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ABSTRACT 

Chromodynamics is constructed in the framework of conformal symmetry. 

First we construct one action of the split octonion quarks, which is invariant 

under SU(2,2). Then we construct the general relativistic theory of quarks by 

demanding both invariance under conformal and affine transformations. The 

model reveals that the split octonionic quark structure is realized on the space 

time topology as a spinor structure. We conclude that chromodynamics can be 

in essence constructed within the framework of a general relativistic theory. 

(Submitted to Phys. Rev. D. ) 

*Supported in part by the Energy Research and Development Administration. 



-2- 

1. INTRODUCTION 

We propose the possibility of constructing an exceptional realization of 

paraquark ,theory in the framework of space-time symmetry. The possibility 

that quarks are parafermion fields of order three has long been studied. ’ 

Recently Giirsey and Giinaydin (GG) pioneered the exceptional realization of 

Klein transformation. 2 While the color gauging is generally forbidden in a theory 

with paraquark, it has been shown to be possible within the scheme of GG. 4 

Casalbuoni, Domokos and Domokos (CDD) have extended the SU(3) group to com- 

pact G2 and have considered the quantization problem of octonionic fields. 3In 

general the automorphism group of the split octonions is the split G 
a(2) 

which is 

noncompact with signature 2. In this paper we use instead the SU(2,2) group 

which is the maximal pseudounitary subgroup of SO (4,4). SO (4,4) is the multi- 

plication group of the split octonions and preserves the octonionic norm. 596 Due 

to the product ansatz the color, space- time and internal symmetry (spins, flavors) 

of the exceptional paraquarks is just the direct product form. Here we consider 

the SL(2, c) @ SU(2,2) and space-time transformations. 

We identify the SU(2,2) with the four-fold covering group of the connected 

conformal group. Hence we postulate that exceptional paraquarks are the real- 

izations of the representation of the conformal group. If we consider the 

localized group transformation of SL(2, c) 8 SU(2,2), we will obtain the general- 

ized version of the Einstein- Cartan- Weyl theory of graviatation by accommodating 

the general coordinate transformations. 8,9,13 The extended translation is dual 

to the intrinsic SL(2, c) @ SU(2,2) transformations. Recently Ogievetsky has 

studied the group structure of these general coordinate transformations and has 

concluded that every higher order generators of the group are constructible from 

the joint configuration of generators of the affine and conformal groups. 7 Here 
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we will construct our theory patterning after Ref. 7. 

In Section 2 we define the paraquark field by the product ansatz with four 

color fermions and the split octonions and we write down the invariant action. 

In Section 3 we review the theory of Ref. 7, then we write down the invariant 

action of paraquarks, which encompasses the gravitational and strong inter- 

actions. Some concluding remarks are given in Section 4. 

2. INVARIANT ACTION OF EXCEPTIONAL PARAQUARK FIELDS UNDER THE 

SU(2,2) GAUGE GROUP 

We consider the split octonions at each point of space- time6 

w Q (x) = (W,twi) 

(2.1) 

and their octonionic conjugation oo = r wo and v@=nvo 

o#) = (Vo’+Ji) 

(2.2) 

V,(x) = @do, - Vi). 

Due to the product ansatz the exceptional paraquark field and its adjoint field 

are defined as 

(2.3) 
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The free Lagrangian will be given formally as 

(2.4) 

where Tr means’ the octonionic trace. This Lagrangian gives the color 
_. 

Lagrangian in a form similar to the usual one 10,ll 

go = ${ij~~)~%~+p - a j$+~~~,Dr)) (2.5) 

due to the octonion algebra with mo, + v o = 1. If we assume the local octonion 

algebra3 we must multiply the right hand side of Eq. (2.5) by a pathological 

infinite term. 

Due to the fact that o,(x) and its dual V,(X) form the four- dimensional 

representation of SU(2,2) and its contragredient representation, we will assign 

the color quantum numbers to W,(X) and V,(X) as shown in Table 1. 

The trace form of the split octonion is invariant under the SO(4,4) whose 

maximal rank pseudounitary subgroup is SU(2,2). Under the SU(2,2) group 

action the split octonions S= transform as follows : 

SU(2,2) : [s] + eiL [S] , 

L = u4 O 

( ) 
0 -uqT * 

(2.6) 

where U4 and - Ut are respectively the four- dimensional gradient and contra- 

gredient representations of the SU(2,2) algebra. The L’ s include the 14 generators 

of the split G2 with signature of Killing form 2 plus one diagonal generator made 

from the SO(4,4) algebra. The L gives the quantum number assignment of Table 

1 under the classification of states under the SU(2,l) subgroup of SU(2,2). 
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Now we consider the local gauge transformation of the split octonionic quark 

field *(x) : 

with - 

6 *(x) = ig e (x)L *E(x) 

(2.7) 

fjxl” -0. 

Instead of constructing the usual gauge covariant derivative by introducing dynami- 

cally independent adjoint gauge fields, we consider the following fields composed 

from the split octonions: 
(2.8) 

and 

A p,pa(x) 
’ c 

= g Ocy(apwp b- (apu a)u p (Lpo)ap I , 

AC p,pa(x) =g 
[I 
vgapvp)-(ap vcr) vp (L~~),~- 1 

A =A 
.P p, po(wpwtT)3 A; = AC 

I-bPcJ ( VP z$, 

where L I.lv is the matrix basis of the six-dimensional representation of SU(2,2) 

Then the covariant derivative of *k(x) is given by 

DP\k(x) = OF*(x) + Ap, wo* [ 

Now we can give a formal invariant action of quark fields X@(x): 

I= 
I 

d4xP 

where 

2 = ix0 + LizI 

P-9) 

(2.10) 

(2.11) 

(2.12) 
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so is given by Eq. (2.4) and 

(2.13) 

The action I is readily shown to be invariant under the local SU(2,2) action. We 

could get the invariant action without introducing the independent gauge fields. 

Next we investigate the new situation by assuming that the SU(2,2) group should 

be the four-fold covering group of the connected conformal group C(3.1) . Then 

we reach a new point of view on the exceptional paraquarkfields. They are 

interpreted as objects with space- time quantum numbers which are transformed 

intrinsically as eight- dimensional representations of the full conformal group. 

Such fields have never been studied as quark fields. However, we observe that 

the mathematical quantities called “twisters” are analogous to our quarks here. 13 

By having identified the covering group C (3.1) with the SU(2,2) action on the 

exceptional paraquark fields we are in fact considering a nontrivial G bundle. 12 

In this case it is natural to extend our formalism to the general relativistic 

framework. In gauge theories of gravitation, the general coordinate transformation 

(extended translation) and the SL(2. c) group structure play essential roles. 8 In 

our case the structure group must be in principle extended to SL(2, c) @ SU(2,2). 

The general coordinate transformation in space-time is the most general and a 

highly non1 ine ar one. Ogieveskey has shown that higher order generators of the trans- 

formation group are made up on the joint realization of the affine A(4) and conformal 

C(3.1) generators and the general relativistic theory of gravity has been constructed by 

the method of nonlinear realization of A(4) and C(3 .l). In the next section we first 

recall this work on which we base our theory seen as a general relativistic theory of 

quarks. 

3. JOINT REALIZATIONS OF AFFINE AND CONFORMAL SYMMETRIES 
We now review briefly the work of Ref. 7. Consider the realizations of 
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affine group A(4) and the conformal group C (3, 1) in the factor spaces A(4) / L and 

C(3, l)/ L, where L is the Lorentz group. Then if g E A(4) and 2 E C(3, 1); they 

are given as 

ie P L 
g=e p p,2 PV~PV e-e 

ic K 
I-L P , 

(3-l) 

(3.2) 

respectively. We introduce a symmetric tensor field hpv (x) and the Goldstone 

fields Cp(x), c(x) and denote 

R(x) = exp 0 xp PJ exp ti hpv tx) J$, ) , 

C(x) = e-q (i xp PC1 ) exp (i Cp(x) Kp) exp (i (r (x) D). 

Define the action of an element of the group in accordance with 

g: gR(x)=R* (x’)exp 

g: gC(x)=C1 (x’)exp 

(3.3) 

(3.4) 

(3.5) 

(3.6) 

The action of group A(4) and C(3, 1) on an arbitrary field Cp (x) is defined in 

infinitesimal form 

6 45 = 9’ (x’ ) - ‘p(x) 

= g up (h lx), g) Lpv O(x) (3.7) 

and 

ifi =- 
2 P (x9 cp 69, (7 W)Lpv cp (x) . (3.8) 
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In the vector representation of A(4), R is 
P 

‘RIL,) 
QP 

= -i($ 6vp +(skp *& 9 

and we introduce the quantities 

= (eh),, =6pv +hPv + q +... 

its inverse 

r$ (xl = (e-4,, , 

and 

gpv = 40! 64 rav tx) = te24,, 

(&NJ $-l -1 
pa! (x) rQV (x) = te 

-2h 
) pv 

(3.9) 

(3. 10) 

(3. 11) 

(3. 12) 

(3. 13) 

which are the contra- and co-variant metric tensor, with r -1 
pv’ rjw corresponding 

to the tetrads familiar from gauge theories of gravitation. The covariant de- 

rivatives D.+ are 

Q, t-9 9 

so that 

(3. 14) 

(3. 15) 
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Under the action of A(4) the covariant derivative of the hPv (x) and an arbitrary 

field Cp (x) take the forms 

Vh = 
w,R,(d) 1 -1 

A I-@ ‘=Z’hr (3. 16) 

and 

VA rp (x) = DQ, -1 * * 

wph w 
a ++‘vrnln 

=rh- 7 2 pv,h ~L/.w CI 

where 

min 
%, A W = i r,lr [r- ’ (x), a7 r(x)] 

PV 

(3.17) 

(3. 18) 

There remain the same transformation properties of the covariant derivative 

Vh 9, when vmm 
A 

is 
pv )‘? 

replaced by (with arbitrary values of ci) 

V 
PV,A 

= pin 
PV , A +c1(Vh /A vh - qvhlh ) + c (6 

2 PA 
Vv h cm- 

- %h vphfJJ + c3 (Q yhVr -%i vr hpr’ 

Hence in general Vh Q is: 

VA @ =r--:aT@+lV 
2 lJv,A LPv 

@ 

Under the C(3. 1) action the covariant derivative is given as 

(3. 19) 

(3.20) 

“;i Q, = 
dG+;wLv Lv+ 

= e -Otx) (a, 9 +i av o\~*), (3.21) 
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with the condition CP(x) = % u(x). 
2I-L 

For the tensor field h o1 p (x) we have 

(3.22) 

It is apparent that the above trace R of R is related to the dilatation 
i-w PV 

generator D by RPP = 2D. Hence a(x) = a hPP(x) and set 

hpv (x) = $, (4 + 6 pv u W (3.23) 

We can re-express V A h min 
pv ) v/&J ,h ’ and r ;: ar * 

as 

Vh = 
h PV 

-Ii ‘i; 
, av e 

P 

+ eva (e -5 }A raru~pv 
-h +(e jAv {e -?; ” 

= , Vve”} 
WJ 

ar u -u +Te [ (e -5 )pr6A v- (e-2h)ph te Fi Jrv 

-Ii +te ) h &J 
1 +0-L-q , 
J 

(3.24) 
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min 
VpJ,A = $ r$ [r-l’ a,r] I.lv 

+ (e 
-2T; 

jv h te 
H 

) or - (/J-v) ’ 1 
r,“, a7 cp = (e -K jh 7q 5- i av.OP(e -i; 

)AP LPv@ . 

(3.25) 

(3.26) 

Upon substitution in Eq. (3.9), and the requirement that VA G depends on a(x) 

and av u(x) solely through the conformally covariant operations 7, we get 

c1 = -1, c2 = c3 = 0. 

Now the covariant derivative for both the affine and conformal symmetry of 

any field @ (x) is 

with the connection 

fr -1 
VY 1 r-l, 1 I. 

ayr bp j 

(3. 27) 

(3.28) 
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In the joint realization of affine and conformal symmetries, both 

Vp’O (3.29) 

and 

Vh =0 
h PV 

(3.30) 

Finally we consider the commutator of the covariant derivatives of any field cf, (x). 

We have 

5 vP - vPvAJQ= 2 /..w, hP p 
iR L +f, (3. 3 ,51) 

where 

Rpv,hP=r -' a v 
hY Y w,p+v 

l-vVp%h 

+V 
jq,pVvy,h - (h-p) * 

(3.32) 

Its contraction 

R=R =2r -la v +V -V 
w SW I-? Y PV,V PVY YVV.P PY,JVY~V’ 

(3.33) 

Then we obtain the invariant action under the affine and conformal transformation.- 

I= 
1 

VP+) +*R 
4f2 1 . 

The theory is identified with the theory of gravitational field by equating 

4+ f2=6.67 x 10B8cm3.g -1 -2 set . 

(3.34) 

(3.35) 

We are ready now to proceed with our theory. We will write down the action of 

the exceptional quark field is invariant under the A(4) . C (3, 1) @ SL .(2, c) @ 
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SU(2,2) structure group: 

_. 

where 

A7 
4 P~9l-l OPU 

!P 

(3.36) 

(3.37) 

It is apparent that the action (3.36) gives the gravitational theory for each color 

spinor due to the Eq. (2.5) with a condition that the split octonions are global. 

The detailed structures and the physical results of our system will be the objects 

of subsequent reports. 

4. CONCLUDING REMARKS 

The split octonions form the 8 dimensional representation of SO(4,4). Under 

the SU(2,2) subgroup of SO(4,4) the 8 octonions split into the 4 dimensional represent- 

ation of SU(2,2) and its dual. We identified this SU(2,2) with the four-fold covering 

group of the conformal group C(3, 1). By virtue of this assumption we could con- 

sider the color symmetry as a realization of space-time symmetry. The situation 

is very similar to that of the spinors. 9 The spinor is transformed solely through 

spin generators (up to dilatation), but the split octonions are transformed by the 

full conformal group. Such an entity is a completely new physical object. Such 

a type of fundamental field has not been envisioned in the literature, though it 

shares certain features with Penrose’ s twistor, 13 nor have they been applied to 

quarks. Therefore it would be interesting to study any relations between our para- 

quark and the twistors . 
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We have shown the possibility of writing down a general relativistic theory 

of exceptional paraquarks. The point of view proposed here seems to provide an 

appealing formalism to bring gravitational and strong interactions within one 

single framework. 12 The detailed analysis of this formulation will be performed 

elsewhere. 
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Ol 
v1 

O2 

“2 

O3 

v3 

wO 

vO 

C 
I3 

1 
2 

1 -- 
2 

1 
‘z 

1 
-z 

0 

0 

0 

0 

1 -- 
3 

1 -- 
3 

2 
3 

0 

B 

1 
3 

1 -- 
3 

1 
3 

1 -- 
3 

1 
3 

1 -- 
3 

-1 

1 

Table 1. SU(2,2) assignment of quantum numbers to the split octonions. The 

sextet gluons transform as 3 and 3* under the SU(2, 1) subgroup and have 
2 number B = -, - I, 3 respectively. 


