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1. Analytic extrapolations for then-N system: the state of the art 

It has long been known’ that the “conventional” use of dispersion relations, 

as extrapolation tools either to the interior of the holomorphy domain 9 of the 

scattering amplitude F or to its boundary f , constitutes a classical case of 

an incorrectly posed problem, in the sense of Hadamard, and that, as a con- 

sequence, the calculated values are unstable. 

Stability is often reached (as for the “discrepancy method”) following the 

phenomenological principle (“whenever in doubt, expand in series and retain 

lowest terms only”) often attributed to Fermi,2 or some more sophisticated 

and less easily identifiable version of the same. 

However, the apparently naive observation that Cauchy integrals can be 

written in infinite, tautological forms, simply multiplying F by any function (G 

holomorphic in Ed, allowed Ciulli, Fischer and Nenciu3 to reach a simple 

minimum condition on the extrapolation error, saturating the Nevanlinna 

lower bound. 193 

Their analytic extrapolation technique, correct in the sense of Hadamard, 

is additionally free, as a bonus, of some problems, like subtractions and guess- 

work on asymptopia, which usually plague the more traditional approaches. 

Yet a large fraction of the most credited results on nN low-energy param- 

eters is based on an incorrect use of analyticity. The situation is particularly 

bad for scattering lengths, since they require a “boundary-to-boundary” extra- 

polation, which can be correctly attempted only and only if we extrapolate to a 

finite arc, or “in the mean, ” and not to a single point on the boundary. 1’4 

Furthermore, SU2-breaking effects are present, above and below the 

elastic threshold. While these effects could be neglected as long as they were 

dwarfed by bigger uncertainties (as is still the case for most elastic processes), 
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r*p elastic scattering has now considerable evidence for such a breaking, at 

least in the P33 resonant wavee5 

The naive expectation that such effects, as those generated by unphysical 

ranges present in 7r-p scattering, 6 could be comparable to the ratio 

d = (m n - mp)/(mn + “p’ 

is destroyed by properly introducing the correlations induced by fixed-t dis- 

persion relations between the nN coupling constant G and the S-wave scattering 

lengths o 7 As a result of the neglect of SU2 breaking in the nucleon doublet, we 

may expect, once we solve these correlations, changes in AG2/G2 comparable 

to the ratio Aw B/~B z rni - rni)/pz (here ~1, and p. will indicate the pion 

masses). 

Nucleon exchange terms are furthermore strongly varying around o2 =f, =()I 

in the important limit8 t-2 /.L: , w2 -, 0, none of the invariant emplitudes has a 

change in the nucleon exchange contribution of order d , when the SU2-symmetric 

limit mn -m is assumed, and only in the combination A (+I + w 0 B(+) a com- 
P 

plete cancellation occurs between terms of order do, All other combinations 

have nucleon exchange terms which change either by terms of order b ‘, or, 

worse, by terms of order b -1 , as it is in the case for the amplitudes A t-1 ‘/u 

and B(-! 

This paper will apply the correct technique developed by Ciulli, Fischer 

and Nenciu3 to fixed-t extrapolation of elastic n*p scattering amplitudes; though 

the next section will deal with the .technique in detail, we do not claim any 

original development, and apologize to the more learned readers for this piece 

of advertising. But we feel our choice justified by the inadequate popularity 

enjoyed by so powerful a method. The following sections will discuss the de- 

tails of the rip scattering analysis, our choice for the inputs and the results 
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obtained, trying whenever possible to discuss their implications on the sym- 

metries of strong interactions. 

III this we have displayed a marked empathy with the authors of the so- 

called GMOR model, 
9 which in our opinion conforms best to a very old principle 

of “logical economy. "10 

2. A correct formulation for fixed-t analytic extrapolation 

Let us assume that an amplitude F(v2), real analytic and even under crossing, 

is known to lie inside a finite “error corridor” on a finite portion fl of the 

boundary r of its holomorphy domain g , 

lF(v2) - &v2) I _< E(v~), v2e I-l (1) 

(where F and E are continuous on r,), and to be bounded on the remainder r 2 

of the boundary by some finite, continuous function 

I@(v2) I _< M(v2) , v2e r, 0 (2) 

To us, and the authors of Refs. 1 and 3, this is the simplest way of smoothly 

interpolating between the actual, isolated measurements, for which the problem 

of continuation would have no stable solution. The details of such an interpola- 

tion influence the actual numerical result, but not its stability; since only con- 

tinuity is needed to build a workable algorithm, only the simplest continuous 

point-to-point interpolation will be used on r10 

All problems related to integration contours of infinite measure may be 

conveniently eliminated by mapping 99 , the cut v 2 complex plane, onto the unit 

disk D, and the map can be chosen so that the point w2, internal to 58 , where 

we are going to extrapolate F, will fall at the center of D. 

For w2 on the real axis (the only points we shall be interested in), this is 

realized by the z-map 
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(3) 

where v L is the lowest branch point in the v ’ plane, and we choose 
2 2” 

vt 2 CfJ 1 0, neglecting the unphysical cut 11 due to radiative capture. 

If rI extends in the v 2 plane from v t to N2, after the z-map rI will span 

on the unit circle an arc, symmetric around z(w2, v:) = 1, of length 

2eM =4 tan 
-1 2-v; 

I- 
22 * Vt - 0 

We can write in D the Cauchy theorem as 

F(z = 0) = F(w2) = 2ti $ (o) 
f 

F(z) % (z)dz 
Z 

r 
(4) 

where G (z) is any function holomorphic in D; Ciulli, Fischer and Nenciu 3 

solved the problem of finding a 3 (z) such that the actually computable integral 

has an actually computable error bound 

I W2) - p(02) I ,< A (w2) < cc 

which saturates Nevanlinna lower bound. 

(5) 

(6) 

The construction of such a g (z) is rather simple: let us first decompose 

F(z) = y-l (z) f (z) (7) 

where f has a constant width A of the error corridor and a constant bound p 
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on r2; it is easy to derive then 

h(z) I =A/6 (z) 9 z E rl 

=dWz) , ZE r2 

and to construct y(z) with the Schwarz-Villat formula, as 

(8) 

(9) 

Let us now consider the problem of determining f(0) from?(z) = y(z) 0 i’(z) 

with a minimum error bound, using a weight function g(z). Since all points of 

r, have now the same statistical weight, being the error corridor of uniform 

width, and being the bound on r2 a constant, we can choose, up to an arbitrary 

multiplicative constant, 

k(z)1 =i , z E rl 

1 
(10) 

= constant < 1, z E r2 D 

Introducing the harmonic measure +, vanishing on rl, and it conjugate F, 

we have then 

g(z) =exp - P 
[ W)+iF@) 1 (11) 

and the extrapolation error bound is easily computed as 

If(O)-?(O)12 A[1 - $(O)]+p$(O)exp - 

which has the absolute minimum 

pw) Al -e(o) = Ag (o)-l 
(12) 

for p = Pn p/A. This minimum saturates the Nevanlinna lower bound: our 

choice for g(z) was then “naturalfl indeed, since it did not affect the information 
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content of the data and reached the ~foptimal’f error bound. 

Returning now to the amplitude F(z), the absolute minimum for the extrap- 

olation error A will then be reached by the weight function 

G(z) = S(Z)Y(Z) , (13) 

as can be easily seen writing Cauchy integral (4) for f(z) and then using defini- 

tion (7); the weight is readily constructed, using Schwarz-Villat formula (9), as 

59(z) =exp &j h (+z dt I QnE(t)f-zj+ 
A <+z dt 

9qj-i ’ 1 (14) 
r2 

and will give a minimum error bound 

;I = (jr (0)-l = h %(0)-l , (15) 

independent of A, which again saturates the Nevanlinna lower bound. 

To demonstrate the main advantage of this technique, let us compare it 

with the most favorable “conventional” case, when F( v 2, obeys an unsubtracted 

dispersion relation, and let be, for simplicity, 

and 

E(V 2, = E 2 * vt 5 v21 N2 

-cY 
(a > 0)s v2>N? 

The extrapolation to the points w2 < V: has then a computable error 

bound, which for the simple case w2 =0 is 

A c onv = z Pn N2/vt2 + -& 

note that the error is no longer computable either for w 2 2 2 v 
t or for any 

physical-region subtraction. Aconv will have an absolute minimum for 
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MO N2/v t” 
-a 

( ) 
= E , since any other choice for N leads to a loss of information, 

and we shall then have 

A E 
conv 7rcx I 

MO =- l+Pn E 

for the choice N2 = v t (MO/e ) l/P or) 0 

(16) 

In the z-map (3) the bound h4 becomes on the circle z = e ii9 

M(6) 1: MO (cos O/2)” 

and, for ‘IT- 0 M << n, we can compute the Nevanlinna bound, saturated by the 

choice (14) for cg (z), as 

(17) 

where, to make a consistent comparison with the conventional estimate (16), 

we have to choose 

eM = 2 tan -1 
J 

(M~E)“~ - 1 ; 

such a comparison is displayed in Table I and demonstrates dramatically the 

pathological behavior of A/E in the limit E - 0 typical of an incorrectly posed 

problem. 

3. Correct techniques and 7r*p elastic amplitudes. 

How can this formalism be adapted to elastic 7r*p scattering? Let us re- 

view its assumptions and see how they fit or have to be modified to fit such a 

process. 

We first assumed a symmetric error corridor in (l), whose sections on 
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the F-plane are circles of radius c(z). The most general case, however, would 

at least require, for suitably small errors, an elliptical section on the F-plane, 

whose orientation will be specified by some real phase Q(Z). To treat just the 

simple case do!/dz = 0 one already needs boundary value techniques, replacing 

Cauchy theorem with the differential monogeneity conditions on the F projections 

on the ellipse axes. 12 This is, however, adequate only for t = 0, where ImF 

and ReF are separately measureable, and since we can expect da/dz # 0 at 

any t # 0, where one has to use either partial -wave or amplitude analyses, we 

prefer the much simpler algorithm based on a symmetric error corridor. 

Of course this implies an overly conservative estimate of error bounds, 

which, in view of the unknown systematic effects hidden in all analyses, we 

prefer to a more optimistic attitude; we also remind the reader that the conven- 

tional standard deviation has been replaced in (1) by an absolute bound, which 

has to be larger (we choose to fix it at the 95% probability level), though still 

of the same order of magnitude, and this is indeed the highest price we have to 

pay for our correct and workable algorithm. 

A finite bound M(z) can easily be reached within the z-map multiplying the 

amplitude F(z) by a simple power (1 + z)‘, which has a cut running from -1 

to -co and does not introduce then any additional singularity inside D; p can 

also be adjusted so that we can conservatively replace M(z) with a constant M, 

making the construction of $G (z) considerably easier. It must also be noted 

that, unless I $3 I is continuous on f, % (z) develops infinite oscillations 

around the points of discontinuity; assuming E(Z) and M(z) to be continuous on 

rl and r2, respectively, this can be avoided everywhere but at z M=exp* i 8 
M’ 

unless E (z,) = M(z~~)~ According to the common-sense expectation that our 

knowledge of any process is rather melting into increasing ignorance than 
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suddenly vanishing at a point, we have joined E(Z) continuously to the constant 

M(z) = M at a point I 0’1 > BM, such that I t9’l - BM <C T - 8 M. 

Given these modifications, we can convert any given amplitude, measured 

on a set of points so dense that a smooth hystogram e(z) can be drawn through 

them, into the functions G(z) = F(z){1 + z)~, with its corresponding hystogram 

G(z) = E(z)(l + z)B, and (3 (z), built with Schwarz-Villat formula (14) from errors 

and bounds on G(z), and then we have all the pieces required to build the algorithm 

proposed in Ref. 3. 

However, this is rigorously applicable only to a function holomorphic in D 

(such as TUT elastic amplitudes). We could eliminate the pole at zB = z(w 2 2 , wB) 

multiplying G(z) and its hystogram by the additional factor (z - zB)’ But if our 

purpose is to gain insight on the dynamical features of nN interactions, other 

than the nN coupling constant, we are much more interested in F(w2), the ampli- 

tude minus its nucleon exchange contribution, than in F(w2) itself. Then this 

approach is useless, since, calling G’(z) = G(z)(z - z,), we have 

F(u2) = F (w2) - F (u2), = - G’(0)/zB - F b2), 
. 

and, for o 2 close to the pole position w2 B, ? (w2) would be given as the difference 

of two very large numbers, close to each other. 

Let us instead consider the integral on the right-hand side of identity (4) for 

the function G(z), and define the generalized Cauchy integrals 

\ 

Iin= l 
f 

n - 1 P. 
2ni Si (0) ’ , 

Fi(z)(l+z) ’ %(z)dz (18) 

I-- 

of which the previous one is just the particular case n = 0. Here i labels the 
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different invariant amplitudes for the process 7r*p - n*p and their combinations 

we may be interested in; note that, from the definition (14) of the weight functions 

$3 i(z), integrals Ii n 
, 

derived for a linear combination of amplitudes Fj cannot be 

obtained by the same linear combination of the integrals I. 
id-f 

Through the tech- 

nique we already described, when 59 i(z) are given by (14) each of these integrals 
-1 is computed with the optimal error bound zi = h gi(0) , independent of n. 

Cauchy theorem then gives the identity equivalent to (4) for nN scattering, 

namely, 

I 
i 

, 

n =‘i(w2)6, 0 + 

, 

Fi(“2)B’n 

, 

0 + 

(Z-ZB)Fi(w2)B pi Z n-+1 + z)Pi 
+ lim 

z-z ‘i to) 1 
B 

which can be written, using the general form for the nucleon exchange contribu- 

tions 

as 

2 
Fi(w2)B = g 

r. 
2 ’ 2 ’ di ’ 

WB - u 

2 
I i n=?+2)6n o + & 

, , 
didn o + 

2 

r. 1 
+ 2 2 

wg-w 

(19) 

With respect to “conventional” techniques, there is a small price to pay, i, e., 

the cumbersome second term on the right-hand side of Eq. (20) for n = 0. As we 
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can easily check, such a term is smoothly varying even in the limit w2 ew2 * B’ 

furthermore in our range of t this correction is always small compared to Ii o, 
, 

eliminating unwelcome strong corrections between Fi ( w2) and G2/4n. Indeed 

we have, for constant ei(z), up to a scale factor, 

-Z Bi(z) = (c~/,~)‘(‘)+~‘( ) 

and then, for 

2 2 l/2 

9;(0)/9i(O) =Bn 2 (2) zzln; 
( > 

Vt 
;2U (21) 

i z=o i 

Integrals Ii n with n 2 1 allow us to determine G2/477 with the same algorithm 
8 

used for amplitude extrapolation just increasing by n0 the argument of the integrand 

used to compute Ii oe All these integrals are optimally evaluated, since their 
, 

errors still saturate the Nevanlinna bound. 

A serious problem is posed by the fact that measurements do not extend down 
2 

ty, since the asymptotic region r2 is contracted by the z-map at the expense 

of an expansion of the threshold region, and this makes the integrals (18) sensitive 

to the low-energy continuation of the amplitudes. We can, however, see that for 

the functions G’i (z) = (z - zB)Gi(z) and their weights 9 i(z), the integrals 

1; m= 1 
27ri S;(O) G;(z) <g;(z) z mdz 

, (22) 

should vanish for any m 2 0, or be consistent with zero within their Nevanlinna 

bounds 3; = h 9; (0)-l; this, however, is not always true if we use the values 

derived from incorrect approaches which may be found in current compilations. 13 
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The correct solution to the problem has been pointed out by Lichard 14. . 

. . . . ;Aa’,, Ar’+, . . . . of the low-energy parameters 
P Q 

and their errors can be built as 

(23) 

2 and then standard minimum procedures are applied to xi ; note that in this case 

we have a criterion for the “acceptability” of a minimum solution, since we may 
2 restrict our search to values of xi satisfying the inequality 

w’2 xi’ <(M+l)Ai o 

Needless to say, the method determines an effective parametrization on the 

energy range just above threshold (Tn < 21 MeV with our choice of TN data), 

2Q+1 not the coefficients for the momentum expansion of Kcm 0 cotan 6’*(Kcm) 
Q 

around threshold! 

4. TN system, above and below threshold. 

The accurate analysis by Carter, Bugg and Carter, 5 commonly dubbed 

“CBC analysis, ” covers only the first resonance region, 310 L Tr 1 88 MeV. 

To use also the information collected at lower and higher energies, we have to 

join it as smoothly as possible to some other analysis. Of the three analyses 

most advertised and readily available, the so-called “theoretical” CEBN analysis 

by Almehed and Lovelace 15 does not quote any error for its partial amplitudes, 

and is therefore useless for the present approach; since the analysis makes 

heavy use of partial-wave conventional dispersion relations, it is also probably 

not “kosher” at all for a correct analytic extrapolation. 

Of the two energy-independent analyses giving both parameters and errors, 
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the recent Saclay analysis, 16 having only very few points below the second res- 

onance, is very hard to be joined to the CBC analysis at Ti7 z 300 MeV and 

furthermore leaves the region T lr 5 88 MeV, which is mapped into a sizable 

arc by the z-map, completely uncovered. Thus we are left only with the rather 

old “experimental” CERN analysis of Donnachie et al. , 17 covering the energy 

. range 1940 2 Tr L 21 MeV, which joins much better to the analysis of Ref. 5. 

Once this selection is completed, we have to derive the effective parameters 

describing the amplitudes just above threshold at 21 MeV >_ T 7r 2 0 and low 

momentum transfer It I 5 2~: o It must be recalled that, if we wish to take 

properly into account the mass-splittings of hadron multiplets, n-p elastic scat- 

tering has two unphysical cuts in the energy plane: a rather long one arising from 

the virtual radiative capture process 7r-p - yn from uB = (rn: - m2 - 
P PH + t/2)/ 

2mp to ~~1 = p* + t/4m 
P’ 

and a much shorter one arising from the charge-exchange 

process n-p - non from w chex -pz+t/2 /2mptouel. 1 The 

first gives everywhere a contribution b of,O(a!) which may be absorbed, together 

with Coulomb corrections, into the electromagnetic corrections 5 and then elim- 

inated, leaving us with a workable algorithm, since we can extrapolate in a cut 
2 w plane rather than in the upper, or lower, half of the w plane, with a trouble- 

some boundary-to-boundary problem. 194 We then use v t = uchex, and this leads 

to a rather large unknown low-energy region, since for instance we have at 

cd2 = t = 0 an arc I8 I <, 0.47 for the unphysical region and two arcs 

1.13 5 10 I 5 0.47 for the 10~ TX region above threshold. On this arc, the ampli- 

tudes Fi have to be represented by the effective parameters a’* , rT*, . . *. and 
18 e Q 

their relative errors, with the adequate continuations to the unphysical cut, and 

an accurate minimization of the xt defined by (23) cannot be overemphasized. 

It must be noted that since at energies 88 ?Trl 21 MeV, we still have to rely 
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on rather old measurements of 7r*p elastic scattering, our errors will be rather 

large, and no improvement will be reached without a better systematic study of 

the TN system at very low energies, such as those available at meson factories. 

We have limited ourselves to a linear dependence on t close to threshold, 

which should be adequate in our small range It I I 2~: , limiting then the analysis 

to an S+ P-wave approximation; the “optimal” values are rather insensitive to the 
2 inclusion of D-waves, and since the xi minima are largely independent both from 

D-wave scattering lengths and from effective-range parameters, we have used, 

as in Ref. 14, a simple scattering length parametrization. It is remarkable that, 

even taking into account non-physical ranges, still our results reproduce quite 

well Lichard’s ones, 14 confirming the smallness of SU2-violations 5,6,19 outside 

the single-particle or resonant contributions. This is due partly to the small shift 

in the pole position, of order 6, in the z-map, and partly to the large weight given 

by $3; (z) to the first resonance region. 

Before going to the actual evaluation of the integrals Ti n we have to choose 
, 

the exponents pi entering the definition of the functions Gi(z) and, consequently, 

the asymptotic bounds Mi(z) = Mi. The exponents have been chosen so that all 

functions, up to small exponent and possible logarithms, may have almost the same 

decreasing power behavior as z - -1 that amplitude B (-) ( w2 t) has. We have then , 

assumed Mi to be comparable to I ei (z M ) I; since for our data selection 7r - 8 M <<TIT, 

the particular choice for Mi / I gi ( zM) I does not appreciably influence Ii n and Ai 
s 

even when increased by orders of magnitude. Being I ei (z) I, on the average, de- 

creasing functions of z as z - z M beyond the second resonance, we fix, assuming 

such a behavior to continue beyond x M, Mi/l+(zhI) I = 1. 

The free scale hi contained in the weights % i(z), which is actually arbitrary, 
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can be fixed, to factorize explicitly the error scale, to be 

Ai = Fi = max z q ‘itZ) 

so that the optimal error saturating Nevanlinna bound becomes 

where the error scale is now appearing explicitly. 

To derive the amplitudes Fi from relations (18) and (20), we still need 

explicit forms for the nucleon exchange terms Fi (w~)~; with a pseudo-vector 

coupling, and including Am = mn - mp # 0, they are 

A(+)(u2t)=d AmWB 

B ’ 
“P 

l-(j- 2 2 
WB - w 

B(+)(w t)/w = B ’ 

A(-)(w t)/. = - 3 hm 
B ’ 2 “p WB - o2 

(25) 

(26) 

(27) 

B(-) tw2 t) = - & 
B ’ 

“P [. 
‘12-m6’2 - 2”” 2 . 

P OB - w 1 (28) 

From these formulae, we can derive the parameters ri to be used in Eq. (20); 

note, however, that we are free in our choice for the di’s, which depend on our 

particular choice for the amplitudes Fi( w2, t). To reproduce the most conventional 
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forms of the zero-energy theorems of current algebra, like Adler’s PCAC con- 

dition, 2o Adler-Weisberger relation 21 and the on-mass-shell approximation to 

TN sigma term, 8 we shall choose 

% 
= $+I = At+) _ At+) + G2/, 

B P 

F2 
= $+)/w = 

( 
Bt+) _ Bt+) 

B’ ) 
w 

F3 
= $-)/w = 

( 
At-) - A(;;) ) /w 

F4 
= g(-) = B(-) - B(-) - 2 G2/(m 

B 
+ m )2 

P n 

to which we shall add the spin-averaged amplitudes 

,t*) = A(*) + w Bt*) 

and their counterparts 

(29) 

(30) 

(31) 

, (32) 

(33) 

3. 
2G2/( mp + m,)- 0 (34) 

In terms of these six amplitudes, we can use current algebra and PCAC at 

q; = q;*= t = u2 = 0, and, extrapolating in q; =qi=t/aatw=O, get the on-mass- 

shell results 

Fl (0, 2~2 ) = 2 c (1 + 6 l)/f2, + G2/mp (35) 

F2 (0, 2~: ) = 4G2 m b2/Am2 
P (36) 

p3 (0, 2~:) = (1 + 6,)/c - 4 mpG2 63/ [(mp + m.J2 Am] (37) 

7,(0,2~:) = -2G2(1+64)/(mn+mp)2+2G264/(m~-m~) (38) 
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and 

F5 (0,211:) =2C(l + 6,)/f2 7T 

qj (0, 4) = t1+ 6,)/8T- 2 G2/(mn + mp)2 , 

(39) 

(40) - 

in terms of the pion decay constant fn and the TN sigma term c. 

Correction factors di are expected not to exceed a maximum of the order 

of the ratio 2~: /rnE from t-channel unitarity arguments 
22 (in the absence of 

anomalous thresholds) and to obey relations 

m Am 

Only two of these relations are really testable without further knowledge of 

the 6i: relation (35), or Adler’s 20 condition and relation (40), the Adler- 

Weisberger relation, 21 while relation (39), with a reasonable guess on 65 from 

t-channel unitarity, allows a “determir~ation” of the nN sigma term. 
8 

All other relations due to the powers of Am in the denominators, can offer 

only a check of the smallness of the on-mass-shell corrections 6i, since these 

latter dominate over the zero-energy limit. 

5. Evaluation and interpretation of numerical results 

Let us begin with n 2 1 in integrals Ii n, * now the only unknown on the right- 
, 

hand side of Eq. (20) is the coupling constant G2/47r, and the equation may be 

written as 

‘l,n 
n-l G2 

= Zi(w2,t) ZB hn’ n 11 (41) 

and since zB << 1 the coefficients of G2/4r are rapidly decreasing with increasing 

n, so that we soon get nothing more than analyticity checks for all n but n = 1. 
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Even then, only B (+)/ h w as a large enough residue r2 to allow a good determina- 

tion of the coupling constant. Due to its small extrapolation error, also C(-)/w 

could afford an independent, though much less accurate determination, once one 

tries to reduce systematic effects coming from truncation at 8 = 0 M of the 

integral at the expense of an error increase by a factor 4/n. 23 

We have computedy2 1 
, 

and Z2 in the range l/2 p: 2 w2 2 0, ItI 12&’ 

obtaining error bounds at a level of 8 - 10% and values for T2 1, consistent with 
, 

each other and relation (41) to better than lo/C. The resulting ~average value for 

the coupling constant is 

G2/4n = 13.161 k 0.137 (42) 

(where we have given the standard error of the average over 54 values for? 2,l)’ 
When compared with all previous determinations, we find our value in very 

good agreement with the “conventional” determination by Samaranayake and 

Woolcock,’ which carefully includes all SU2-symmetry violations, but only 

marginally consistent with all other widely advertised 13 values derived either 

via conventional methods of continuation 24 or via expansions in series of orthog- 

onal polynomials 25 26. or rational functions , as expected from the influence of 

mutual correlations, the deviations from these values are systematically com- 

parable with hB/uB = (rnz - m2 p >c * Note also that our value is much closer 

than many previous results 24-26 
to central values obtained both from isovector 

exchanges in pion photoproduction 27 and from pion exchange in nucleon-nucleon 

scattering. 28 

Since G is not only important as a measure of the pion-nucleon interaction, 

but also it enters a check of the existence of a spontaneously broken, chiral 

symmetry in Goldberger-Treiman relation 29 

(mp+ mn) gA(0) = -a fa G(1 - E) , (43) 
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let us expand a little on the implications of result (42), 

Tf the low pion mass is an indication of an approximate chiral SU2 x SU2 sym- 

metry, spontaneously broken, we expect E N 0 (mt/M2) , with M a “typically 

hadronic” mass ( = 1 GeV/c’); using the experimental values 13 gA(0) = -1.260 z.+ 0.012 

and f,/p& = 0.9442 i 0.0008, the “conventional” estimate 13 for G2/4 7r would give 

E = (6.0 f 1.2) x lO-2, which requires some additional pain 30 to be accommodated, 

in a simple model of chiral symmetry breaking, 9 while value (42) gives 

-2 E=(l.3*1.1)xlo , which fits snugly into the frame of Ref. 9, without giving 

any headache at all. 

With the coupling constant (42), we can now correct integrals Ti o and obtain 
f 

the estimates for the “non-Born” parts Fi(w”, t) of amplitudes Fi(u2, t)O Due to the 

smallness of ri and di for all i # 2, corrections are small but for 3+)/o, and errors 

are in general not increased too much over the NevanTiMa bounds. Tables TV-TX 

present the numerical results in the same range used to determine G2/4n; due to 

the independence of weight functions gi on each other, we can use the definitions 

xt+) + WE(+) = G2/m + Et+) and 
P 

g-),w + $4 = $-),w 

(trivial in any “conventionaT”approach) as consistency checks of our numerical 

computations. 

The first one, becoming independent of B -(+)/cd at w2 = 0, allows a third 

check of our coupling constant determination, better than the use of T6 1 +T6 2 
, , 

made in Ref 23; we can in fact derive 

G2/& = m 
P 

ii(+) (o.,t) - Et+) (O,t) 1 i4n 

which give an average over 9 points 

(44) 

G2/4, = 13.510 f 0.171 (45) 
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(where the error is again the standard error of the average), in good agreement 

with value (42) within the typical error bounds of (44). 

We can further try to compare our extrapolations to the zero-energy theorems 

(35) - (40); reasonable estimates for dl = d5 and 66 may be obtained writing a 

phase representation for C (+)(t) = C(+) (w = 0, t; q; = q; = t/2) and 

C(-)(t) = li? C assuming the only zeros at low t to be 
w--t (-)(w , t; q; = q; = t/2)/w, 

Adler zeros and extending Watson’s theorem at least up to t = 1 Ge v2 0 From 7r~ 

P-wave and I = 0, S-wave elastic phase-shifts 
31 we get the values (not very dif- 

ferent from those derivable in a naive p + E dominance model) 65 = 0.10 and 

‘6 = 0.07. 

Zero-energy theorems become then 

24.60 f c/(56.5 MeV) (46) 

P* Et+) tg,4 = c/(56.5 MeV) 

and 

(47) 

fully consistent with our determinations. Values for the c term may be con- 

strained, in the frame of GOR model for chiral symmetry breaking, 
9 

between a 

minimum of N 17 MeV, given by a unitarity condition on C (+)(w2, tzzq2zq2 = 0) 
1 2 

for 7rz elastic scattering, and a maximum of N 40 MeV, derived assuming the 

unitary singlet piece of SU3 X SU3 breaking Hamiltonian to contribute not more 

than one-third to the average baryon mass, to keep perturbations around the 

chiral limit physically meaningful. These bounds may also be compared to the 

more sophisticated estimates given by Renner. 
33 

Unfortunately any conclusion on the symmetry breaking mechanism is 
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prevented both by the large error on C -(+) to, 4), consequence of our poor 

knowledge of C (+I at pion energies less than 88 MeV, and by the fact that the 

value derivable for c with our estimate for d5, consistent with chiral perturba- 

tion theory, is only marginal to the expectations of GOR model, since from 

relation 47 and Table VIII, we get 

c 2: 41 f 23 MeV (49) 

where now the error is an absolute error bound. This of course reduces to a 

purely academic question the extreme sensitivity of c to additional pieces in 

the symmetry-breaking Hamiltonian (behaving, for instance, as an (8,8) repre- 

sentation of SU3 @ SU,). 34 

Note also that our central value is in perfect agreement with many previous 

determinations which used the non-spin-flip amplitude F t+) att=2pz, and found 

c = 60 MeV. 26,35-38 Treating correctly the nucleon pole, we derive (with 

mn # mp) 

$+I (0, 2pE) = Et+) (0, 2$) (50) 

instead of the result obtained with mn - m = 0 
P 

$+I (0, Q) = $+I (0, 2/.$) - z 
e 

“p ZrnE-pz 
. (50’) 

Using the zero-energy theorem (39), the correction required to go from 

(50’) to (50) is rather large and represents a change in c of = -20 MeV, which 

brings the results obtained by Nielsen and Oades, 35 Lichard, 36 Langbein, 26 

Chao et al.37 and Hijhler et al. 38 (which all use ?(+) and mn - mp = 0 instead of 

c” t+) and the correct mass spectrum) to agree remarkably well with relation (49). 

Our value agrees only marginally with the “internal dispersion relation’! result of 

” T 
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Moir et al. , 39 but in view of their sensitivity to a “best-fit”-selection 40 criterion 

we feel such a difference not compelling at all. 

We can then conclude that, once the result of Ref. 39 is taken with the nec- 

essary caution and the huge value of Carter et al. 41 suitably reduced for sys- 

tematic effects in higher partial waves, 35 all “on-mass-shell” determinations 

of c agree with a central value = 40 MeV, 42 unfortunately only marginal to 

the domain constant with an “orthodox” (3,3) + (3,3) model. 9 

All other features of amplitudes Fi(w2 , t) do not seem to require further com- 

plications 43 than one-particle exchanges with constant couplings (normalized,when 

possible, to zero-energy theorems at w2 = 0, t = Z/J:), given by A(1231) in both 

s and u channels and ~(770) and E (990) in the t channel. These exchanges, once 

the mass of the E is fixed, contain only one free parameter, the product 

G - t-f-1 E *7T GE z N for the amplitudes A and $+I, since A and p couplings may be 

3/2 fixed respectively by a fit to 6 1+ around the resonance5’ l3 (giving Gkr/47r = 15) 

and by p-meson dominance, which requires 

G N Gv.- 
P== PNN = fP = 2026 

With respect to systematic analyses by Lichard 36 and Ilohler et al. 38 around 

u2 - t+) = t = 0 the major differences are a downward shift in A , consistent with the 

decreased value for G2/47r, and a substantially steeper C -%d, consistent with 

the ratio GT 
p RdGpVN~ 

suggested by p-meson dominance. 

-t-j The results exhibit also a strange hump around t = 0 in C /W and a much 

- t+) less pronounced shoulder in C at the same position (better visibility if smooth 

-&I) A and E exchanges are subtracted); its presence in both C amplitudes (and not 

elsewhere) with the same sign and its position allow to track it back to an under- 

estimate of the errors on Sll wave around the first resonance in Ref. 5; though we 
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tested that such an effect is indeed washed out by an increase in Sll errors in 

this energy range, our philosophy prevents us from tampering any further with 

our input. Note that analyses like those of Ref. 36 and 38 eliminate a priori any 

such structure by assuming a linear or quasi-linear expansion around w2 =t=o 

and then computing its coefficients from smooth interpolations in the physical 

region. 

6. Summary and conclusions 

At the present level of information on 7r*p elastic scattering 

(i) we have found an appreciable reduction in G2/47r due to a systematic de- 

scription of SU2-invariance violations, and the new value G2/4n N 13,16 is con- 

sistent with a very small correction E 5 2% to the Goldberger-Treiman relation; 

(ii) there is no evidence for large corrections to the zero-energy theorems 

when going from zero pion four-momenta to the on-mass-shell point w2 = 0, 

t = 24 ; 

(iii) the c -commutator is estimated to have a value of = 41 MeV (with an 

absolute error bound of 23 hleV), in agreement with previous determinations once 

these are corrected for SU2-non-invariance effects in the nucleon pole, but neither 

reinforcing nor weakening the case for a pure (3,F) model of chiral symmetry 

breaking; 

(iv) apart from a hump in E (*) amplitudes, very probably caused by an under- 

estimate in the errors of the input, we do not see any structure beyond very 

simple one-particle exchanges, normalized to zero-energy theorems at w2 = 0 
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Table Captions 

I. 

II. 

III. 

IV. 

v. 

VI. 

VII. 

VIII. 

Ix. 

Comparison between error bounds in a conventional and a correct dis- 

persive approach. 

The essential parameters in deriving the low-energy amplitudes with 

the optimally evaluated integrals 2 n. 
, 

Effective scattering lengths ai f derived with Lichard’s statistical 

method, 10 with r1 =Oandai*=O(k’ 22). 

.-F-G (w2,t) The amplitude A 0 

The amplitude B -(+) (cd,t)/u. 

The amplitude A -(-) (0, t>/w. 

The amplitude B -(-) (u2, t). 

The amplitude ?! (+) ( w2, t) 0 

The amplitude ?!(-) (W,t)/wo 



TABLE I 

CL = l/4 cl = l/10 

2.5 

5 

10 

1.4 

2.3 

3.2 -3.2 x 10-3 9.5 -1.3 x 10-6 

lo2 6.1 -3.2 x 1O-5 16.8 -1.3 x 10-11 

lo3 9.1 -3.2 x 10-7 24.2 -1.3 x 10-16 

lo4 12.1 -3.2 x 1O-g 31.5 -1.3 x 1o-2l 

lo5 14.9 -3.2 x lo-l1 38.8 -1.3 x 10-26 

-1.3 x 10-31 

-5.0 x 1o-2 

-1.3 x 10-2 

5.1 

7.3 

-1.3 x 10-3 

-4.1 x 10-5 

lo6 17.9 -3.2 x lo-l3 46.2 
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TABLE II 

i F B r d 
i i i i 

*(+I 47uB(mn - m 1 47f(m -m> 
1 31’2 _ n 

m m +m 
P n P 

2 

3 

4 

5 

6 

B(+'/v -l/2 

,G> 0 

B(-) 0 

cc+> 

CC--) /V 

4Tr - 0 
m 

P 

47i(mn - m ) 

"p 

4awg 

mP 

312 - 
47rwB(mn - m - wB) 47r(mn - m > 

mP 
mn + m 

P 

0 - 
4n(m n - m - wB) 0 

mP 



TABLE III 

112 = 
ao+ 0.208 k 0.020 312 = 

ao+ 
-0.092 f 0.017 

.1/2 = -0.109 f 0.036 312 
l- al- 

= -0.063 ~tr 0.022 

.1/2 = -0.045 IL 0.035 ,312 = 0.187 zk 0.022 
1+ 1+ 



TABLE IV 

2 w 0.0 0.1 0.2 

t 
-2.0 
-1.5 
-1.0 
-0.5 

0.0 
0.5 
1.0 
1.5 
2.0 

20.06 2 1.73 20.58 f. 1.77 21.14 + 1.81 
20.66 + 1.78 21.18 2 1.81 21.74 + 1.86 
21.27 + 1.83 21.80 + 1.86 22.36 + 1.90 
21.90 + 1.88 22.43 2 1.91 22.99 _+ 1.95 
22.55 * 1.93 23.08 + 1.96 23.64 + 2.00 
23.22 If: 1.98 23.75 + 2.01 24.32 f 2.05 
23.92 -I 2.04 24.45 2~ 2.07 25.02 k 2.10 
24.65 + 2.09 25.18 2 2.12 25.74 5 2.15 
25.41 Ir 2.15 25.94 t 2.18 26.50 * 2.21 

2 w 0.3 0.4 0.5 

t 
-2.0 
-1.5 
-1.0 
-0.5 

0.0 
0.5 
1.0 
1.5 
2.0 

21.74 + 1.87 22.40 + 1.95 23.14 5 2.05 
22.35 + 1.91 23.01 + 1.98 23.74 + 2.08 
22.97 2: 1.96 23.63 + 2.02 24.35 * 2.11 
23.60 2 2.00 24.26 f 2.06 24.98 i: 2.15 
24.25 + 2.05 24.90 f. 2.11 25.62 L- 2.18 
24.92 2 2.10 25.57 f 2.15 26.28 + 2.23 
25.62 t 2.15 26.26 21 2.20 26.96 + 2.27 
26.34 2 2.20 26.98 + 2.25 27.67 5 2.31 
27.10 + 2.25 27.74 + 2.30 28.42 + 2.36 



TABLE V 

cd2 0.0 0.1 0.2 

t 

-2.0 -3.97 5 0.52 
-1.5 -3.85 + 0.50 
-1.0 -3.73 5 0.49 
-0.5 -3.62 + 0.48 

0.0 -3.51 t 0.47 
0.5 -3.40 2 0.46 
1.0 -3.29 + 0.45 
1.5 -3.19 * 0.44 
2.0 -3.09 + 0.43 

-4.09 + 0.56 
-3.96 5 0.55 
-3.84 + 0.53 
-3.73 f 0.52 
-3.61 + 0.50 
-3.50 2 0.49 
-3.39 + 0.48 
-3.28 + 0.47 
-3.17 I! 0.46 

-4.22 f 0.62 
-4.09 2 0.60 
-3.96 Itr 0.58 
-3.84 2 0.56 
-3.72 k 0.54 
-3.60 I!I 0.53 
-3.49 f 0.52 
-3.37 t 0.50 
-3.26 I!I 0.49 

J 0.3 0.4 0.5 

t 

-2.0 
-1.5 
-1.0 
-0.5 

0.0 
0.5 
1.0 
1.5 
2.0 

-4.36 2 0.69 -4.51 21 0.78 -4.67 ?I 0.91 
-4.22 + 0.66 -4.37 f 0.74 -4.52 t 0.86 
-4.09 2 0.64 -4.23 5 0.71 -4.38 k 0.81 
-3.96 2 0.61 -4.09 5 0.68 -4.24 + 0.77 
-3.84 + 0.59 -3.96 f. 0.66 -4.10 + 0.73 
-3.71 It 0.57 -3.83 t 0.63 -3.96 + 0.70 
-3.59 ?I 0.56 -3.71 _+ 0.61 -3.83 + 0.67 
-3.47 + 0.54 -3.58 r!z 0.59 -3.70 f 0.65 
-3.36 -t 0.53 -3.46 I? 0.57 -3.57 k 0.62 

3 



TABLE VI 

J 0.0 0.1 0.2 

t 

-2.0 
-1.5 
-1.0 
-0.5 

0.0 
0.5 
1.0 
1.5 
2.0 

-7.83 Ik 0.73 -7.95 2 0.77 -8.07 t 0.82 
-8.00 t 0.74 -8.12 IL 0.77 -8.24 t 0.82 
-8.17 + 0.74 -8.28 t 0.77 -8.41 _+ 0.81 
-8.33 rt: 0.74 -8.45 t 0.78 -8.58 f 0.82 
-8.49 f 0.75 -8.62 I? 0.78 -8.74 + 0.82 
-8.65 2 0.75 -8.78 + 0.78 -8.74 t 0.82 
-8.82 + 0.76 -8.94 ir 0.79 -8.91 f 0.82 
-8.98 + 0.76 -9.11 + 0.79 -9.07 zt 0.82 
-9.15 f 0.77 -9.27 I! 0.79 -9.24 + 0.82 

Lo2 0.3 0.4 0.5 

t 

-2.0 
-1.5 
-1.0 
-0.5 

0.0 
0.5 
1.0 
1.5 
2.0 

-8.18 rf 0.87 -8.31 f 0.95 
-8.36 5 0.87 -8.49 t 0.94 
-8.54 + 0.86 -8.67 t 0.39 
-8.71 t 0.86 -8.85 2 0.92 
-8.88 2 0.86 -9.02 t 0.91 
-9.05 t 0.86 -9.19 t 0.91 
-9.21 t 0.86 -9.36 t 0.91 
-9.38 2 0.86 -9.53 2 0.91 
-9.54 t 0.86 -9.69 t 0.90 

-8.42 2 1.04 
-8.62 f 1.02 
-8.81 t 1.01 
-9.00 t 0.99 
-9.17 + 0.98 
-9.35 + 0.97 
-9.52 It 0.97 
-9.69 2 0.96 
-9.85 2 0.96 



TABLE VII 

2 w 0.0 0.1 0.2 

t 

-2.0 
-1.5 
-1.0 
-0.5 

0.0 
0.5 
1.0 
1.5 
2.0 

8.21 f 0.75 8.32 f 0.79 
8.29 + 0.75 8.39 t 0.79 
8.36 k 0.75 8.47 f 0.78 
8.43 5 0.75 8.53 + 0.78 
8.49 f 0.74 8.60 + 0.78 
8.55 f 0.74 8.66 !I 0.77 
8.61 f 0.74 8.72 Z!I 0.77 
8.67 ?I 0.74 8.78 + 0.77 
8.74 t 0.74 8.84 k 0.77 

8.42 5 0.84 
8.50 I! 0.83 
8.58 I! 0.82 
8.64 f 0.82 
8.71 + 0.81 
8.77 I! 0.81 
8.83 + 0.80 
8.88 It 0.80 
8.94 + 0.80 

2 
w 0.3 0.4 0.5 

t 
-2.0 8.54 t 0.90 8.66 t 0.97 8.80 _+ 1.07 
-1.5 8.62 f 0.89 8.75 + 0.95 8.88 z!I 1.05 
-1.0 8.69 + 0.87 8.82 or 0.94 8.96 rl 1.02 
-0.5 8.76 !I 0.87 8.89 2 0.92 9.02 k 1.00 

0.0 8.82 f 0.86 8.95 2 0.91 9.08 + 0.98 
0.5 8.88 2 0.85 9.01 + 0.90 9.14 + 0.96 
1.0 8.94 2 0.84 9.06 + 0.89 9.20 + 0.95 
1.5 9.00 t 0.84 9.12 + 0.88 9.25 If 0.93 
2.0 9.05 t 0.83 9.17 t 0.87 9.29 2 0.92 
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TABLE VIII 

2 w 0.0 0.1 0.2 

t 

-2.0 
-1.5 
-1.0 
-0.5 

0.0 
0.5 
1.0 
1.5 
2.0 

-3.797 t 0.228 -3.730-+ 0.231 
-3.134t 0.203 -3.056kO.204 
-2.4902 0.178 -2.4022 0.178 
-1.851t 0.166 -1.7532 0.164 
-1.347 f 0.184 -1.2392 0.182 
-0.862kO.233 -0.745+ 0.231 
-0.360t 0.292 -0.2332 0.290 

0.1692 0.351 0.305+ 0.350 
0.719* 0.409 0.864+ 0.409 

-3.660t 0.236 
-2.976'+ 0.207 
-2.311t 0.178 
-1.650+0.162 
-1.1262 0.179 
-0.624+ 0.229 
-0.102+ 0.290 

0.446+ 0.351 
1.0142 0.410 

Ill2 0.3 0.4 0.5 

t 

-2.0 
-1.5 
-1.0 
-0.5 

0.0 
0.5 
1.0 
1.5 
2.0 

-3.5885 0.243 -3.5112 0.252 -3.429+ 0.266 
-2.891t 0.210 -2.803t0.215 -2.709t 0.223 
-2.2162 0.179 -2.115+ 0.180 -2.009t 0.183 
-1.5432 0.161 -1.430+0.160 -1.3102 0.160 
-1.009+ 0.178 -0.885+0.175 -0.754t 0.173 
-0.497 rf: 0.227 -0.364+ 0.226 -0.225+ 0.225 

0.035 + 0.289 0.177 t 0.289 0.326+ 0.290 
0.592+ 0.351 0.7442 0.353 0.903? 0.356 
1.1702 0.412 1.3332 0.415 1.5015 0.419 



TABLE IX 

2 
w 0.0 0.1 0.2 

t 

-2.0 
-1.5 
-1.0 
-0.5 

0.0 
0.5 
1.0 
1.5 
2.0 

0.439 _+ 0.088 0.402 + 0.093 
0.723 -I 0.077 0.708 t 0.080 
0.961 t 0.065 0.963 t 0.067 
0.974 + 0.059 0.985 5 0.060 
0.684 L!I 0.063 0.692 ~tr 0.064 
0.222 + 0.078 0.218 f 0.079 

-0.140 2 0.096 -0.155 I! 0.098 
-0.393 k 0.113 -0.415 t 0.116 
-0.547 * 0.130 -0.574 z!z 0.133 

0.358 ?I 0.098 
0.692 t 0.083 
0.968 + 0.070 
0.999 t 0.061 
0.704 rf: 0.065 
0.215 rf: 0.081 

-0.170 t 0.101 
-0.438 + 0.120 
-0.602 I!Z 0.137 

lo2 0.3 0.4 0.5 

t 

-2.0 
-1.5 
-1.0 
-0.5 

0.0 
0.5 
1.0 
1.5 
2.0 

0.308 f 0.105 0.251 2 0.114 0.186 f 0.127 
0.675 2 0.088 0.656 5 0.094 0.640 t 0.102 
0.974 t 0.072 0.984 t 0.076 1.001 + 0.081 
1.018 t 0.063 1.041 t 0.065 1.074 + 0.068 
0.719 z!z 0.066 0.739 z!I 0.068 0.768 + 0.070 
0.214 z!z 0.083 0.216 _+ 0.086 0.222 rfr 0.089 

-0.185 + 0.104 -0.200 I!Z 0.108 -0.213 rt 0.112 
-0.461 + 0.124 -0.486 + 0.128 -0.513 I! 0.134 
-0.631 t 0.142 -0,663 _+ 0.148 -0.697 ?I 0.154 


