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Abstract 

It is pointed out that a certain class of nonrenormalizable 

theories can be made renormalizable if a theory possesses an 

ultraviolet stable fixed point. 

As an example, four-fermion theories of Nambu-Jona- 

Lasinfo type are considered, 
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It is well known that in a class of nom-eaormalizable field theories, inter- 

esting collective phenomena occur. In particular, in Nambu-Jona-Lasinio type1 

four-fermion theories, one can show the existence of collective bosonic bound 

states by solving Bethe-Salpeter equations within a certain approximation. Thus 

these models are actually interacting theories of fermions and bosons despite the 

fact that the original Lagrangian contains only spinor fields, 

Usually these four-fermion models are, of course, regarded as nonrenormal- 

izable. In a case of current-current type self-interaction, however, it was known 

for some time that one can formally develop a renormalizable perturbation 

series. 2,3 Here the basic idea is to expand the theory in terms of induced 

coupling constants between collective bosons and fermions instead of the original 

four-fermion coupling constant. In the model of Ref. 2 and 3, a collective bound 

state, a photon, appears in the vector channel. When one expands the theory in 

terms of photon-fermion coupling constant, one finds that the perturbation series 

is renormalizable and obtains the same S-matrix as in quantum electrodynamics 

to all orders in perturbation theory. 

Recently this type of renormalizability and correspondence of four-fermion 

models to certain renormalizable theories has been extended to other types of 

four-fermion interactions, 4 The original Nambu-Jona-Lasinio model, for in- 

stance, is shown to correspond to the linear a-model. 

In these works, however, the renormalizability of perturbation series is 

yet formal. Although the series has a finite number of superficially divergent 

vertices and all the ultraviolet infinities of the theory are amalgamated into field, 

mass and charge renormalizations, renormalized coupliag constants are not 

automatically guaranteed to take finite and cut-off independent values. This is 

because in four-fermion theories induced coupling constants become 
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independent of the original Fermi coupling constant G after renormalization and 

cannot be made finite and arbitrary by making G cut-off dependent in a prescribed 

way. It is well known that in the lowest order, Hartree-Fock, approximation 

induced Yukawa coupling constant behaves as -G/GlnA=l/ln.A (A is the ultraviolet 
_. gi 

cut-off). It is possible to prove that this feature persists to all orders. 

In this paper we shall show that there is a Gell-Mann-Low eigenvalue con- 

dition on these radiatively created charges, If a theory possesses an ultraviolet 

stable fixed point, they can take well-defined and cut-off independent values. In 

this case Nambu-Jona-Lasinio theories become completely independent of ultra- 

violet cut-off and equivalent to corresponding renormalizable models. On the 

other hand, if a theory does not possess a fixed point, cut-off dependence per- 

sists in created charges and they vanish in the limit of tnfinite cut-off. In this 

case, four-fermion models become a free field theory of collective bosons and 

fermions. 

Let us first consider the Nambu-Jona-Lasinio model. The Lagrangian is 

given by 

(1) 

where $1~ an iso-doublet spinor field. The description of collective bound 

states can be facilitated if we introduce collective variables (r and 7~ and a new 

Lagrangian, 

(2) 

where 

g is a bare induced Yukawa coupling constant and a term proportional to 8~~ is 

interpreted as a boson self-energy counterterm. The new Lagrangian 9” has the 



same dynamical content as 9 since if we perform a path integration over aand 

77 in 

I 
d$d$dcr d?i exp i 

-t ( 
‘&/(@,v , fJJQ+h t-3 7)) 3 (3) 

we obtain the original generating functional, 
5 

W[v, y] = 
I 

d#dv ew(i (-W$, ?) + f$+v n)} . (4) 

A renormalized perturbation expansion for 9 can be formally set up if we 

add and subtract vertices for bound states, 

-47 

w2 -- 
2 z3 ( 4 ++$ , > (5) 

‘R 2 -+2 --u +7r ( 

2 

4 R R )l 

+ 
1 

(3 - 1) FR i y8GR - gR(zl-1)3R(uR+ iY5T’R)qR 

- $ ((Q Q2 + t8p?R,2) + ;(P; - w2 z3) (u; +3;) 

(6) 

Here the notations are standard, Five terms in the first curly bracket in Eq. (6) 
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are regarded as parts of the renormalized Lagrangian and those in the second 

bracket as counterterms. gR and hR are renormalized induced coupling con- 

stants. Next let us compare the above expression with that of the linear a-model, 

- $L” (u2 +T2, - $ (CT2 +;;2)2 , (7) 

+ tz 2-l) 5, iY ‘#R -gR(’ 1-l) iRtuR + b5? ‘R) eR + 

; ((z3-l)p; 9 z36p2)(u; +?I;) - 2 (Z4-1) (u; +q2} . -- (8) 

We notice that equations (6) and (8) differ in the coefficient of counterterms. 

The elimination of ultraviolet infinities in the linear a-model is well under- 

stood. 6 Since divergent parts of radiative corrections have a strictly chiral 

symmetric structure, they can be eliminated by a common wave-function renor- 

malization factor Z2 for v and 7~ and a common mass counterterm 6~ if we choose 

appropriate subtraction points. Then renormalization factors are determined as 

a power series in gR, AR and In A , 

Zi-1 + (divergent part of radiative corrections)i = 0 , (9) 

i=l,2,3,4 , 

(Z3-1) ,ui + Z36~2 -I- (divergent part of self energy) = 0 . (10) 
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On the other hand in the Nambu-Jona-Lasinio model the elimination of infinities 

has an unconventional feature. It is performed by 

Zi-1 + (divergent part of radiative corrections)i = 0 , (11) 

i=l,2 , 

-1 + (divergent part of radiative corrections)i = 0 , (12) 

i=3,4 , 

- $ + Z3bp2 + (divergent part of self energy) = 0 . (13) 

Here the radiative corrections in (9), (lo), and (ll), (12), (13) have an identical 

structure since they are calculated using the same renormalized Lagrangian. In 

Nambu-Jona-Lasinio model there are only three parameters Z I, Z 2 and 6~ to 

absorb infinities and hence the above equations (ll), (12), (13) impose nontrivial 

restrictions on gR and hR. Comparing (9) and (12) we notice that the vanishing 

of Z factors, 

;lm z3(gR, hR, a) = ’ , (14) 

lim Z (g 
A-a 4 R 

,%,A) =0 , (15) 

is needed to eliminate infinities in Nambu-Jona-Lasinio theory. When these 

conditions are satisfied with cut-off independent values of gR and hR, the model 

becomes free of ultraviolet cut-off. Furthermore since the same renormalized 

Lagrangian is used to compute Green’s functions and S-matrix in both Nambu- 

Jona-Lasinio and o-model these quantities will have an identical structure when 

expanded in power series in gR and AR. From this the equivalence of two theo- 

ries follows. 



-7- 

The above equations (14) and (15) are nothing but familiar compositeness 

conditions. This is only reasonable since u and R are fermion-antifermion 

composites in our theory. Although numerous literature7 exist on the composite- 

ness or bootstrap condition Z=O, its physical significance has been somewhat 

obscured due to ultraviolet divergences in the case of a relativistic field theory. 

Next we analyze these conditions using renormalization group equations and the 

idea of Gell-Mann-Low fixed point. In the following we choose subtraction points 

at certain nonexceptional Euclidean momenta in order to avoid possible infrared 

problems. 

It is well known that renormalization factors obey Callan-Symanzik equa- 

tions , 8 

- p,gR+ 2yM) Z3tgR,hR,“) = o 3 (16) 

R- P,(++$-) + 44 Z&R,XR’R) = 0 . (17) 

Here yM@,l R h ) is the anomalous dimension of the meson (o and-ii) field. /3 
g 

and ,BA are the p-functions related to the scale transformation of gR and AR 

respectively. 

First let us consider a possibility that pg and p, have an ultraviolet stable 

fixed point at (gco R, hl) in two-dimensional coupling constant plane, 

and renormalized coupling constants are equal to these values, 

gR =g; , hR=h; . (19) 



Then using Callan-Symanzik equations we obtain an exponentiation of In A, 
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‘4&R. ‘R’n) - A 
-4Y&;, ‘“R, 

. 

(20) 

(21) 

since yMtgz9 R boo) is non-negative due to unitarity, 9 it follows that, 10 

lim Z3=0 , (22) 
A-03 

lim Z4=0 . (23) 
A-coo 

Thus g,=g;, R R h =h* is a solution to our bootstrap condition. 

Actually the above assumption (19) can be relaxed significantly. As is well 

known in the renormalization group analysis, as far as gR and hR lie within a 

domain of attraction of the fixed point there are so-called running coupling 

constants which interpolate between (g,, hR) and (g;, hg) in the coupling con- 

stant plane. When Callan-Symanzik equations are solved in terms of them, we 

obtain a minor correction to (20) and (21) which leaves our result (22) and (23) 

left unchanged. Thus the bootstrap condition can be solved for a certain range 

of values for gR and hR if the theory possesses an ultraviolet stable fixed point. 11 

In this case we obtain an interesting phenomenon; although we start with a 

theory of a spinor field and dimensional constant G, we arrive at a theory of 

bosons and fermion with two-dimensionless numbers gR and hR as well as a 

dimensional constant /.L~. It appears that the dimensional constant G has some- 

how been traded for pR. On the other hand parameters gR and hR are independent 

of G and are interpreted as being radiatively created. They are determined to 

be a solution to bootstrap conditions, however, these equations do not completely 
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fix them and allow them to take values within a certain range. The theory 

exhibits a scaling behavior at high energy with anomalous dimensions. 

Such a mechanism seems to be common to most of the models for dynamical 

boundstates. For instance in the models of Refs. 12 and 13, the analysis is 

based on an assumed existence of a power-behaved, nonperturbative solution to 

Schwinger-Dyson integral equations. The residue of a bound state becomes cut- 

off independent when a Bethe-Salpeter kernel possesses a certain power behavior. 

All of this will happen if a theory has a fixed point. 

On the other hand if a fixed point is absent in the theory, cut-off dependence 

persists in gR and AR. In this case renormalization group equation is useless 

and we have to directly inspect the expression of Z factors in terms of gR, hR 

and In A. In the n-th order perturbation theory Z factors have a structure, 

Z=l+ +Cinfn)lnA+... +Cn,fn(lnA)n , 

where f is either gi or A R. We notice that bootstrap conditions imply a cut-off 

dependence of gR and hR as, 

2 1 1 
gR-n ’ ‘R-E’ (25) 

in each order of perturbation theory. Hence both vanish as A-+=. Thus we 

obtain a trivial free-field result. Therefore the eigenvalue is a condition to 

support nontrivial values for radiatively generated charges. 

Apparently the above result applies to other types of four-fermion theories 

as well. Unfortunately in most of nongauge Yukawa theories the origin of the 

coupling constant plane is ultraviolet unstable. 14 In these cases we may not be 

able to discuss fixed points within the realm of weak-coupling perturbation 

expansion. On the other hand if we let non-Abelian gauge field couple to our 
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theories, it is possible to stabilize the origin. The analysis seems feasible in 

this case though it becomes complicated due to gauge-dependence of renormali- 

zation factors. 

The above results become somewhat modified when one considers a four- 

fermi theory where a gauge field appears as collective bound states. Here the 

simplest example is the Abelian model of Refs. (2) and (3), 

Using the same technique as before we can introduce a collective 

a new Lagrangian 

Here the term proportional to 6p2 is again interpreted as a mass counterterm. 

(26) 

variable AC1 and 

(27) 

It should be adjusted to cancel the photon self-energy when we use a noncovariant 

momentum space cut-off. If a gauge invariant regulator or dimensional regulari- 

zation is used, we should put &L = 0. Then the above model becomes equivalent 

to quantum electrodynamics if a bootstrap condition 

,‘lm Z3(eR’ n) = ’ , (28) 

is satisfied. 

Now we argue that the above equation (28) may not be satisfied even by im- 

posing an eigenvalue condition, 

p(ez) = 0 . (29) 

Here the basic reason is that the anomalous dimension of a photon field vanishes 

at the fixed point due to gauge invariance and hence Z3 remains nonzero in the 

limit A-too. 
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Though this may appear obvious to those familiar with finite theory of 

quantum electrodynamics, 15,16 we shall give a simple argument using dimen- 

sional regularization. In % Hooft’s scheme of renormalization 17 Z3 is expanded 

in a Laraunt series in n-4, 

z3=1+ 2 
av te;) 

u=l (n-4)V ’ 

where al, has a structure, 

aV(ef$ = aVl(ek)’ + aV2(eD) 2 v+1+ . . . . 

a1 is related to the p-function, 

4 ei ai = p(ef) . 

Then using renormalization group constraints, 17 

+ a v-l > “; - a; = 0 , 

(30) 

(31) 

(32) 

(33) 

and the fact that the zero of the p-function is an infinite-order zero, 
16 one obtains, 

aV=O , v=l,2,3 ,... . (34) 

HenceI 

Z3(eg) = 1 . 

This is just the other extreme of the Lehmann bound opposite to the bootstrap 

Z3 = 0. Thus it appears unlikely that a photon (Abelian gauge field) can be in- 

terpreted as a fermion-antifermion bound state. 

It is also possible to consider a non-Abelian analogue of the above example. 

For instance in the case of SU(2) it is given by 

(36) 
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Introducing a field $ and putting 6~ = 0 we obtain, 

By adding a ghost term we write the Lagrangian as 

(37) 

Then, comparing Eq. (38) with the Lagrangian of an SU(2) Yang-Mills theory 

coupled with fermions, we notice that two theories become equivalent if a boot- 

strap condition ZI=O, Z3=0 is satisfied. Renormalization factors Z1, Z3 are 

those associated with three-vector and two-vector vertices, respectively. 

Although these parameters are gauge dependent, we can solve Callan- 

Symanzik equations and evaluate them due to asymptotic freedom. The result 

depends on the choice of group and representations. It is possible to show that 

if quantities 

p=L (+C2-$T2) , 
16n2 

-Yc2) , 

(3% 

(40) 

are both positive, the running coupling constant and gauge parameter go to zero, 

g;= o!; = 0, in the deep Euclidean limit. 19 Here C2 is the value of a quadratic 
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Casimir operator in the adjoint representation and T2 is that of the representa- 

tion of fermions. Then by using renormalization group equations we obtain, 

z3-f?4mc=J n -iv@ = 0 . 
(41) 

(42) 

This result is gauge independent in the sense that it holds in any gauge. Thus 

bootstrap conditions are satisfied. On the other hand if B>O but 7~0, Z’s remain 

nonzero in the limit of infinite cut-off. In the case of SU(2), for example, 

,8,y>O if there are F fermion doublets with 13/2 <F < 11. 

Our method described above has an interesting comparison with that of 

Wilson2’ who introduced an unconventional renormalization procedure for super- 

renormalizable theories in less than four dimensions. In this procedure dimen- 

sional coupling constants of a theory are let go to infinity while properly defined 

dimensionless couplings constants are held fixed as A-m. Then a super- 

renormalizable theory is converted into a nontrivial renormalizable theory. 

There is an eigenvalue condition for dimensionless coupling constant and by - 

satisfying it the theory exhibits a scaling behavior with anomalous dimensions. 

Here relevant eigenvalues are infrared stable fixed points. 

A great virtue of this method is the guaranteed existence of a fixed point 

close to the origin so far as e=4-d is small. However, in the limit c-0 

Wilson’s prescription gives a free field theory. Therefore here the existence 

of an eigenvalue is achieved only by having a trivial theory at four dimensions. 

Our work suggests an intimate connection between the idea of dynamical 

symmetry breakdown and Gell-Mann-Low fixed point. If a theory possesses an 

ultraviolet stable fixed point, some of its fields (presumably spin-zero mesons) 
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may be interpreted as composites and their vertices can be eliminated from the 

Lagrangian without spoiling renormalizability. Then we have a smaller number 

of fields and vertices and a more constrained theory than the original one. Al- 

lowed-.phases in such a theory may well be quite restricted. Hopefully such a 

procedure eliminates a high degree of arbitrariness in the conventional Higgs 

mechanism and gives us a new approach to dynamical symmetry breakdown, 

The author is indebted to G. Guralnik and N. Snyderman for discussions on 

the possibility of fixed points in four-fermi theories., He also thanks Y. Nambu 

for discussions and reading the manuscript. 

After completion of this manuscript we received a preprint by C. Bender, 

F, Cooper, and G, Guralnik (Los Alamos Report 7’7-1093), where some of the 

materials of this paper are discussed using mean field theory, 
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