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ABSTRACT 

This paper continues our studies of quantum field theories on a 

lattice. We develop techniques for computing the low lying spectrum 

of a lattice Hamiltonian using a variational approach, without recourse 

either to weak or strong coupling expansions. Our variational methods, 

which are relatively simple and straightforward, are applied to the 

Ising model in a transverse magnetic field as well as to a free spinless 

field theory. We demonstrate their accuracy in the vicinity of a 

phase transition for the Ising model by comparing with known exact 

solutions. 
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1. INTRODUCTION 

Interest in the study of non-abelian color gauge theories has been spurred 

by hopes that a fundamental theory of strong interactions will emerge from that 

class of theories. _. A primary goal in the study of such theories is to determine 

whether they confine the quarks and gluons that are their basic degrees of free- 

dom. To study this question one needs an approach that does not rely on pertur- 

bative methods for calculating the spectrum of low lying physical states. This 

paper is the third in a series’ concerned with the development of more general 

techniques applicable to problems of this type and to the study of specific exam- 

ples in order to gain an understanding as to how well these techniques work. In 

particular in papers I and II we focused upon the problem of constructing lattice 

theories unitarily equivalent to cutoff continuum theories and we analyzed several 

models in the strong coupling limit. In this paper we develop straightforward 

and relatively simple variational methods for finding the spectrum of a lattice 

Hamiltonian without recourse either to strong or weak coupling expansions. We 

show that these methods-which were described and sketched out in Section IV. D 

of paper I-can be applied to calculations of basic properties with reasonable 

accuracy even in the vicinity of a phase transition. 

The key to the success of any attempt to apply variational methods to the 

study of systems with a large number of degrees of freedom is the ability to 

make an appropriate choice of the class of trial states. The procedure we will 

describe is essentially an algorithm for constructing an appropriate class of 

trial functions. To demonstrate this constructive procedure we will study two 

soluble theories-free field theory and the one space-one time dimensional 

Ising model with a transverse applied magnetic field. We compare our 

variational calculations with known properties of the exact solutions, and discuss 
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methods for systematically improving upon our results. The application of 

these methods to the more interesting lattice gauge theories remains to be 

done. 

The idea behind our constructive approach is very simple. 2 We begin by 

dissecting the lattice into small blocks containing a few sites which are coupled 

together via the gradient terms in the Hamiltonian. The 

Hamiltonian for the resulting few degree of freedom problem is diagonalized 

and the degrees of freedom 9hinned7’ by a truncation procedure which amounts 

to keeping only an appropriate set of low lying states. An effective Hamiltonian 

is then constructed by computing the matrix elements of the original Hamiltonian 

in the space of states spanned by the lowest lying states in each block. The 

process is then repeated for this effective Hamiltonian. At each step the 

coupling parameters of the effective Hamiltonian change and the basic procedure 

is repeated until we enter either a very weak or strong coupling regime. As 

we shall see the calculation quickly brings the Hamiltonian to a fixed form. 

Formally the 9hinning” of degrees of freedom at each step is equivalent to 

choosing an incomplete orthonormal set of states spanning a subspace of the 

Hilbert space. Thus, the variational problem of finding that linear combination 

of states which minimizes the expectation value of H is equivalent to the problem 

of diagonalizing the truncated Hamiltonian obtained by restricting H to this 

subspace. 

II. GENERAL METHOD APPLIED TO FREE FIELD THEORY 

In this section we describe our general approach to the problem of finding 

the ground state and lowest lying excited states of a lattice field theory. To 

demonstrate the general procedure we begin by applying it to the trivial example 

of the field theory of free spinless particles on a lattice in lx-it dimensions. 
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We first rewrite the free field Hamiltonian in terms of dimensionless canonical 

variables (see Eq. (3.17) of I), i. e. , 

(2-l) 

where A -1 = a is the lattice spacing, L = (2N+l)/A is the length of the lattice in 

a lx-it dimensional model, and p is the mass parameter in units of A. The 

gradient operator has, for simplicity, been defined in terms of nearest neighbor 

differences. The exact solution of (2.1) describes a system of noninteracting 

oscillators of frequency 

wk=Jm k=B 2N+l 

n=O,+J,&2,. . . *N 

P-2) 

with ground state energy density3 

1 ,7r 
EO=YG o J dk Jp2 + 4 sin 2k 2 (2.3) 

Our approximate constructive technique for solving (2.1) can be described 

as follows: 

1. Introduce creation and annihilation operators at each lattice site j by 

the standard definition 

t‘ xj = * aj+aj 
i ) 

(2.4) 

pj = -i-/9 (aj-a;) 

where wj is an arbitrary frequency. Define the state 

IO>= fi Ifi.> 
j=-N J 

(2.5) 
ajInj>=O . 
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2. Divide the lattice into blocks containing several adjacent sites and 

solve for the eigenstates of H restricted to just these (two or three) lattice 

sites. 

3. Make a canonical transformation on the xj, pj for each such block and 

choose a trial state as a linear combination of all the states formed from 

IQ> by application of the lowest, and only the lowest, mass oscillator for 

each block. Compute the Hamiltonian in this restricted set of states. 

4. Repeat this process on the truncated problem by once again coupling 

adjacent blocks. 

5. Iterate until the successive resealing of eigenfrequencies leads either 

to a very weak or strong coupling regime in which the remaining coupling terms 

between neighboring blocks that arise from the gradient term of (2.1) can be 

treated perturbatively-either by weak or strong coupling approximation methods. 

The general formulation of this procedure was presented in Section IV. D 

of Paper I. Its application to (2.1) will show it to be a very accurate technique. 

Specifically, we begin by dividing the lattice into blocks of 2 sites apiece as 

shown in Fig. 1 and label each block by the variable “Q”. Hence, each point of 

j can be written as 

j=2Q+r where r = 0,l (2. ‘3 

We then define 

x0(Q) = x2Q ; pa(Q) = P2Q 

x,(Q) = x2Q+l ; pi(Q) = P~+~ 

and rewrite H as 
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Our next step is to define variables x+(Q) and x (Q) so that the part of H made 

up of operators referring to a single block Q is diagonal, i. e. , 

x+(Q) G 
x,(Q) - x,(Q) P,(Q) - P+Q) 

J-2 
P+(Q) = 

a _. 
x (Q) E 

x0(e) + x,(Q) pa(Q) + P&Q) 

$2 
P-(Q) = 

h 

In terms of these variables H becomes 

(2.8) 

++ N2+3) x:(Q) +$p:(Q) +$.~~+l) x!(Q) 1 
- + c (x,tQ+l) +xJQ+WtxJQ) -x+(Q), (2.9) 

Q 

Our basic approximation is to freeze out the higher frequency oscillators 

x+(Q) in each block Q by choosing as our smaller space of trial states only those 

states I+> generated by applying arbitrary powers of p (Q) and x (Q) to Ifi>. 

This amounts to replacing all powers of p+(Q) and x+(Q) by their ground state expecta- 

tion values. Doing this we obtain a truncated Hamiltonian 

2(tr)(l)= %{ifi +~p~(Q)+~@2+l)~~(Q)}- i c x-(Q)x-(Q+l) (2.10) 
Q 

Iterating this procedure (n+l) times one obtains a truncated Hamiltonian of the 

form 

LH(tr)(n+l) = c bn+l +$p2(Q1) +i w2(n+1) xf(QtJ - c”-x (Q’+l) x-(Q’) A Q’ I1 “nt-1 - 

(2.11) 

where 

d n+l= 2dn+Z ‘,/n; do=0 
2n 

(2.12) w(n) =m for n>l 
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a n = (an 

and I’ denotes the variable for the (n+l) th iterated block. Clearly, for large n, 

H@)(n+l) becomes a Hamiltonian for which the last, or gradient term, is 

multiplied by a factor of l/2”. Hence, it can be treated as a small perturbation 

on the single-site terms which describe oscillators of mass NP. In this way we 

see that the n --L 03 limit evidently describes a theory of particles of ‘lmassll 

,U with ground state energy density (henceforth expressed in units of A) 

eg(p2) s lim +idn (2.13) 
n--Lo3 2 

The prediction of the mass 1-1 of the single particle states for this system is 

exactly correct. Itis easyto seefrom (2.11) thatfor p2>>l, thegroundstate energy 

approaches the exact value of eg&‘%>l) = (1/2),u in accord with (2.3); whereas 

for p2 = 0, ~~(0) = .67 which is a reasonably good approximation to the exact 

result ~~(0) = 3 Z .64 in the p2=0 limit. This general idea of grouping lattice 

sites into blocks, then thinning out the number of states per block is the founda- 

tion of our method. 2 

The same technique can also be applied just as readily if the nearest 

neighbor approximation to the gradient operator on the lattice is replaced by 

the form constructed in I (see (3. lo)), which makes the lattice and cutoff ver- 

sions of the free field theory isomorphic. This introduces long range interac- 

tions (see Eqs. (3.10)-(3.12) in I), viz. the gradient term becomes 

N 

J +q2dx -+I C D(jl-j$Xj,Xj, j,, j2=-N (2.14) 
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with 

D(j) = 7r2/3 for j=O 

- wj 
.2 
J 

for j#O 

in the N-,co limit. In place of (2.2) and (2.3) we obtain the exact cutoff 

frequencies 

and ground state energy density 

(2.15) 

In this case we can also apply the truncation procedure just described even 

though the gradient operator couples distant lattice sites. The results as 

derived in the appendix are similar to what we found above for (2.1). The 

correct single particle mass is found, as is also the ground state energy for 

p2 >> 1. In the massless limit we calculate Eg(0) = 0.84 which is larger than the 

exact result F. = 1r/4 = ,785 by -7%. 

Evidently this simple-minded procedure of diagonalizing the 2-site 

Hamiltonian and keeping only the states generated by the lowest ftmass’f 

oscillators can be furthered improved on. In the next section we apply this 

technique to a spin lattice problem which differs from (2.1) in that there are 

only a finite number of eigenstates at each lattice site. We study the accuracy 

of this method in this example by comparing with known exact solutions of the 

model, and we improve its accuracy by a simple generalization of the varia- 

tional procedure in Section IV. 
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III. TRANSVERSE ISING MODEL: A SIMPLE TRUNCATION PROCEDURE 

We begin this section by considering the l-space, l-time Ising model in a 

transverse magnetic field and adopting an intuitive and simple truncation pro- 

cedure. This is an interesting example for testing our method for three reasons: 

1. The known exact solution of this model exhibits a phase transition so 

we can measure the predictions of our method against the exactly computed 

critical indices and transition temperature. 

2. There are only a finite number of states for the spin degree of freedom 

at each lattice site in common with theories of spin l/2 particles such as 

quarks. 

3. The simple truncation procedure for thinning the degrees of freedom 

to be discussed in this section is very different from the free field case since 

there are just two eigenstates at each lattice site instead of an infinite sequence 

of oscillator states. 

The explicit form of the Hamiltonian for this model is written in terms of the 

usual Pauli matrices 4 

-$ H = 2 
j=-N 

(: eO lj + $ eO oz(j) - AOox(j) gx(j+I)} (3.1) 

Before studying (3.1) for arbitrary constants eO and A, let us make some obser- 

vations about limiting cases. In the strong coupling limit, AO/eO - 0, (3.1) 

describes an assembly of noninteracting spins that all line up with spin down in 

the nondegenerate ground state 

IO> = n(y) (3.2) 
j j 

of energy density (in units of A) Go(Ao/eo -f 0) = 0. The particle-like excitations 

lie -l-e0 above the ground state for each site excited to the spinup configuration, 
1 

0 o . 
i 
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In the opposite, or weak coupling extreme, ~,/a, - 0, the eigenstates 

I=->j = -L (i) 
fi j 

l->j = “(_11) 
45 j 

(3.3) 

(3.4) 
diagonalize the Hamiltonian. The ground state is doubly degenerate, being 

formed as a product of states (3.3) at each site, or all states (3.4) at each site. 

For each 77wall’t between two adjacent sites, one formed as (3.3) and the other 

reversed as (3.4), there is an excitation of +2Ao units of energy. In this extreme 

the excitations are kink-like as illustrated by Fig. 2. These low lying excitations 

in the strong coupling limit correspond to collective “kink” states rather than 

single particle excitations. 

From a study of the exact H in (3.1) it is known5 that a second order phase 

transition occurs between the nondegenerate ground state (3.2) and the degenerate 

configurations (3.3) and (3.4). The transition occurs when E o=2Ao. The 

behavior of the order parameter, or “magnetization, “I in this model is given by 

<a;~> = (1 - [co/2Ao]z)1’* for 3 21 

(3.5) 

<o;c> = 0 EO for=>1 . 
0 

Keeping these exact results in mind, let us now apply our iterative varia- 

tional procedure to (3.1) for arbitrary coupling (eo/Ao) . Again we construct a 

suitable trial state by the iterative procedure of coupling small spin blocks, or 

boxes, containing neighboring lattice sites; diagonalizing the “box” Hamiltonian; 

and dropping all but a subset of the low lying eigenstates with which to form a 
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block basis for the truncated Hamiltonian. We then iterate the procedure. The 

simplest application of this procedure to (3.1) is to form blocks containing just 

two lattice sites and 22=4 eigenstates which we determine exactly. We then 

discard two of these eigenstates retaining just the lowest two states which will 

be mixed together when we add back in the terms in (3.1) linking different boxes. 

In terms of these two states we construct a new effective truncated Hamiltonian 

of the same form and continue the iterative process. We can think of this 

procedure as successively eliminating higher momentum states from the problem. 

Hence the series of truncated Hamiltonians describe the physics of low momentum 

states alone. 

To begin we note that within one block of two adjacent sites in (3.1) there 

are four independent states which we denote by ITT>, lTl> , llf >, and Ill>, 

where ITT> = IT>, IT>, , etc. The problem of diagonalizing the 2-site Hamiltonian 

reduces simply to one of diagonalizing two 2 x 2 matrices, since I11 > mixes only 

with I TT> , and I lT> with IT1 > . The eigenstates and eigenvalues are simply 

found and are given in Table I. Step (i) of our general procedure will be to 

choose this set of four eigenstates as the new orthonormal system which we will 

use to construct a basis for H. Step (ii), the thinning out procedure, is simply 

accomplished by retaining only the two lowest energy states in Table I for each 

box when we add back the terms linking different boxes in (3.1). It is reasonable 

to expect that the most important part of the true ground state will be in the 

subspace spanned by these two states in each box. Ln order to implement this 

approximation we need only construct the truncated or effective Hamiltonian for 

this choice of trial states and see if we can solve it. 

To compute H@) we label each 2-site box by an integer ‘pr and divide the 

Hamiltonian into two parts, H1 and H2. H1 contains only those terms in (3.1) 
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which refer to single boxes and H 2 contains the remaining interaction terms in 

(3.1) which couple sites in adjacent boxes; i. e. , 

H2 = -A, c ox(p, I) ox(pCI, 0) 
P 

(3.6) 

where ox(p, o) operates on the spin in box p and at site CY=O, 1 within each box. 

In keeping with our approximation of retaining only the two lowest states in each 

box, the truncated H y) can be written as a sum of 2 x 2 matrices operating on 

the two states we keep for each box. In particular referring to Table I we see 

that Hy) can be written as 

E- 0 

= 1 (e. -; [A,+-h$-fj) g (P) + + [N&$ - Ao) mz (P) 
1 

. (3.7) 
P 

The eigenstates of (3.7) can be written as products over boxes of the two lowest 

eigenstates in Table I; i. e. , 

Hence the interaction (3.6) can now be re-expressed in terms of the truncated 

basis (3.8) by evaluating its matrix elements for flipping one “spin” in each of 

two adjacent boxes. To compute this we take the matrix element of gx(p, 1) 

between the states 

I$,@) > = 
(Ilb+,aolTT>) 

(3.9) 

and 

I+ltp)> = jllT > + ITW 
J5 (3.10) 
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The actual computation is quite trivial: 

and so 

S,@, We(P)’ = ' [~lT~+aolTl>]p 
J- l+ai 

<$&P)I (TX@, We(P) = 
pa,) 

&Jq 

(3.11) 

(3.12) 

Similarly 

~x@+l,O)l~O(P+l)' = ' ~T1>+aoilT>] (3.13) 

J 1+-a: 

and so 

<@+l) l”x@+ 130) l~o@=+w = 
( l+ao) 

JzJiq 

(3.14) 

th 
which is identical with (3.12). It follows from this that for ‘jr in the p box, and 

for both cases o!=O and 1, 
l+ao 

g?)(j) = Jo ax(P) 

UF)(j+l) = 
l+ao 

Jgj a,@+1) 

(3.15) 

Thus we have reduced the problem of finding the best upper bound which one 

can obtain by choosing trial states from the set of states spanned by forming all 

possible tensor products of the lowest two states in Table I, to the problem of 

diagonalizing a new Hamiltonian, H (W . Since our truncation procedure retained 

just two states per box we again have a spin form for the truncated Hamiltonian. 

.ttr) has exactly the same form as the original Hamiltonian but different 

coefficients: 

H(tr) = c[cl (; ;)(p)+&(; -;)W$ ;)(I’,(‘: ;)(P+I;l (3.16) 
P 
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c~=~~-;(A~+,@-$) (3.17) 

and 

A, = 
A0tl+a0J2 
2(l+a,2) 

At this point we face one of two possibilities. Either the values of el and A, 

are such that we can treat the resulting effective Hamiltonian, H @j(l) by per- 

turbation theory for cl/Al > 1 or cl/Al < 1; or, we may repeat the same pro- 

cedure that we just went through, but this time combining neighboring pairs of 

blocks p in the Hamiltonian H (W and thereby including additional interaction 

terms in a new basis to which we again apply the same state-thinning steps as in 

(3.6) to (3.16). One readily sees in the comparison of (3.16) with the original 

(3.1) that each successive restriction of our class of trial wave functions by this 

procedure leads us to a new effective Hamiltonian of the same form as the 

original Hamiltonian, and with the coefficients of the effective Hamiltonian given 

bY (3.17) in terms of the coefficients found in the preceding step of the 

calculation. 

The general result is that after ‘nr successive truncations our variational 

problem reduces to the problem of diagonalizing the effective lattice Hamiltonian 

Httr) = c 
n 

pn 

;) 

pn 
(3*18) 

n n 

where 

E n+l = (en(l-a:) - An(l+an)2)/(lr2) 
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A 
An tl+anJ2 

=- 
n-k1 2 (l+a2) ’ n 

C 

d n+l = cn+l f 2dn; do = + eO (3.19) 

Clearly, each step of our iteration procedure includes additional interaction 

terms between adjacent lattice sites in H1 @) (n) , leaving 

fewer in the remaining H2(n). This is illustrated in Fig. 3. Hopefully, as in the 

free field theory example of the previous section, at some state of this process 

one of the HfrJt s will prove to have a ratio of en/An which is solvable or can be 

handled in perturbation theory. We borrow from Wilson and Kadanoff2 and call 

the process of generating a new effective Hamiltonian from the one which was 

obtained in a previous step a “renormalization group transformation. I1 The 

recursion relations given (3.18) - (3.19), which define the parameters in H (W 
n 

obtained from successive iterations, will be referred to-for want of a better 

name-as renormalization group equations. 

Analvzing the Renormalization Groun Eauations 

In the preceding discussion we reduced the problem of constructing a set 

of I#n>‘s by means of a successive thinning out process to the equivalent problem 

of computing a series of renormalization group transformations on the coeffi- 

cients of an effective Hamiltonian. In order to extract all of the information 

contained in (3.18) - (3.19) the recursion relations must be studied numerically. 
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However, there are several points which can be understood directly. First, 

we note that both (eo=O, A0 arbitrary) and (co arbitrary, A,=O) are fixed points of 

the renormalization group transformation since in either case en=eo and An=Ao 

for all ?nl . In fact, we have already seen that both of these cases can be solved 

exactly; and it is easy to convince oneself that our algorithm for constructing 

the ground state wave function constructs the exact eigenstate for these two 

limiting cases. Second, we observe that a great deal of information can be 

extracted without completely solving the renormalization group equations if we 

know whether the ratio en/An increases or decreases with successive iterations. 

To study this we define 

E 
yn L? 

z- (3 (3.20) 

The Hamiltonian (3.1) depends only on the ratio (e/A) up to a scale factor; hence 

(3.19) gives yn+l as a function of yn alone: 

Y n+l = 
4Jq- l)(l- 2Yn(J+yn)) 

(1+- -yJ2 
= F(Yn) (3.21) 

We need only study the function defined by 

R(y) 2 F(y) -y (3.22) 

in order to see if y,= en/An increases or decreases with each iteration and see 

what it looks like for all y. R(y) is plotted schematically in Fig. 4, and its general 

shape yields the following useful information. A “fixed point” of the transformation 

occurs at values of E and A which reproduce themselves under the renormalization 

group transformation; i. e. , for R(y) = R(e/A) = 0. There is also a fixed point if 

e/A=co and R(m) 0 so that this value cannot be reduced. Hence Fig. 4 shows 

that there are three fixed points for our transformation; namely, e/A=O, e/A= CC 

and e/A= 2.55348456. . . . Actually the condition R(y)=0 only requires that the 
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ratio (e/A) is unchanged by the iteration, and so the Hamiltonian may change 

by an overall scale factor at such a point if en+l = 1en and An+l = hAn. As we 

have already seen y=O and y- --03 are true fixed points of (3.18) - (3.19). A more 

careful analysis shows that y, = 2.55. . . is a point at which the Hamiltonian is 

reproduced up to a scale factor h(yc), which is another critical constant of the 

theory. 

There is additional qualitative information which can be extracted from 

R(y). In particular, R(y)<0 implies that the ratio (e/A)=y decreases for that 

iteration and so the new (et/A’) lies to the left of the y we started with. Since, 

as shown in Fig. 4, R(y) is negative for all y < y, we see that if we start at any 

point in this range, successive iterations of our truncation procedure will drive 

us to a form for the effective Hamiltonian which we have studied in weak coupling 

perturbation theory. On the other hand, for y > y, successive iterations drive 

us to y=co since,in this case,R(y) > 0. This implies e/A>> 1 which is the strong 

coupling limit of the Hamiltonian which we have also studied. 1 Hence those 

theories described by (3.1) for which the initial y<y, are theories with a degenerate 

ground state and spontaneously broken symmetry. On the other hand, for y> y, we 

have a unique ground state. Clearly y, is the point at which the nature of the 

ground state changes, and so y, is the critical point of this theory. 

The result yc=2. 55348. . . which is obtained from our simple procedure is 
exact not far from the exact transition point y, = 2. The fixed points y=O and y=~ 

are the stable fixed points of this renormalization group transformation, and 

the fixed point at y=y, is an unstable fixed point. The fact that at y=y, the 

Hamiltonian continues to reproduce itself up to a scale factor says that at this 

critical point the physics going on at different length scales is essentially the 

same. 
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There is still more information to be gleaned from the recursion relations 

in (3.18) - (3.21). In particular, these relations allow us to compute en and An 

separately. If one examines the result of iterating (3.18) - (3.21) one finds that 

for initial values, eO/Ao < yc, the successive renormalization group transfor- 
-. 

mations lead to lim en =0 and lim An = Aoo (e,/A,) # 0, whereas for (eo/Ao) > y,, 
n=w n=oo 

lim en= e,(eO/AO) #O and lim An= 0. 
n=w n= 

We can also calculate the order parameter <ox(j)> which can have a non- 

vanishing ground state expectation value when y < yc and the ground state is 

doubly degenerate. At each step of the iteration ox(j) will connect the two lowest 

states in Table I with one another since a;r flips the spin at one site. Therefore 

we need only calculate 

lim <Z/J N 
even lmx(j) l+fdd > = <oxtjb (3.23) 

N -CO 

w Going back to the discussion leading to (3.19) we see that because a;r (j) is a 

(l) purely off-diagonal 2 x 2-matrix, calculating <qeven x Itr (j) l$~~d> is the same as 

computing 

[uxtj ) ] 
lst-trunc. = (3.24) 

Hence in successive transformations we find that 

[gx(j)] Nth-trunc. (3.25) 

We conclude therefore that if Aoo= lim AN, the order parameter for a theory 
N-- 

such that y. = eo/AO < y,, is given by 

(3.26) 
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Explicit numerical iteration of (3.18) - (3.19) gives the following form as 

a very good fit to the order parameter 

(3.27) 

with yc =2.55348456.. . . The agreement of (3.27) with the exact result (see 

(3.5)) 

<u > x exact(Yl = [l - ($1. 125 

is not too bad considering the simplicity of this calculation and the crudity of 

our approximation. 

We now can ask what it takes to do better, particularly for the critical index 

by modifying our truncation algorithm. In the next section we show how a simple 

modification of our general approach does in fact produce a significant improve- 

ment in these results. 

IV. A MORE SOPHISTICATED ALGORITHM 

The key point to be made in this section is that our variational technique 

can be systematically improved upon and the procedure for implementing this 

methodically is not much more difficult than the original naive procedure. 

We will find that we can significantly improve the critical exponent (by a 

factor of 2) while moving the critical point only very slightly further away from 

the exact value. We also make a dramatic improvement in the general 

behavior of the ground state energy. In particular we find that co(y) possesses 

a singularity in its second derivative at the critical point-a result which 

cannot be obtained from the preceding more naive calculation. 

To begin, let us note that there are in fact two distinctly different pieces 

to our algorithm, both susceptible to change and improvement. First we 
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committed ourselves to grouping lattice sites into boxes containing two sites 

each. We then constructed *‘box states” and thinned out our complete set by 

throwing away two out of the four possible states per box. One simple way to 

generalize this approach would be by grouping sites into bigger boxes and by 

keeping more states. However, for now let us assume that this part of our 

procedure will be left unmodified, so that successive truncations of our space 

of trial wave functions shall always lead to an effective Hamiltonian of the same 

form as the original one. 6 Instead we turn to the question of improving upon 

our algorithm for throwing away states. 

There are four states for a two-site box and these may be divided into two 

classes: ITT>, Ill>; and IiT>, lTl>, which are even and odd eigenstates, 

respectively, of the unitary transformation 

i ij L cz (3 
U=e i (4.1) 

under which the Hamiltonian (3.1) is invariant. Whatever truncation procedure 

we employ in selecting just two of these four states in thinning the degrees of 

freedom we will want to choose one state from each of these two classes. This 

is because the box-box interaction terms being sequentially added to H ttr) by 

our iterative procedure link only the even and odd states under U to one another; 

i.e., c,(j) flips one spin only and is odd under U. The question is which state 

to choose from each class. 

In order not to destroy the reflection-symmetry of the theory we choose 

for the odd eigenstate under U the symmetric combination identical with Table I 

I$,> - = L (UT> + ITl>) 4 (4.2) 
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For the even eigenstate we generalize the construction in the preceding section 

by writing 

Equation (4.3) has the same form as before but we shall now choose the 

(4.3) 

coefficient a(e, A) variationally by minimizing the ground state energy after a 

fixed (large) number of iterations rather than by simply diagonalizing the 2x 2 

box Hamiltonian in each successive step. This procedure is computationally 

feasible as a result of an important observation by R. Pearson of Fermilab 

who noted that on the basis of (3.19) we can choose a(e, A) as a function of the 

ratio (e/A) alone. This is equivalent to the statement that the overall scale of 

the Hamiltonian does not matter for our analysis. 

Using (4.2) and (4.3) we can carry out the renormalization group trans- 

formation and repeat precisely the same steps leading to the earlier result 

(3.18) and (3.19) with one single difference. The coefficient a(e/A) is now no 

longer given after the nth iteration as expressed in (3.19) but an(en/An) remains 

free to be determined variationally by minimizing the ground state eigenvalue of 

the effective truncated lattice Hamiltonian after a suitable number of iterations. 

In order to give a more explicit formulation of this idea we note from the 

first of Eqs. (3.19) that the term in the Hamiltonian proportional to dn+l 

increases by a power of 2 for each iteration in contrast to the behavior of en 

and An. Hence, for N sufficiently large this term swamps the remainder of 

the Hamiltonian. This divergence in the coefficient of the unit matrix is just 

the renormalization group transformation’s way of telling us that translation 

invariance of the ground state implies that its energy is proportional to the 

volume of the lattice times a finite number, ~5’ 0’ 
which is the ground state energy 
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density. Since each point of the effective Nth-lattice is 2N-points in the 

original lattice, the energy density is the limit 

or, from (3.19) 

N 
go = lim C 

N-+-J n=O 
(4.4) 

In order to actually implement this procedure we perform a straightforward 

numerical calculation using a simple variational guess for a(e/A) that meets its 

known limiting values for e/A+ 0 and -03 . A convenient parametrization in 

terms of two parameters p and u is 

-1 tan ai=: 
0 I 

1- tanh(ip-u) 

1 - tanh (‘U) I 
(4.5) 

This choice automatically satisfies the limits explored in Section III: 

a - 1 for E/A - 0 

a-0 for .e/A -L ~0 

We then minimize the ground state energy density (4.4) by varying the two free 

parameters p and u in (4.5) and iterating to N=lOO which gives us go to an 

accuracy of roughly one part in 2 100 . 

In Fig. 5 we show a comparison of our calculation of the ground state 

energy density to the exact answer. Values of e/A smaller than 1 and greater 

than 3 are suppressed because for these regions agreement is much better than 

one-part in 103. Examination of these curves shows that our worst disagree- 

ment with the exact answer is on the order of 3%. This is a significant 

improvement over the naive calculation. In Fig. 6 we compare our computation 
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of the order parameter <ox> with the exact answer. As shown the critical value 

of e/A=2.75 which is somewhat further from the exact value of 2 than we found 

via our naive calculation that gave 2,55. The critical index however is 

improved by a factor of ~2 as seen from the accurate power law fit to <gx>: 

Finally we also see in Fig. 7 that our relatively simple variational approach 

reproduces the singularity in a2 (ground state energy density/de 
2 ) which occurs 

at the critical point. This is quite a subtle property of the theory which was 

missed by our original naive renormalization group procedure described in 

Section III. 

One can carry these methods further; in particular by working with larger 

blocks comprising three or more sites, and/or by retaining more states in the 

process of thinning the degrees of freedom and by introducing more detailed trial 

functions than (4.5) with more than two parameters. A program of such calcu- 

lations using more complex algorithms in our renormalization group variational 

approach is in progress. 6 Those calculations already completed further improve 

the agreement between our results and the known exact solution and will be 

reported later. Having already demonstrated the power of this approach for 

deducing the basic features of a theory that cannot be studied perturbatively our 

primary interest at this time is to extend their application to fermions (e.g. , 

quark theories) and gauge models as well as to higher dimensional lattices. 7 
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V. SUMMARY AND FUTURE DIRECTIONS 

In this paper we have demonstrated how one can study-by variational 

methods and without recourse to perturbation expansions-a lattice field theory 

formulated by imposing momentum and volume cutoffs on a local continuum _. 

field theory. Our principle goal was to show that the problem of finding a good 

basis for constructing such trial-wave functions can be converted to a renor- 

malization group calculation in which the renormalization group itself is to be 

determined by means of the variational procedure. In effect, the only choices 

needed for such a calculation are the way in which to group single sites into blocks 

of sites and the assumption of how many states to keep at each truncation. 

Having constructed this equivalent renormalization group transformation we 

then study what happens to the form of the truncated or effective Hamiltonian as 

we successively thin out our family of linear trial wave functions. As we saw 

in the two specific examples of the Ising model and free field theory the key first 

point to understand in these transformations is what happens to the strength of 

the gradient (site-site recoupling) terms relative to the potential (single-site) 

terms in the Hamiltonian. 

More generally, it proves useful to study the function R(y) which gives the 

change in the ratio of the potential to the gradient terms after a finite number of 

iterations, since, as we saw in our specific examples, one can learn a great 

deal about qualitative features of a theory from this information alone. Suppose 

for illustrative purposes, we assume that there is only one single-site, or 

potential, coupling constant in a theory, Then, defining y to be the ratio of the 

strength of the single-site coupling to the gradient term, we can plot the general 

form of the function R(y) = (change of y in finite number of iterations) as defined 

in (3.22); viz., R(yN) = yN+I - yN. A few examples of simple forms for R(y) 
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are given in Figs. 8a-8c and lead to different conclusions about the theories 

they are assumed to characterize. 

In Fig. 8a we see that R(y) ~0 for all values of 02 yam . If a theory has 

this form for R(y) we can conclude two things. First, the points y=O and y=~ 

are the only fixed points of the theory. The Hamiltonian at y=O, i.e., zero 

coupling constant, is a “free field theory, I’ and can presumably be solved 

exactly. The y=w Hamiltonian becomes the single-site Schrcedinger problem 

with neglect of the gradient terms. Second, we observe that if we start at some 

finite value of y successive iterations drive us to larger value of y; 

i.e., R(y) > 0. Eventually after a finite number of iterations our problem can 

be studied by treating the gradient terms as a perturbation on the single-site 

terms. Hence, in any theory for which R(y) > 0 we can conclude that the low 

energy (or long-wavelength) physics is described by an effectively strong- 

coupling constant Hamiltonian. It follows from this discussion that the mass gap 

in such a theory will be given by calculating the gap between the first two eigen- 

states of the effective single-site Schrcedinger problem. The gap is thus a 

function of the effective single-site coupling goo, where the subscript denotes 

the many iterations N >>l to reach the strong coupling behavior. In general, 

since the scale of H is set by the cutoff A, this means that the lowest mass gap 

in the theory will be =RgW. However, the scale of physical masses should be 

negligible with respect to the maximum momentum A if we are to retain practical 

Lorentz invariance for the low lying eigenstates in spite of our cutoff procedure. 

Therefore we are only interested in theories for which go0 <CC 1, or in other words, 

g,A finite (and perhaps ~1 GeV) . 

Generally the Hamiltonian at a fixed point reproduces itself up to a scale 

N factor p, and after N iterations the overall scale of HN is Ao . Since this 
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should be finite (M 1 GeV) this suggests that the question of the practical rela- 

tivistic invariance of a theory for which R(y) behaves as in Fig. 8a can be 

settled by computing the scale parameter p in the y=O limit. If we find p < 1 

then we can take the cutoff A -cm and still keep the masses of the lowest states _. 

finite if we choose the original bare coupling constant go to tend appropriately 

to zero as a function of increasing A. This is an example of a theory whose 

short distance behavior is “free” but whose long wavelength behavior is not. 

If we next look at R(y) for Fig. 8b we come up with the opposite conclusion. 

If R(y) < 0 each successive set of N-iterations will make it smaller. Hence the 

large wavelength or low energy physics of this theory is given by weak coupling 

perturbation theory, whereas the single-site or short distance behavior is 

governed by a strong coupling constant. 

Figure 8c tells us that the two different cases can occur depending upon the 

starting value for y, i. e. , whether y. < y, or y. > yc. This is just the form of 

R(y) calculated for our Ising model in Fig. 4 and one can refer back to the exact 

solution of this theory5 to see how an effectively relativistic theory emerges. 

The use of the function R(y) to catalogue types of theories has its analogue 

in the study of the renormalization group equations in momentum space, where 

one encounters the well known p(g) function in terms of which the asymptotic 

behaviors of field theories are described. Both functions, p(g) and R(y), 

describe the change in coupling constant (g or y) as we change the scale of dis- 

tance in the theory. The two functions are complementary to one another in that 

we have introduced R(y) here in coordinate space, whereas p(g) normally appears 

in the momentum space analysis of the renormalization group equations. In our 

renormalization group procedure on a lattice we build larger and larger blocks 

at each state of the calculation so that we are studying the behavior of the theory 
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at lower and lower momenta. When working in momentum space one normally 

studies the renormalization group equations by scaling up the momenta to higher 

and higher values at each stage, and correspondingly to smaller and smaller 

values of the underlying lattice spacing. In our approach Fig. 8a describes a 

theory which is asymptotically free (high momenta) and Fig. 8b describes one 

that is infrared stable. The p function has just the complementary behavior as 

illustrated by Figs. 9 for asymptotically free and infrared stable theories. 

In our preceding papers’ we have systematically studied strong coupling 

limiting behavior for lattice theories. Their relevance is clear in the light of 

the above discussion. Our next task is to apply our variational renormalization 

group approach to fermion and gauge models and to verify in particular if 

asymptotically free color gauge theories satisfy the folklore based on continuum 

perturbation theory; i. e. , asymptotic freedom at short distances and color 

confinement at large distances. 
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we write this theory on the lattice in terms of dimensionless canonical 
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The lowest two eigenlevels of the single-site Schroedinger problem (neglect- 

ing the gradient term) lie deep in the potential well if the zero point energy 

is very small compared with the height of the center bump; i. e. , 

p o f. << hgf; (a) 
These two low lying levels are, respectively, symmetric and antisymmetric 

under reflection. The energy gap between them is proportional to the 

tunneling between the two minima in the double-bottomed potential h 2 22 * x. -f ( > 0 J 0 
at *f 0’ Since condition (a) means that there is very little tunneling this gap 

is very small-i. e. , 

-h1/2f3 
AG 

gap 
N h,1/‘f,e O O <<Xi”f, (b) 
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if h1/2 3 o f. >> 1. When conditions (a) and (b) are satisfied we can neglect 

higher excitations at each lattice site. The two states retained correspond 

to the spin down and up configurations in the Ising model (3.1). The 

gradient term induces mixing between the symmetric and antisymmetric 

solutions which is approximately given by 

<sym(xjlantisym>a = fi (4 

When this mixing is comparable to the gap separating the levels-i. e. , for 

qy2f3 
‘/‘fe O Owf2 

Ao 0 0 (4 

the gradient term is comparable to the single site terms and we can make 

neither a weak nor strong coupling limiting approximation. Condition (d) 
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APPENDIX 

We sketch here the procedure of Section II applied to the free field 

Hamiltonian transcribed to a lattice using (2.14) - (2.15) for the gradient. In 

place of (2.1) we have 

H = A 2 [$pf+$~~+D(O))x~] + A c D(jl-j2)xjlxj2 (4 
j=-N j,>j, 

Dividing the lattice into Z-site blocks and repeating the steps leading from (2.7) 

to (2.10) we transform (a) into 

+ ; FE1 F; lD(2P+'~+p-r~) x,tQ) x-(Q+P) 
, 

(b) 

We can now iterate this procedure as we did following (2.10). The ground state 

energy is built up following the pattern indicated in Fig. A-i. e. , 

+ $ IJ /L’+D(O)+D(~)-; [W)+W~+W~}~ 
+ $J/L~+D(O)+D(~)+$ [D(l)+ZD(Z)+D(3)]-1 I 

22 [D(l)+ZD(2)+3D(3)+4D(4)+3D(5)+2D(6)+D(7~]$ 

-t- . . . (c) 

The numerically summed series (c) leads to the values quoted in the text. 
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Table I 

Energy Relative to 
state Energy Lowest State 

’ (lll>+a,ltf>)* E II’>) 

Jq 

Eo- qg 0 

-(lTl> + Ill>) = IT’>) 
A 

-qllf > - lb) 
a 

1_Ca#i> + ITT>) co+- Jo 2 c2+A2 

J l+agY 

*ao= (m - ~~)/a,. 
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FIGURE CAPTIONS 

1. Notation for a one-dimensional lattice divided into 2 site blocks. The 

block is labeled by Q and the site in each block by r=O, 1. Each point j 

along the lattice is labeled by j=2Q+r. 

2. One and two kink-like excitations on the lattice. These, rather than single 

particle-like excitations, are the low lying configurations in the “weak 

coupling” limit, E~/A~=O, of Eq. (3.1). 

3. Interaction terms between adjacent lattice sites are indicated together with 

the iteration order, n, in which they are included in Hz(n) in Eq. (3.6). 

4. R(y) in Eq. (3.22) is plotted schematically vs. y=e/A showing the three 

fixed points at y=O, 2.553, and W. 

5. Comparison of the ground state energy density as a function of y for the 

exact calculation and for our approximate variational calculation using 

(4.5). 

6. Comparison of the order parameter <gx(y)> vs. y for the exact and 

approximate variational calculations. 

7. Comparison of singularities in the second derivative of the ground state 

energy density vs. y for the exact and approximate variational calculations. 

8. These figures show different behaviors for R(y), the ratio of the single 

site (binding) to the gradient (kinetic energy) terms in the Hamiltonian 

with successive steps of iteration; i. e. , R(yN)z y N+~-YN VS. YN=(E/AIN* 

In (a) R(y) monotonically increases corresponding to a theory whose long 

wave length (low energy) behavior is given by the strong coupling limit 

Y --+w but whose short distance behavior starting at y<< 1 is asymptotically 

free. In (b) R(y) is monotonically decreasing corresponding to a theory 

that is asymptotically free at low energy and large distances, i. e. , infrared 
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stable. (c) d escribes a theory with a finite critical point such that one is 

driven to strong or weak coupling limits depending on whether the bare 

coupling is yo>yc or yo<yc respectively. 

9. Standard renormalization group results for the p(g) function corresponding 

to asymptotically free (a) and infrared stable (b) theories. 

A. Pattern of coupling of different lattice sites using the long range gradient 

as defined in Eqs. (2.14)-(2.15). 
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