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ABSTRACT 

Any Hadamard matrix constructed by methods of R, E 0 A., C 0 Paley 

can be converted easily by one or two elementary matrix operations to a 

form sharing at least four desirable properties with standard forms of 

Walsh matrices: symmetry, zero trace, normal form, and the same 

number of l’s as -1’s in every row and column except the cth row and 

gth column. 

The matrices thus converted are suggested as tentative standard 

forms for engineering purposes. 

This report, prepared especially for publication in the IEEE 

Transactions on Computers, is largely a summary of the author’s much 

more detailed SLAC -PUB-1740. 

*Work supported by the Energy Research and Development Administration. 



I, INTRODUCTION 

For engineering purposes three standard forms of the Walsh matrix W (of 

order 2’) where v is a positive integer) have been proposed [I] and are widely 

used. 

Although known forms of the more general Hadamard matrix H (of order 

4/-dv, where ~1 is a positive integer) have been classified as being symmetric 

or skew-symmetric, or as having a constant principal diagonal [ 83, no stan- 

dard form of H for engineering purposes has yet been proposed, 

Paley established and tabulated methods for constructing H (he called it U) 

of all orders up to 200 except six then unknown orders 92, 116, 156, 172, 184, 

and 188, all of which have since then been discovered and constructed by other 

methods [2-4,7]. 

The author has shown elsewhere [5] that each Paley matrix can be con- 

verted easily by one or two elementary matrix operations to a form that shares 

at least the following four properties with the standard forms of 51;: 

1. It is symmetric. 

2. Its trace is zero (i.e., it has the same number of l’s as -1’s on its prin- 

cipal diagonal) 0 

3, It is of normal form (i- e. , all elements in its 0th row and 0th column are - - 

1) D 

4. It has the same number of l’s as -1’s in every row and every column ex- 

cept the gth row and cth column. 

Although not trivial, property 4 is superfluous in the sense that it is a 

direct consequence of property 3 and the orthogonality of the matrix. 

Adoption of this form as a tentative standard for engineering purposes 
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would widen the applicability of (non-Walsh) Hadamard matrices to practical 

problems, unify their notation, and simplify communication among engineers 

using them, 

II, EXAMPLES 

Of the four properties listed, Paley’s illustrative matrix A of order 12 

(Fig. 1) possesses only 3 and 4. However, the submatrix obtained by deleting 

the 0th row and 0th column is symmetric with respect to its own secondary di- 

agonal, and the number of -l’s on this secondary diagonal is just one greater 

than the number of l’s, Consequently, since all elements in the cth row and 

0th column of A are 1, then if the sequence of all the rows (columns) of A ex- 

cept the cth row (column) is reversed, the resulting matrix will also be sym- 

metric with zero trace, and will thus possess all four properties, 

This matrix was constructed by Paley’s lemma 2, with 

m=4p=p+l; ~=3, p=llr3(mod4), (1) 

where p denotes a prime number. But neither the matrix nor the method is 

unique 0 Other matrices of the same order can be constructed by Paley’s lemma 

3, with 

m = 4~ = 2(p+l) ; p = 3, p = 5 z 1 (mod 4) , (2) 

first constructing an orthogonal, but non-Hadamard, B matrix of order 6 (Fig. 

2), then making the substitutions 

[+I - [: T] ; c-3 - [I ;] ; [loI - r r] (3) 

to obtain a Hadamard matrix H of order 12. Here B, unlike A in the preceding 

example, is already symmetric, and the submatrix obtained by deleting its 0th 

row and 0th column is doubly symmetric, so we have the two options of either - 

making the substitutions directly in B, or else first reversing the sequence of 
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all but the 0th row and cth column and then making the substitutions, In either - 

case the substitution for 0 in B. o makes Ho I = H1 o = -1, so it is necessary 
I , , 

to multiply the Lth row and Lth column of H by -1 to normalize it., Whichever 

option is chosen, the resulting matrix H will possess all four properties. 

++++++++++++ 

+ -+ -+++---+- 

+ - - + -+++---+ 

++ --f-f++--- 

+ -+--+-+++-- 

+ - - + - - -+ - + -I- + - 

+---+--+-+++ 

++---f--+-++ 

+++---+--+-+ 

++-l-+---+--+- 

+ -+++---+--+ 

++-+++---+-- 

Fig. l--Paley A matrix of 
order 12, and submatrix 
obtained by deleting 9th 
row and 0th column. 

Fig. 2--Paley B 
matrix of order 6, 
and submatrix 
obtained by 
deleting 2tl-i row 
and 0th column. 

III. STANDARD FORMS 

As implied in Section I, the author has proved rigorously [ 5 ] that the pos- 

sibility of so modifying the Paley matrices to obtain forms possessing all four 

desirable properties is quite general. The rules for doing so are quite simple: 

1. If p G 3 (mod 4) or ph E 3 (mod 4), where h is a positive integer, 

a. construct a Paley A matrix using Paley’s lemma 2 or 4 respectively; 

b. reverse the sequence of all but the cth row (column). 

2. Ifpr 1(mod4)orphr l(mod4), 

a. construct a Paley B matrix using Paley’s lemma 3 or a combination of 

3 and 4 respectively; 

b, reverse the sequence of all but the cth row (column) or not, as desired; 

C. make the substitutions (3); 
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d. multiply the Lth row and $h column of the resulting matrix by -1. 

Of course, it is not necessary to actually construct the Paley matrix and 

then reverse the rows (columns). In either case steps a and b can be merged 

into a single step and the desired matrix constructed more directly, either by 

suitably relabeling the row (column) index in Paley’s element formulas, except 

for the $h row (column), or by simply reversing the numbering of all but the 

0th row (column). 

The now well-known Kronecker product (Paley’s lemma 1) can be used to 

obtain matrices of orders that are powers-of-2 times that of a matrix con- 

structed by these rules, and it is sometimes necessary, 

The resulting matrices are not necessarily unique, in either method of con- 

struction or form, and, unlike the Walsh matrices widely used by engineers, 

are not all neatly related by Kronecker products and/or permutations of rows 

(columns) 0 For example, Paley matrices of order 24 can be constructed in 

three distinct ways, using his: 

1. lemma 2, since 

24=23+1and23=3(mod4); 

2. lemmas 2 and 1 (in that order), since 

24=[11+1]~2and11~3(mod4); 

3. lemmas 3 and 1 (in that order), since 

24=[2(5+1)JX2and5rl(mod4); 

where p+l implies direct construction of an A matrix, 2(p+l) implies construc- 

tion of a B matrix and the substitutions (3)) and [ ., 0 0 ] 7~ Zk implies a Kronecker 

product of order ZkO Thus, there are four possible standard forms of order 24, 

one each for cases 1 and 2, and two for case 3 according as the row (column) 

sequence of B is or is not reversed before the substitutions (3). 
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IV. EQUIVALENCE CLASSES 

Hadamard matrices of the same order but different constructions that can- 

not be converted one into another by negating and/or permuting rows and/or 

columns are said to be Hadamard-inequivalent, and to belong to different equiv- 

alence classes 191 D The number of classes for each order of Hadamard (in- 

cluding Walsh) matrix is a complicated subject not within the scope of the re- 

search reported herein 

Although there are many equivalence classes for higher orders of Walsh 

matrices as well as for the more general Paley and other Hadamard matrices, 

all three standard forms of the Walsh matrix of any order [ l] belong to the 

same equivalence class, and in general engineers have not been concerned about 

the existence or possible utility of others, 

Which class or classes of the suggested standard forms engineers will pre- 

fer will depend upon experience in their application and the discovery and dis- 

semination of other useful properties. (For example, it can be shown that the 

submatrix obtained by deleting the cth row and 0th column of the A matrix con- 

structed by Paley’s lemma 2, as in Fig. 2, is always circulant, and conse- 

quently that that of the resulting standard matrix will always be back-circulant.) 

V. NOTATION 

Experience in practical applications will lead to different ideas for notation, 

Whatever symbol is used to denote the modified Paley matrix, say P, a particu- 

lar matrix can be indicated conveniently and unambiguously by a double sub- 

script, of which the first numeral specifies the order and the second the prime 

number used in the construction, with a tilde (or other mark) over the latter to 

indicate row (column) sequence reversal of the submatrix. For example, 
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‘24, %’ ‘24, fi’ ‘24, !? and P24 5 suffice to distinguish among the four pos- 
, 

sible standard forms of order 24. 

In these ma&ices the individual functions (rows) are not neatly identifiable 

by sequency as are those in the Walsh matrices. However, a particular func- 

tion can be indicated conveniently and unambiguously by the same double sub- 

script as the matrix, plus a single or double argument specifying the row or 

row and column respectively. For example, pal 24, ,-,ti) or pa124, 23(is j) Suf- 

fices to distinguish among the rows or the rows and columns of P24 22. 
t 

As suggested in [ I], pal and Pal can be used to distinguish between con- 

tinuous and discrete functions. 

VI. SUMMARY AND CONCLUSIONS 

Any Hadamard matrix obtained by Paley’s lemmas 1 to 4 can be converted 

easily to one possessing the four desirable properties listed in Section I, which 

it then shares with the three standard forms of Walsh matrix defined and illus- 

trated in [ 11 D 

Although the more general Hadamard matrices (of order 4+ # 2’) differ 

markedly from the Walsh matrices in other properties, use of the standard 

forms suggested herein for engineering purposes will encourage a more wide- 

spread and uniform practical application of them, and facilitate a clearer un- 

derstanding of them. 

It is not yet known whether the non-Paley type matrices [2-4,7] can be 

converted into a form possessing all four desirable properties. 
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