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ABSTRACT 

We present new equations for four-body scattering, obtained by 

generalizing our three-body formalism to the four-body case. These 

equations, although equivalent to those of Faddeev-Yakubovskii, are 

expressed in terms of singularity-free physical transition amplitudes, 

and their energy-independent effective potentials require only half-on- 

shell subsystem transition amplitudes (and bound state wavefunctions) 

as input. However, due to the detailed index structure of the Faddeev- 

Yakubovskii formalism, the result of our generalization is consider- 

ably more complicated than in the three-body case. 

(Submitted to Phys. Rev. D.) 

*Work supported in part by the Energy Research and Development Administration. 

TPresent Address: CERN, CH-1211, Geneva 23, Switzerland. 



-2- 

1. INTRODUCTION 

The treatments of the four-body problem that exist in the literature pro- 

vide a variety of solutions to the problem of finding appropriate four-body 

scattering equations. Of those obtained by generalizing Faddeev’s three-body 

theory, 1 the approach due to Yakubovskii’ is the most well-established, in 

particular because its equivalence with the Schrcedinger equation has been 

demonstrated. The most characteristic feature of this formalism, and also 

its main weakness, is its very detailed classification of the clustering proper- 

ties of the four-body system. 

In some alternative approaches (such as that due to Sloan’), a less detailed 

index structure is considered, for instance using only a two-cluster classifica- 

tion of the four particles. As compared to Yakubovskii’s, the resulting equa- 

tions exhibit in general a more complicated structure, and their connection 

with the Schraedinger equation remains unclear. 

A common feature of all these formalisms is that they have been developed 

almost exclusively at the formal operator level: the actual complexity involved 

(such as the singularity structure of the considered entities) is therefore not 

explicitly shown. 

In the present work, we seek to establish a four-body formalism based on 

the Faddeev-Yakubovskii (FY) theory in a way that makes the actual structure 

of the formalism more evident. For this purpose we follow a method suggested 

by our previously developed three-body formalism, 4 in which a thorough 

singularity analysis of the Faddeev kernel led us to singularity-free physical 

amplitudes that obey dynamical equations with a considerably simplified input. 

With these results in mind, we carry out a similar singularity analysis of 

the four-body kernel. As in the three-body case, this task is considerably 
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simplified by using the complete sets of eigenstates of the channel Hamiltonians. 

The analysis turns out to be particularly straightforward for FY entities labeled 

by two-cluster indices only-such as the wavefunction components XPEa= x8, 
P p 

qQ being the conventional four-body FY component-and leads very naturally to 
P -. 

new singularity-free amplitudes components for four-body scattering. 

In order to obtain equations for such amplitudes, however, the FY formal- 

ism requires that we also analyze the wavefunction component 5P” 
P 

itself; i.e. , it 

requires that the singularity analysis be made taking into account the full index 

structure of the formalism. Unfortunately, this more detailed analysis turns 

out to be less straightforward than the first; in addition to the physical transition 

amplitudes, we are forced to introduce a nonphysical amplitude which, although 

not present in the full four-body wavefunction, still appears in the dynamical 

equations. 

Nevertheless, the set of equations we are led to exhibit essentially the 

same features as our corresponding three-body equations: namely, a multi- 

channel Lippmann-Schwinger structure with energy-independent effective 

potentials that require a simplified subsystem input (i.e. , only half-on-shell 

subsystem scattering amplitudes and bound state wavefunctions). 

In Section II we review the main techniques and results of our three-body 

formalism. In Section III we introduce the four-body notation that will be used 

throughout the paper, some basic aspects of the FY formalism, and the appro- 

priate complete sets of the channel Hamiltonians. The singularity analysis of 

the component+(T is carried out in Section IV, where the physical scattering 

amplitudes are identified. 

The fully-split FY components !@@ are analyzed in Section V, and the equa- 
P 

tions that the scattering amplitude components satisfy are obtained in Section VI. 
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Finally in Section VII, we generalize our formalism to the fully-off-shell case 

and connect our amplitudes to the operator formalism. 

In the Appendix we confirm that our amplitudes are indeed components of 

the physical scattering amplitudes. 

II. THE THREE-BODY CASE: A REVIEW 

The main feature of our three-body formalism4 is the analysis of the 

singularity structure of the kernel G t 6 
0PP-Y 

of the Faddeev equations 

GO(E+iO) tp(E+iO) c I*+ 
rfp rtac) 

> . (2.1) 

In (2. I), > is the Faddeev component of the three-body wavefunction 

- (0) corresponding to an initial state Ip, $F> of a bound pair in channel Q! and a 

w(O)2 2 third free particle; E = p, -K~ is the total energy, t 
P 

(E+iO) is the two-body 

transition operator in channel 0, GO(E+iO) = G2+i2-E-iO) -1 
, 8, = l- dm, and 

pLa! = (mpmyV(mp+my) - 
Since GOtp = GpVp, where G = (g2+c2+V -1 

P P 
-E-i0) , the singularity structure 

of the Faddeev kernel is best exposed using the spectral decomposition of G 1 P’ 
or equivalently, by considering projections onto channel eigenstates, i. e. , onto r , 
the complete set 

H =F2+c2+V 5 
P P’ 

In this way, 

representation 4 

of eigenstates IF c$ 
I 

P >, I$ $- 
PK P--’ 

> of the channel Hamiltonian 

qP I 

we obtained for the three-body wavefunction components the 
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where the elastic/rearrangement and breakup poles occur explicitly in separate 

terms, and Z’ 
Pa 

and c d?’ 
P @” 

are the corresponding physical scattering ampli- 

tudes. It is important to note that these amplitudes are free from primary 

singularities. 6 We then proceeded to show that, when expressed in terms of 

$$o and 8 
Pa’ 

the three-body equations (2.1) take a particularly simple form: 

they become coupled multichannel Lippmann-Schwinger-type equations, whose 

“effective potentials” are energy independent, and require only half-on-shell 

two-body input (in contrast, in all previous exact formulations of the three-body 

problem such effective potentials are energy-dependent and require fully-off- 

shell two-body input). 

III. THE FOUR-BODY CASE: PRELIMINARY CONSIDERATIONS 

For our treatment of four-body scattering we make use of the FY equations 

for the FY wavefunction components, 7,8i e . . , 

I$W> = p- 
P I+;‘> - c GO(E+iO) Kh(E+iO) c 8cpI$~(‘)> . (3.1) 

Ycg P’Y 

The wavefunction components are labeled by two-cluster idices g, p, T , 

etc. (i.e., of the type (123)(4) or (12)(34)), and by three-cluster indices cz,p,y, 

etc. (of the type (12)(3)(4), i.e., pair indices). The decomposition is such that 

c c qyT) is the full four-body wavefunction. A three-cluster index below 
o- pm 

a two-cluster index (as in q i(‘)) indicates that the three clusters have been 

obtained by further splitting one of the two clusters (as in c= (123)(4) - (12)(3) (4) = 

PL9 This is also described by writing PCO. 

InEq. (3.1), $) denotes the p-component of the initial state wavefunction; 10 

the operator Ko 
Py 

is the three-body kernel operator of subsystem (T (more pre- 

cisely, it is the two-cluster subsystem kernel operator, since (T can be either of 
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the 3+1 or the 2+2 type), defined as 

(3.2) 

where Go = (Ho- E-i0) -I= c V -E-i0 
-1 

. 
ycu y 

In order to proceed with our treatment of the four-body case, we need to 

define the appropriate complete sets of eigenstates of the channel Hamiltonians 

H4 For c of the 3-l-l type, the complete set of eigenstates of the three-body 

Hamiltonian G2+i2+ c Vy is given by Faddeev 11 as being, 
YCO 

1 
I+>, I** > , IPf > 

I 
, all KU 

t6C iz 
(3.3) 

where I@> is a three-body bound state (we only consider one three-body bound 

state per channel) of energy -K:; I*+ 

<s>iT 
> is the (outgoing wave) scattering state 

corresponding to an initial state of a bound pair B and a third free particle with 

relative momentum i?, and I@+ 
iz 

> is the (outgoing wave) scattering state 

corresponding to an initial state of three free particles of relative momenta s,c 

Therefore, in the 3+1 case, the complete set of four-body channel eigen- 

states can be written as 

(3.4) 

where if, say, u = (123)(4), To is the momentum of the fourth particle relative to 

the center-of-mass of the other three. (Note that we suppress the channel 

indices of all variables. ) 

On the other hand, if (T is of the 2+2 type, the complete set of channel 

eigenstates is given by 

(3.5) 
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In (3.5), if we let 6,y label the two subsystems of CT (i.e., if o= (12)(34) and 

--PI---Y S=(12), theny=(34)), Is Cp > - Is 4K GK> represents a state of two bound pairs 

moving with relative momentum ?? and corresponding to a total energy 

E=& K2 2 
6-KY’ 

where zz = si/2no, with 77, = C(ml+m2) (nn3+m4)]/(ml+m2+m3+m4) 
- if fl= (12)(34). Similarly, Is ik (‘I)* _ - 6 f >- Is eK ++> represents a state where 

(a? gu 
the b-pair is bound, while the y-pair is in a scattering state of initial momentum 

?&and so forth. 

In what follows, we will in general not treat the two kinds of indices Q 

separately, but use only the set (3.4)) with the understanding that when (T is of 

the 2+2 type, the labels ?,F,< of (3.4) should be replaced by the labels z,<,$ 

of (3.5). 

IV. SINGULARITY ANALYSIS OF \ko(% THE SCATTERING AMPLITUDES 

The most natural generalization of our three-body formalism would be to 

consider four-body wavefunction components labeled only by a two-cluster index 

o. As we have seen in Eq. (3. l), however, the FY components + U(T) 
P 

represent 

a more detailed splitting of the full wavefunction, since in them not only the 

last interacting subsystem is specified (labeled by ‘T), but also the last inter- 

acting pair (within the subsystem labeled by a). 

Therefore, we first consider the singularity structure of the “partially 

summed” wavefunction component ilj utT) Using Eq. (3.1), we find 

lea(T)> = fT ,i’to)&)> - Gc(E+iO) c c vr) Zoo l@$)(T)> , (4.1) 
YCfJ p3Y 

wherevr)=x V 8 (t 
ACU h A? 

i is understood that yea), and we have used the relation 

Go FKofi = G?“) , (4.2) 

which follows from (3.2). 
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With the explicit appearance of the channel Green’s function Gg in (4. l), 

the singularity analysis of * utT) becomes straightforward. Using the complete 

set of channel eigenstates (3.4) or (3.5)) we obtain 

- Gc(ECiO) = /I?? @(% dr’ 
; 2-K2 

<i? cp) 1 
u - E-i0 

d7 dF 
‘; 2+;2 - K2 

<i?&+ 1 
6 - E-i0 <G 

(4.3) 

where F2 and G2 are defined in Section II, and $= rf /ma, 

with qo= 
[ 
m4(ml+m2+m3) /(ml+m2+m3+m4) if ~=(123)(4). With the aid of 1 

Eq. (4. 3)) (4.1) can now be written as 

<F’yTq-l%k utT)> = fT s(T-Yto)) dT)G,T) - d”‘(p’,$ GYZ~~(?,$~), E+iO) F2 
2 - E-i0 - Ku 

_ $+ &yC) J 3q 
d?‘“‘(~,$ ,-$;?(‘);E+iO) , 

- E-i0 

(4.4) 

where 

;E+iO) = <i?$k tub 1 c c $’ @-)I~P(T)> 

(SjT yco p3y y y 
(4.5) 

&uT(~$$;$o);E+iO) = <F+t”)- 1 c c fPyy”‘~*!(d> . 
T-;il yea p3y 
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Equation (4.4) constitutes a four-body analog of Eqs. (2.2); i.e., it 

explicitly exhibits all the physical poles of the wavefunction components * utT) 

in separate terms. The residues at these poles-i. e. , the amplitudes (4.5)- 

are free from primary singularities (just as in our three-body formalism), and 

are the components of the physical scattering amplitudes: As is shown in the 

Appendix, the on-shell values of X0’, c gCT and x&o7 are the amplitudes 
o-36 (6) u 

for elastic/rearrangement, partial breakup and full breakup, respectively. 12 

The remaining step in the generalization would now be to find equations for 

these amplitudes. Unfortunately, as can be seen from Eqs. (4. l), Qo(T) is 

coupled to all the FY components X4 utT) and not simply to the remaining 9 P (7) . - P ’ 

As a result, no equations for the wavefunction components %I!~~) are available 

within the FY formalism, and it is therefore not possible to obtain dynamical 

equations for the amplitudes (4.5) at this stage. 

To proceed within the FY formalism, it is also necessary to perform a 

singularity analysis of the FY components @ ;;(T) (f or which, of course, Eqs. (3.1) 

are available). This however is not straightforward, as will be seen in the 

next sections, and is certain to lead to a larger number of amplitude components 

(this being the weak point of the FY formalism in general). 

At this point one could therefore abandon the FY formalism and use other 

dynamical equations for the components XJ! O(T) , for example those discussed 

in Refs. 3 and 13. However, all such alternatives we are aware of lead to 

dynamical equations with effective potentials that are not only energy dependent, 

but also require fully-off-shell subsystem input. In addition, these alternative 

equations may possibly admit spurious solutions. For these reasons, we 

choose to remain within the FY formalism for the present work. 
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V. SINGULARITY ANALYSIS OF THE FY COMPONENTS P;(7) 

Recalling Eqs. (3.1) and (3.2), we see that the kernel that must be now 

analyzed for singularities is G K” 
0 P-Y’ 

In analogy with (4.2)) we write 

-. 
GOK; = 

where 

= 6p?lGo - GOVBG’ 

(5 * 1) 

(5 * 2) 

is the Faddeev component of the Green’s function G”, with the property that 

c 
P Gk=Gu* 

Therefore, we see that for the pole decomposition of !& utT) 
P 

it is 

necessary to analyze the Green’s function components Gc 
P ’ 

rather than Go itself. 

As is evident from (5.2), use of the spectral decomposition of Go (Eq. (4.3)) is 

not sufficient, since there is also a pole in G o. This pole is accounted for in the 

following way: In each term that results from applying the spectral decompo- 

sition (4.3) to the product GO(E+iO)V 
P 

G”(E+iO) of (5.2) we use the resolvent 

identity 

GO(E+ie) = Go(zf) + (E+ie-z’) Go(E+ie) Go(zt) , (5 - 3) 

with z) equal to the energy of the corresponding channel eigenstate (with an 

imaginary part E’ that is always understood to go to zero before E). Then, the 

GO(zl)Vp factors in (5.2) can be eliminated using the three-body relations 

- Go(F2+“p2 - K: - ie’) V’ jr !i? (‘41, = _ lpJ$+ > , 

(6)P P;tSlF 

- m- - G0(F2+F2+&2-itl)VP Ir 9--)> - - 17 p- > 
Pq P;iZ 

(5.4) 

where xr’- is what remains of *F’- once the initial-state plane wave has been 

subtracted. 
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As a result, we obtain a “pole decomposition” of the Green’s function com- 

ponents given by 

Gih(E+iO) = / 17 $$I> d’ 
g2-K2 

<T ip) 1 
u - E-i0 

(5.5) 

where we have also replaced I’? x P) 

P ;i?T 
> by I~i$(uJ’ 

P 64 ;iz 
> - 6~hl?~~> and made 

use of the fact that Go is diagonal in an l?Fc> representation. 

In (5.5) we see that upon summation over /Ku, the factor multiplying 

GO(E+iO) vanishes identically. In addition, the first three terms become equal 

to the expression (4.3) for G”, since the Faddeev components of (5.5) add up to 

the full channel eigenstates. 
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Using (5.5)) we finally obtain the sought-for pole decomposition of the FY 

kernel (5, l), and also of the FY wavefunction components (3.1): 

<zc I* u($, = $-T a(T-ido) (7) -- 
P Mp (Pq) 

_. 
8) (ST) 

y2-K2 
t%~uT(?,-;f(o);E+iO) 

u - E-i0 

d? 
w2 N 2-Ki-F-i0 r +pf 

-CJ &+ 
hCU p (Am? 

&I’(7 F$;$‘);E+iO) 

1 
- F2+p+F-E-i0 

fY~(?~$?(“);E+iO) , (5.6) 

where HUT and gyij have already been defined in (4.5)) and 81’ is a decompo- 

sition of the amplitude GUT of (4.5)) i. e. , 

&y(T 33 ;$‘);E+iO) = <?qtu)- IVA c 
$q ycu 

FAy c sup l!~p(~)> , (5.7) 
PI-Y 

Y 

with c &?I’= guT. The remaining amplitude #’ is given by 
ACU P 

37 lTFc$‘);E+iO) = <F$z I A& 
i 

Ciph - 

-J ,3 a;‘> @<g @), _ c / ,&J$+- > di’l d$&++- 1 6CU Pm? cm 
-1 17 g$+- > d?d$dT<%B 

P(h) ;iw 
PJ- I VA c SAY c P l*p(T)> . 
33 I Y=u P=)Y 

Y 

(5.8) 
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Equation (5.6) constitutes a further generalization of our previous decompo- 

sition (4.4), where now all physical singularities of the FY component P utT) 
P 

are explicitly exhibited in separate terms. It is a remarkable fact that in (5.6) 

the p-dependence in the terms containing 2% and gfactorizes, so that these scat- 

tering amplitudes still depend 9 on the two-cluster index u of the wavefunction. 

In other words, further splitting of 9 u(T) in (4.4) into * utT) 
P 

in (5.6) only produces 

a splitting of the amplitude &uT. 

In addition, the amplitude suT 
P 

must now be introduced. Just as in (5.5), 

this amplitude vanishes identically upon summation of 9 u(T) 
P 

over all pcu (as 

did the last term in (5.5)), and is therefore also absent from the full wavefunc- 

tion. Consequently, sB - uT is not a physical scattering amplitude. 

VI. EQUATIONS FOR THE SCATTERING AMPLITUDES 

Let us now derive the equations that our amplitudes XuT, go7 and 8;’ 
(6) 

satisfy. 

Replacing the pole decomposition (5.6) for I+ c(T), in the definitions (4.5) 

and (5.7) for these amplitudes, and in the definition (5.8) for suT, the following 
P 

(half-on-shell) equations are immediately obtained: 

-c/ ,t ““‘“P(y;~) ?I2 jcepT (3 ;$‘);E+iO) 
P#o- -K - E-i0 

P 
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where E =?(OJ2 - ~~ 
7’ 

The corresponding equations for Su7 cYT and suT 
(PI ’ P 

are obtained from (6.1) by replacing, respectively, v (=@) by -y(3s), ‘+=? 

and ‘%‘( 9&j, and so on. 

Examples of the potentials appearing in (6.1) are, 

(f-3.2) 

where the index y is uniquely determined by the conditions ycu and ycp, (u#p) . 

(Note that when both u and p are of the 2+2 type, uflpz0, so the correspond- 

ing potentials vanish. ) 

In spite of the fact that two-body potentials appear in (6.2), all effective 

potentials in (6.1) can be expressed in terms of half-on-shell subsystem scat- 

tering amplitudes and bound state wavefunctions, with no two-body potentials 

remaining explicitly. For example, %’ ( 93 ) in (6.2) can be written as 

‘+3);p(~u;$~;) = -< &“)l~t1)+y>($1)2- K2+ K2) x 
YKY Yu 

_ J 

(6.3) 

where, as in (6.2)) y =u np is uniquely determined by u and p (tip). Also, 

-41) - MP - 

pY M +M ru+Ft and 
Y P P 
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where if, say, o=(l23)(4) and p=(124)(3), ~12, My=M12=ml+m2, Mu=m4 and 

MP=m3' 
The factors appearing to the left in (6.3) are projections of the three-body 

bound state wavefunction onto the complete set of two-body channel eigenstates. 

The amplitudes *and & are the scattering amplitudes of our three-body for- 

malism, taken half -on-shell. 

The potentials coupling SuT 
P 

to the physical amplitudes differ somewhat 

from those in (6.2); e.g., 

As expected, all these potentials vanish upon summation over @Cu. Again, 

all two-body potentials that appear explicitly in (6.4) can be eliminated in favor 

of half-on-shell subsystem amplitudes and bound state wavefunctions (the first 

term 6 
m 

in (6.4) is actually cancelled by a piece of the fourth term). 

The coupled integral equations (6.1) constitute a generalization of our three- 

body equations to the four-body case. We obtain in this way a formalism with 

advantages similar to those present in our three-body theory, namely: 

(i) The dynamical equations are expressed in terms of components 

of the physical scattering amplitudes; 

(ii) The amplitude components defined in the formalism are free 

from primary singularities, i. e. , from poles (in the off-shell 

variables) ; 
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(iii) The equations have the structure of a multichannel Lippmann- 

Schwinger formulation, with effective potentials that are inde- 

pendent of the four-body energy; 

(iv) The equations require as input only half-on-shell subsystem _. 

transition amplitudes and bound state wavefunctions. 

As pointed out before, however, the equations also include a nonphysical 

amplitude 2VuT, 
P 

and our goal is therefore not fully achieved. The presence of 

this nonphysical amplitude can be understood as follows: 

The FY equations are obtained from the four-body Lippmann-Schwinger 

equations by means of a two-step procedure8: the two-body disconnected pieces 

are first removed from the kernel, and only then are three-body disconnected 

pieces removed. (This is done in such a way that the resulting FY kernel con- 

nects three particles after one iteration and all four particles after two itera- 

tions, 8, As a consequence, the full wavefunction is split first according to 

three-cluster indices, and then split further according to two-cluster indices. 

On the other hand, as we have seen, the singularity structure of the full 

wavefunction is most naturally exhibited by considering the wavefunction compo- 

nents *u(T) , split only according to the two-cluster index u. The (prior) addi- 

tional splitting according to three-cluster indices required by the FY formalism 

(in order to achieve connectedness of the kernel) appears thus far less natural 

from the point of view of the singularities of the kernel (or from the point of 

view of asymptotic channels). 

The FY formalism nevertheless requires that we perform the more compli- 

cated singularity analysis of the fully-split wavefunction components q utT) 
P ‘- 

i.e., that we retain the full index context of the FY equations. In choosing to 

remain within the FY formalism, and insisting on energy-independent 
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half-on-shell input, we are not only required to split the breakup amplitude 

gUT further into components guT 
P ( 

an expected complication) but also to intro- 

duce the nonphysical amplitudes suT. 
P 

VII. GENERALIZATION TO THE FULLY-OFF-SHELL CASE 

In the previous sections we constructed our four-body formalism keeping 

the use of four-body operators and operator relations to a minimum; i.e. , 

staying essentially within the wavefunction approach. It is illustrative however 

to consider how our formulation relates to the four-body transition operators, 

and how a fully-off-shell version of our amplitudes can be obtained from these 

operators. 

To do so, we first recall that in our three-body formalism the fully-off- 

shell amplitudes are defined using the three-body operator4 

T/&z) = VpGoW Upa Go(Z) Va 9 (7.1) 

where U Per(z) is the three-body AGS transition operator. l4 The on-shell matrix 

elements of the operator (7.1) between appropriate channel eigenstates give the 

various three-body physical transition amplitude components. 

In order to obtain the corresponding four-body operators, it is convenient 

to make use of the matrix formalism7: We first define a matrix version of (7.1) 

by means of the four-body matrix of operators iuT = according to 

f”T = Vt”) Gb”’ TUT Gr’vtT) , 

where P - - {- zPa! Go’}, Gr) =[ -6P, GotpGo}, etc. (with 0, ecu), and 

TUT = K;} stands for the matrix of four-body AGS operators. 7 

Next, as in (7.1), we define 

= VpGo +;; GOVc, , 

(7.2) 

(7.2) 
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or, more explicitly, 

(7.3) 

The equations these operators satisfy are easily obtained using the four-body 

equations for U UT 7 
po! : 

T;;(z) = BUT Frn VpGo(z) t,(z) Go(z) Va$(y 

- c c vp$/‘q’~wq;tz) 9 
Pfo A=P 

(7.4) 

where @ 
Y’A 

has been defined in (5.2) (recall also (5.1))) and y, y’ are determined 

by the conditions Y’crnT and yf = unp . 

By analogy with the three-body case, we expect matrix elements of the 

operators (7.3) (rather than matrix elements of just Vu7 pi ) to be closely related 

to the amplitudes of the previous sections. Indeed, by applying the pole decom- 

position (5.5) of gylh (with E-CO-z) to (7.4), and projecting onto channel 

eigenstates, we easily verify that the resulting kernels are identical to the 

kernels of Eqs. (6.1). Moreover, when z is chosen to be the energy of the 

initial state, also the resulting driving terms become identical to the driving 

terms of (6.1). 

We can therefore identify the half-on-shell matrix elements of TUT between 
Pa 

appropriate initial and final states with our previously defined scattering ampli- 

tudes A? uT, guT of (4.5) and guT of (5.7) (recall that go’= c ~9~~). 
(6) P pcu p 

With this identification it is straightforward to define the corresponding 

fully-off-shell versions of our amplitudes as 
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where 

T cT = c c T;; . 
peer CKT _. 

(7.5) 

(7.6) 

It is important to note that it is from the appropriately “dressed” operator 

(7.3) that we can obtain singularity-free scattering amplitudes. This is in 

analogy with the three-body case, where the factor V G in T 
P 0 pa (Eq. (7.1)) is 

present to eliminate the primary singularities of the matrix elements of U 
Pa’ 

In the four-body case, the factor V G 8 t G in (7.3) performs a similar p opn 0 

function. 

The equations satisfied by the amplitudes (7.5) can be directly obtained 

from the operator equation (7.4)) using (5.5) with E+iO replaced by z. The 

effective potentials in the resulting equations are identical to those of Eqs. (6. l), 

but the driving terms are slightly different. 

At this point, in view of the complications we have encountered in gener- 

alizing the three-body formalism of Ref. 4 (in particular the appearance of the 

nonphysical amplitude %cT , 
P ) 

one may ask whether the off-shell four-body 

amplitudes have really been chosen properly. We therefore conclude this sec- 

tion by giving another argument in favor of our choice. 

For this we turn to the full four-body Green’s function G, and note that in 

terms of the transition operators we have defined, it is straightforward to write 

G = Go - GoTGo = 

=GO-CGtG y oy o -F .& GpTzGa - FTGufTGT , (7.7) 
, 
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where TrA is the three-body (i. e. , two-cluster) transition operator (Eq. (7. l)), 

and To’ has been defined in (7.6). 

In (7.7) we observe that the four-, three- and two-cluster disconnected 

pieces of G have been separated from the true one-cluster (i. e. , four-body 

connected) piece in a very natural manner. In addition, it is easy to verify that 

the four-body connected pieces of G can be written as 

G~T~TGT= c Gg ~cTc-7 

PC0 P-Y -Yh Ao! ’ 
(7.3) 

-Kg 

where Go 
pv 

is the “left-hand” splitting of Gc as defined in (5.2)) and 

GTa = c&GO - GTVoGO is the corresponding “right-hand” splitting of GT . 

We thus see that both the operators To’ of (7.6) and Tii of (7.3) appear 

in the cluster decomposition of the four-body Green’s function in a very natural 

manner, suggesting that they are indeed the proper choice of transition opera- 

tors in this formalism. 

VIII. CONCLUSIONS 

In a previous paper, we have shown how a thorough singularity analysis of 

the Faddeev kernel leads to a three-body formalism that holds several advan- - 

ta.ges over Faddeev’s formulations, although remaining completely equivalent 

to it. 

In the present work we have carried out a generalization of this method to 

the four-body case, by performing an analogous singularity analysis of the 

Faddeev-Yakubovskii four-body kernel. When performing such an analysis 

on the wavefunction components 9 gtT) -where o is a two-cluster index-we find, 

as expected, a natural expansion of Q (T(T) in terms of singularity-free scatter- 

ing amplitudes that exhibits all the physical singularities of the full wavefunction. 
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In addition, we also find a corresponding natural separation of the four-body 

Green’s function into pieces of increasing degree of connectedness. 

However, since this analysis is carried out on objects that are labeled only 

by two-cluster indices, while the FY formalism involves objects labeled by both 

two- and three-cluster indices, no dynamical equations within the FY formalism 

can be obtained in this manner; it becomes necessary to carry out a more 

detailed and much less transparent singularity analysis of the FY components 

#b-) 
P - 

Such an analysis does yield dynamical equations that exhibit advantages 

analogous to those obtained in our three-body formalism, namely, 

(i) The equations are expressed in terms of components of the 

physical amplitudes ; 

(ii) The amplitude components defined are free from primary 

singularities, i. e. , from poles (in the off-shell variables) 

that correspond to physical singularities; 

(iii) The equations have the structure of a multichannel Lippmann- 

Schwinger formulation, with effective potentials that are 

independent of the four-body energy; 

(iv) The equations require as input only half-on-shell subsystem 

transition amplitudes and bound state wavefunctions. 

However, the equations also include a nonphysical amplitude 37, which 

is an unexpected complication. This additional.amplitude is the result of a lack 

of correspondence between the singularity structure of the FY equations and 

their detailed index structure: In fact, to our present understanding,the con- 

nectedness of the (twice iterated) FY kernel has been obtained through a pro- 

cedure that is incompatible with a straightforward singularity analysis. The 
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nonphysical amplitude SW’ 
P 

serves to compensate for this incompatibility, in 

a way that allows the desired features (i) to (iv) to be carried over directly from 

the three-body case. 

-Whether or not to remain within the FY formalism becomes therefore a 

matter of deciding which characteristics of the four-body equations one chooses 

to emphasize . As was pointed out, we could have chosen to consider formalisms 

other than that of FY to obtain equations for the components P (TtT) . None of 

these formalisms, however, are clearly free from spurious solutions; and, 

more importantly for our present treatment, all the alternative formalisms we 

are aware of lead to equations with an input that is not only energy-dependent, 

but also fully-off-shell. In keeping with our aim of obtaining a theory without 

such features, we have chosen for the present work to remain within the FY 

formalism. Nevertheless, further work on alternative formulations of the four- 

body theory is clearly called for. 
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APPENDIX 

We show here that the on-shell values of our amplitudes s%?~, So7 
(6) 

and 

8 CT yield the transition amplitudes for all physical processes starting from an 

initial state of the 3+1 type. 

In order to do so we first establish some intermediate results, such as the 

relationship between the three-body initial state wavefunction and its Faddeev 

components. td _ Combining the relations Ia, (7) > --GOVhl+ > with the Faddeev 

equations I * tT)> = 
Y 

-Gotr c 3 I@(‘)>, we get 
hcT ‘A A 

lG;T’> = Gotr c 5 G V I@(‘)> 
hCT ‘A ’ A 

, (A* 1) 

where it is understood that all operators are to be taken on-shell. 

Combining now relations (7.5), (7.3) and (A. l), we get for the half-on-shell 

amplitude .MoT the expression 

If we now take (A. 2) fully-on-shell, we can again use (A. 1) to obtain 

(A. 3) 

which is known to be the expression for the elastic and rearrangement scattering 

amplitudes. 8 

Next we turn to the full breakup amplitude. Taking the expression for go7 

in (7.5) fully-on-shell, and applying (A. l), we get 

gaT(? F ?@‘);E+iO) = <??‘e (‘+ I c 
<T 

c Vh B,, c G t G IJoT IF(‘)@;)> . 
yea hCa crcT 0 Y 0 Y@ 

(A. 4) 
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- m- In order to proceed we need the expression for Ir ‘E,> in terms of the 
Pq 

initial state I? j? c>. This is obtained from three-body theory by recalling that 

IX(~)- > = -GO(E-i0) c Mu (E-i0) IFc> , 
PST AC0 PA 

(A. 5) 

where Mih= Vpfiph - p V G”Vh is the three-body Faddeev operator in subsystem 

CT. Combining (A. 5) with the last of Eqs . (5.4) we obtain 

GO(E-i0) Vr IT *c)<> = GO(E-i0) c Mu 
Ku yh 

(E-iO)l;<> . (A. 6) 
Pq 

With (A. 6), the on-shell amplitude guT can be written (recall that Gi(E-i0) = 

GO(E+iO), etc.), 

8 uT = c c c c <; F ;lM;X~holGotyGoU;; I?‘)$)>. (A. 7) 
pcu ‘)‘cu hcu c?cT 

To simplify this expression we recall from the matrix notation7 that 

GF’ = {-tjuT GOWio! Go} , where W(& is the connected part M;cu; i.e., 

W;a = Mirr - ijpatP = - c Mu s’ G t 
ycu m YoJ 0 a! 

. (A-8) 

Using the fact that Gr)Tt4) = N 14) = {Go I$}, UT where K 
Pa 

is the four-body 

kernel operator, we can now write instead of (A. 7), 

(A. 9) 

When summed over u, (A. 9) becomes identical to the expression for the full 

breakup scattering amplitude given in Ref. 8. 

We conclude by considering the partial breakup amplitude. We proceed as 

before, and take expression (7.5) for $$ fully on-shell, 

(A. 10) 
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again using (A. 1). Further, we recall from three-body theory that 

&J)- > = 6ps - GO(E-i0) K;&E-i0)) 1; @$ . 
Pi CSG ( (A. 11) 

If this expression is multiplied by t&E-i0) BpA, the Faddeev equation for Kid 

can be used to simplify the right-hand side. Using in addition the second of 

Eqs. (5.4) on the left-hand side, we get 

- c t (E-iO)~phGo(E-iO)VhlV(u)~ = K~6(E-iO)l~$6> 
ACU p @)P 

K ’ 
(A. 12) 

Finally, with the relation Ku 
PS 

= -tpGoss we get for the on-shell value of (A. lo), 

<?~$“I c Vu G t G UuTI;T(o)@$)> , 
K hcu 71 0 A 0 ?UJ! 

(A. 13) 

We compare this with the expression obtained in Ref. 8 for the partial 

breakup amplitude, i. e. , with 

c <p1 l 8(3,2),,[“23, ; (A. 14) 

b2 

with the definitions @ 

I 1 

Lb31 = {6py+tpJ, @‘a21={~uT+‘;‘) and B(“y 2, = [Liz} = 

ycu “;“otyGou;i! c ’ (A.14) becomes identical to (A. 13) when the latter is 

summed over all UC6. 
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