

to be associated with structures in the data or has to be ascribed to such a 

truncation; furthermore, in such an analysis, it is hard to constrain the pro- 

duction phase of a possible higher inelastic resonance to the value expected 

from unitarity, 

The prese.nt approach has evidently the drawback of automatically associating 

sharp structures in the data with such resonances, Despite this, we feel it pre- 

sents two main advantages: first, it yields in a very simple way the essential 

parameters of a possible higher resonance p,, namely mass Mn, width Pn and 

coupling ratio grrr /fn, without any conflict with general principles or drastic 

approximations; last, but not least, the model, at variance with more sophisticated 

expansions 16,17 can be built free of both weird, far-away zeros in the Q2- 

plane 17,43 17,l 
and of heretical asymptotic behaviors, i ifferent from what quark- 

23 
gluon orthodoxy dictates 0 

We gladly point out that the good probability level reached with the present 

model ( N 23% at time-like and high space-like Q2) shows, much to our taste, 

that none of such features is required by present data. 

It is also to be noted that a quite satisfactory value for the pion radius 

<a> z.483 F 
2 , close to the estimate by Dubnicka and .Dumbrajs , 46 o 5OL 07 F2 

has been found with a small scattering length, much smaller indeed than the one advo- 

cated by Ref. 19, indicating that finite width effects and the treatment of inelas- 

tic contribution may explain. most, if not all, of the discrepancy between < rf> 

and the simple p -meso.n-dominance prediction 6/mE0 
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Table 1 

Pton Mean-Square Electromagnetic Radius 

Q2 range (Fm2) <+ 
l/2 

(F) Ref. 

-3.0 - -1.0 

-0.9 - -0.3 

0 - 1.1 

1,7 - 2.9 

p-meson dominance 
OdY 

Our i. elastic fits 
3 (Al&) 

+ 0.11 
0.74 - 0.13 (45) 

I Ob 0.78 71 zt h 0.03 0; 05 (9) 
(46) 

0.98 f 0024 (3) 

0.75 * 0,14 (2) 

0.676 (1) 

0.695 (1 - 10) 
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Figure Captions 

1. The Goldberger-Treiman phase for J = I = 1 IW partial amplitude plotted 

versus c, m. energy. Here the dashed line is the energy-dependent fit of 

Ref, 22, the open circles are the results from Ref, 23, and the shaded 

area is the region covered by the ambiguities of Ref. 24. On this we super- 

impose as a full line our ansatz aGT = Dp (O)/Do (Q2) where Dp (Q2) is 

given by Eq, (17), 

2. Data for the inelasticity factor OGT around x = $/ ( 
Q2 - m2 

P ) 
= 0, com- 

pared with our two models of a pure background (dashed line) and of a 

background plus higher vector mesons (the full line shows the best fit, with 

the p” only). Solid circles are data from Ref. 4, the squares come from 

Ref. 6, the cross is the SLAC point at the @resonance, 8 open circles at 

x > 0 come from Novosibirsk preliminary results, 7 while those at x < 0 

are electroproduction results. 10 

3. I Fir I versus Q2 (see caption of Fig. 2 for the meanfng of the two Ifnes) for 

Q2 2 rni. Circles are from Ref, 7, squares from Ref. 6, diamonds from 

Ref, 4, and the cross from Ref. 8. 

4. I Fr I versus Q2 (lines have the same meaning as in Fig. 2 and 3) for 

Q2 5 rn;: note that to represent all data we had to shift the origin of the 

logarithmic scale to Q2 = 1 GeV2, Circles at space-like Q2 are from Ref. 10, 

the solid square from Ref. 5, open squares from Ref. 2, crosses from 

Ref. 9, and the circle at time-like Q2 from Ref. 3. 
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