
SLAC-PUB-1931 
May 1977 
(T/E) 

NONSCALING FOR EVERYMAN-THE PROTON, NEUTRON AND 

DEUTERON STRUCTURE FUNCTIONS* 

Ivan A. Schmidtt and R . Blankenbecler 

Stanford Linear Accelerator Center 
Stanford University, Stanford, California 94305 

ABSTRACT 

We present a simple parton-model interpretation of the approach to 

scaling observed in lepton scattering off protons and deuterons. Differ- 

ent final state configurations are classified and their behavior predicted 

using quark counting rules. Good fits to the proton data are obtained. 

Using a relativistic description of the deuteron, its elastic form factor 

and inelastic structure function are analyzed. An extraction of the 

neutron structure function is performed by fitting the deuteron data. 

Several characteristics of the resulting parametrizations are shown to 

support our general model. Further experimental consequences are 

described. 
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1. INTRODUCTION 

The approximate validity of Bjorken scaling in deep inelastic electroproduc- 

tion’ has had a considerable influence on the theory of hadrons. The currently 

most popular view of hadrons is that they are composite states of (almost) point- 

like objects. The success of such a picture and the models it leads to in inter- 

preting the major features of both weak interactions2 and certain limiting behaviors 

of electromagnetic and strong interactions (the mass spectra and the large mass 

and large transverse momentum behavior, for example) is striking and perhaps 

even better than one should expect. The next problem is to find the set of 

fundamental theories that leads to models in the above successful class. 

The observation that asymptotically free gauge theories3 of strong interac- 

tions are capable of exhibiting scaling to within logarithmic factors whose powers 

are controlled by the anomalous dimensions in the theory4 was an important step 

in this direction. The next question is whether or not these theories can quanti- 

tatively fit the various features of the data. This task has been undertaken by 

several groups who have stressed the importance of studying the nonscaling, or 

rather the approach to (approximate) scaling, behavior of the inelastic structure - 

functions and of comparing features of the observed behavior with the predictions 

of abasic theory. In particular, Tung5 has compared the predictions of asyrnp- 

totically free theories to those of conventional theories and De Rujula, Georgi 

and Politzer’ have examined and defended a study using asymptotically free QCD 

theory in a series of papers and talks. The practical problems of carrying out 

such a program has been discussed by Gross, Treiman and Wilczek’ who have 

examined uncertainties in making mass dependent corrections. Other authors8 

have discussed possible difficulties in using perturbation theory with the operator 

product expansion. This program is indeed an extremely important one for weak, 

electromagnetic, and strong interactions. 
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Our purpose in this paper is quite modest in comparison to the total program 

of the above authors. We only wish to point out that there are certain scale 

breaking effects that are very simple from a physical point of view and which 

would seem to be present in any theory susceptible to a parton interpretation. 

These terms are a priori expected to be important for large x, the Bjorken -- 

scaling variable. At small x, they do not necessarily dominate from general 

arguments and there are many additional effects that could become important. 

Indeed, the data indicates that the terms under consideration are certainly not 

dominant there. 

These contributions show up first in the twist-6 terms in the language of the 

operator product expansion and would thereby be normally neglected. However 

they would be expected to be large from physical arguments. While they 

fall rapidly in q2, their coefficient is expected to be large. They do not cor- 

respond to interference terms between various final state configurations that 

prefer to populate different regions of the final phase space. Jf such “trivial” 

scale breaking terms are present in the data with its necessarily finite q2 range, 

it is certainly important to recognize their effect before asking more fundamental 

and specific questions of such data since these terms should be present in almost 

any theory. 

These contributions to scale breaking are most easily described in the parton- 

quark language. The structure functions will be written as a sum over final states 

in which all the quarks have low transverse momenta except for (a) one quark 

which recoils with momentum =q, (b) two quarks that recoil with a total of Nq but 

each has a finite fraction of q, (c) three quarks that recoil with a totalof Nq, etc. 

The above classifications neglects the coherence between such states and should 

be applicable for sufficiently large q values where the final configurations 
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become incoherent. The importance of type (b) terms, for example, will be 

shown to be the fact that while they fall in q2 at fixed x, they vanish less rapidly 

than type (a) terms for fixed q2 as x -. 1. We should point out that the partons in 

our model do not have form factors as used in the extended parton model of 

Chanowitz and Drell’ (but our two quark system does). 

A perhaps more physical application of the above classification scheme is 

to deep inelastic scattering from the deuteron in which (a) a fragment of one of the 

baryons recoils with wq, (b) one baryon recoils with wq (quasi-elastic scattering), 

and finally (c) both nucleons recoil together (elastic or resonance scattering). 

This case will be treated in detail in this paper when the neutron structure func- 

tion is extracted from the data. lo This extraction will be done using a fully 

relativistic model for the deuteronwhich we do not believe has been done before. 

As a check on our assumed wave function, the deuteron elastic form factor and 

structure functions will be considered in some detail and compared to experi- 

mental data. 11 

One point worth mentioning is that there are many variables that asymp- 

totically become equal to the Bjorken x, and which make data at small q2 satisfy 

scaling to different degrees. An often used one is the Bloom-Gilman x1 

(= x (l+M2/2Mv)-l). Most of these improved scaling variables, however, do 

not have a clear theoretical significance. We shall neglect such effects for the 

most part, although an estimate of both mass and initial state effects will be 

mentioned. Our purpose is to see if one can fit the approach to scaling with 

terms that have a clearer and more direct physical interpretation. 

The paper is organized as follows. In Section II we discuss the proton 

structure function, separating the different contributions according to the 

different possible final states. We use dimensional counting rules to get the 
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general form of these terms as a function of x and q2, and then fit the experi- 

mental data. The threshold limit is analyzed in Section III (the Drell-Yan-West 

relation). Section IV contains a relativistic description of the deuteron, and 

explicit expressions for the distribution function of nucleons in the deuteron 

(essential in inelastic scattering) and for its form factor are given. The param- 

eters in the deuteron wave function are determined by fitting the resulting elastic 

form factor. In Section VI we discuss the deuteron structure function. As was 

done before for the proton, the different final state contributions are separated. 

For large q2 and/or xD < l/2, we have only inelastic contributions, and by fitting 

the data for the deuteron in this range, we can extract the neutron structure 

function. Then we include the quasi-elastic term (important for low q2 and xD 

around l/2), and the possibility of strong final state interactions between proton 

and neutron (important for xD - 1). Finally, some conclusions are presented 

in Section VI. 

II. PROTON STRUCTURE FUNCTION 

In order to illustrate the physical point that we wish to make without obscuring 

the issue with algebra, we will treat only the spin averaged case and hence will ’ 

neglect the spin of the quarks in the formulation of the model. Following the 

classification discussed in the introduction, the contributions to the proton struc- 

ture function to be considered here are illustrated in Fig. 1. Our analysis is 

very much in the spirit of the CIM model of hadron collisions, 12 in the sense 

that it is clearly necessary to consider all possible final states in order to extract 

those configurations that are expected to dominate in a particular region of phase 

space. And also as in the CIM, we shall use dimensional counting to predict the 

behavior of form factors 13 and generalized structure functions. 14 

In Fig. la, one quark absorbs all the momentum q carried by the virtual 

photon. This is the dominant diagram of the parton model. In Fig. lb, the photon 
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is absorbed by a two quark system which then recoils, each quark having a 

finite fraction of q. This diquark state need not be thought of necessarily as a 

bound system, but a photon striking a virtual meson in the target that remains 

bound will also be of this type. In Fig. lc, the photon is absorbed by a triquark, 

or baryon, system and this obviously involves the form factors for nucleon 

elastic scattering and resonance production. This latter contribution is very 

small in the region of interest and will be neglected. 

Since the diagram in Fig. la approximately scales, for the present purposes 

its contribution to VW,(X), or rather F2(x), will be written in the form 

FS 2p = As(x) (1-x)3 , (1) 

where As(x) is a rather slowly varying function of x which is expected 

to peak such that the most likely quark momentum is near (or less 

than) l/3. As(x) may also be a very slowly varying function of q2. 

Such slow variations can arise from a fundamental scale breaking, such as &CD, 

or from the kinematic effects of the binding of the quarks. This latter effect 

could be called a mass effect, an off-mass-shell effect, or a wave function 

effect, as the reader prefers. It has been estimated using a choice for the rela- 

tivistic bound state wave function that was successful in other contexts 15 and a 

version of which will be used in Section III to describe the deuteron. We find 

an effect which goes in the opposite direction from that to be discussed shortly. 

Such effects will be neglected here but if they were included, it would simply 

increase the normalization of our explicit nonscaling term. Our object here is 

to see if the observed scale breaking at moderate and large x values (x21/3). 

can be explained with an As(x) that does not depend strongly on q2. 

In the first diagram of Fig. lb, the photon is absorbed by a diquark system 

that has a form factor Fd(q2) that falls as l/q2 from dimensional counting. The 
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x-dependence is quite easy to infer from the graph. This contribution must 

vanish as (l-x) for x -+l since there is only one spectator quark. Now the most 

likely diquark momentum fraction is -2/3, and this follows automatically if the 

nonscaling term is chosen to have the form calculated for valence constituent: 

ns 
FZp(Xs q 

2 
) = Ans d F2(q2) x2(1-x) . 

This has all the desired limiting properties if Fd is parametrized as 

Fd(q2) = d2(d2-q2)-l . (3) 

Note that if a virtual meson absorbs the photon and remains bound, as in the 

second diagram in Fig. lb, the structure function will have the same q2 

dependence as above a rising from the pion form factor but it will fall as (l-~)~. 

It is estimated to have a small overall normalization for x > l/3. Hence it will 

be neglected in our fits. 

The total structure function in this approximation is 

F zp = F;ptxJ + F;;tx,s2, , (4) 

and higher terms have been neglected. Fits to the proton data 10 are shown in 

Fig. 2, and one sees that it is possible to have both a consistent and simple 

picture of the approach to scaling in this framework for large enough x and 

(-q2) 2 2(GeV)2. If scale breaking is to differentiate between specific basic 

theories, it evidently must be studied at small x, say x5 0.3, not at large x 

where the observed scale breaking can be simply explained in terms of physi- 

cally expected effects in any scale invariant theory with even an approximate 

parton interpretation. This is not to say that our term necessarily explains 

all the scale breaking observed in this region, but without prior prejudice and 

information, it is not possible to decide how much is to be ascribed to the more 

fundamental (and interesting) properties of the theory under consideration. 
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The parameters used in the above fits are Ans= 2.5, d2= 2. As(x) is quite 

slowly varying in x, with an average value of -0.9. Graphs of FIp(x) and As(x) 

are given in Fig. 3. The value of d2 we find uncomfortably large, but it is 

necessary in order to fit the data at small q2 (2 2). A value of d2=l fits for 

q2>3. Since As(l)#O, F2 satisfies the Drell-Yan-West relation for x-l. 

While the data”’ l6 for Fl has not been fully analyzed, we have found that 

the scaling terms in Fl and F2 extracted by the above procedure agree better 

with the Callan-Gross 17 relation (x Fs = F$ than the total structure function at 

low q2. Since the diquark term is an effectively integer spin object, it could 

break this relation for the full (unseparated) structure functions in regions 

where it is important. 

III. DRELL-YAN-WEST RELATION 

The threshold limit of the structure functions should be smoothly connected, 

in the sense of Bloom-Gilman duality, 18 to the elastic or resonance form 

factors G(q2). According to the Drell-Yan-West relation, 19 as x approaches 

one from below (x= I+ (m2-M2)/q2, where m is the missing mass and M is the 

proton mass), one has 

(-s2) G;p(42) = /- &i-n2 FZp(Xs s2) 

-M2)3 + Ansd4(m2-M2) , 1 (5) 
and the integral runs roughly from the nucleon mass M up to the effective thres- 

hold for pions. 20 Thus the nonscaling terms contribute to the leading asymptotic 

behavior of the form factors and for our fit, dominate. The above is clearly not 

the complete story since there are other contributions, especially interference 

terms, that become coherent in the limit x- 1 and also contribute to leading 

order in q2. This is necessary since G must contain a coherent sum over 
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charges, whereas the contribution to the usual structure functions involve the 

sum of the squares of the charges of the elementary constituents. The non- 

scaling terms A ns contain some of the interference effects, but not all. In any 

case.. the relation (5) is approximately satisfied if m is integrated from M to 

the threshold for two pions, M+~/J. 

Finally, we note that if the above connection also holds for the neutron, 

with the same integration region and Gp(q2)/Gn(q2) = constant, then if the scaling 

term dominates one has @n/pp)2 s (A~(l)/A~(l)), whereas if the nonscaling term 

dominates, which is the case in our fits, then (/J,//J~)~ = Ks/AKs). Otherwise 

the value is an intermediate one. Our fit for the first ratio will be shown in a 

later section to be ~0.40, whereas the ratio for the nonscaling term is -0.33. 

Both of these are somewhat below the square of the experimental ratio of 

magnetic moments (-0.47) but are consistent within the errors of our extraction. 

This relation is not to be taken too quantitatively due to the coherence problems 

alluded to above. 

IV. THE RELATIVISTIC DEUTERON 

In order to describe the deuteron in a relativistic manner, which is 

necessary for our presentpurposes, one needs to have some knowledge of the 

Bethe-Salpeter wave function with one particle on-shell. A general relativistic 

description of nuclear bound states has been given elsewhere, 15 and its con- 

nection to the familiar nonrelativistic description was presented in detail. 2’ 

In terms of the deuteron wave function $,(x,gT), the probability function is 

given by (a = neutron or proton) 

16) 
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and the deuteron form factor at a four-momentum transfer q2 

by 

is given 

where Fa(q2) has been replaced by its on-shell value; the integral multiplying 

it is then the intrinsic body form factor of the deuteron. 

In Ref. 15 it was shown that a good fit to quasi-elastic scattering processes 

involving the deuteron could be achieved by choosing 

$(x,rT) = N(x)(l-x)~ (k;+M2(x)) (k;+M2(x)+6;) (k;+M2(x)+6; -’ , (8) 

M2(x) = M2 - x(1-x) M; , 

where M is the nucleon mass, the deuteron mass is M D, and N(x) is a slowly 

varying function of x. Since $ describes one on-shell and one off-shell particle, 

neither $ nor G are necessarily symmetric around x=1/2. Isospin symmetry 

implies that G p,D(x) = Gn,D(x), not that Gp,D(x) = Gn,D(l-x), although the latter 

relation may be a reasonable approximation in certain circumstances. 

Now since G a/DfXP kT’ is the probability of finding the constituent a in the 

deuteron with longitudinal momentum fraction x and transverse momentum kT, 

it must be related in some way to the square of the nonrelativistic wave function 

for low momentum. Such a relation follows by writing x= (M+kZ)/MD and 

expanding in powers of kz. The corresponding nonrelativistic probability func- 

tion is easily seen to be the square of a generalized Hulthen wave function. This 

approximate connection can be used to estimate the values of the constants 6; 

and 6:. 
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The normalization constant of $ can be computed by the condition 

c /dxd2kp Ga,~tx,T;,) = 1 , 
a 

which expresses the fact that the sum of the fractional momenta of the proton 
_. 

and the neutron is the total (fractional) momentum of the deuteron. Note that if 

G is symmetric around x=1/2, this is equivalent to the condition 

J 2 
dx d kT Ga/-,@,i;‘T) = 1 , 

which follows from the fact that the number of particles is fixed and 

G n,,,tX9 kT) = Gp,D(l-x, kT) * 

The deuteron form factor can now be computed from $(x, kT). A fit that can 

be achieved for our spinless model is given in Fig. 4 for the values 

6; = 26; = 400 ME , (9) 

where E is the binding energy of the deuteron, and the isoscalar form factor 

was taken to be equal to the proton form factor for all q2. The data is from 

Ref. 11. The fit is not very sensitive to the value of 6l and d2; for example, 

the set 6:= 6:= 200 ME also provides a reasonable fit, If spin were put into the 

model, and especially if D-state effects were then included, the fit could be 

made much better since the quadrupole contribution naturally gives a shape that 

is similar to that of the data points. The form factor has the asymptotic behavior 

in q2 given by quark counting. 22 

The deuteron structure function in x is given in terms of 

xG a,D(X) = jd2$x Ga,~tX,c~) > 

which behaves as (for xsz 0 or 1) 

- N2(x) x2(1-x)~ . 
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We have chosen N(x) = N0x2 for the calculation, but setting N = constant has no 

noticeable effect on the results given here. 

V. THE NEUTRON STRUCTURE FUNCTION EXTRACTION 

Just as was argued in the proton case, inelastic scattering from the deu- 

teron has several distinct contributions. At very large q2, one expects that 

the dominant term has one quark absorbing the photon momentum; as q2 

decreases, more and more components of the deuteron will participate. In 

order to untangle the many terms that contribute in this case, we shall start 

our fit at large q2 and then extend it to lower values by adding in the expected 

next terms. We shall check at each stage that the fit of the previous stage 

still holds. We shall work in terms of the natural Bjorken variable for the 

deuteron, 

XD = -q2/2MD” , 

which is one-half the x defined in terms of the nucleon mass. The following 

procedure should be compared with that used by Atwood and West. 23 

Large q2: In this limit, the scattering from the constituent nucleons is 

highly inelastic and the photon momentum is absorbed by one and perhaps two 

quarks as was discussed in the proton case. The term in which three quarks 

share the photon q will be considered separately (quasi-elastic scattering). 

Thus for large q2 we can write (neglecting small G effects) 

F2D(XD’ 9”) = c I1 dy F2a (xD/Y> q2) Ga,,(Y) t (10) 
a x D 

where certain off-shell effects in F 2a have been neglected. This formula has 

been discussed in the scaling limit by Landshoff and Polkinghorne 24 for several 
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types of reactions. Note that since Ga,A(y) is strongly peaked at y N l/2, one 

has the very approximate relation 

F2D(xry 9”) - c F2a(2xD’q2)e (; - xD) ) 
a 

which strictly holds only in the limit of zero binding but has a simply physical 

interpretation. It turns out that this approximation overestimates the deuteron 

function by 5-10%. 

Since G a,DtX) is kn own with some accuracy, the more exact relation (10) 

will be used to extract the neutron structure function FZn(x, q2) from the large 

q2 deuteron data. In order to carry out the fit in a convenient form, define 

2 ns 
F2$vi ) = F;ntX) + F2#s q 

2 
) > (11) 

where 
S S 

F 2nW = B 1 W F 2p W 

2 ns 2 
F;$u. 1 = B2@) FZp(X> q ) - 

A fit to the data can be achieved with the Bl(x) given in Fig. 5 and with B2(x) = con- 

stant = l/3. We have restricted the extraction to xD < l/2 in order to decrease - 

the sensitivity to the assumed form of Ga,D(y). The resultant fit to data 10. in this 

region is given in Fig. 6. The separated scaling and nonscaling parts (for 

q2 = -8) of the structure functions for the neutron and proton are given in Fig. 7. 

There are several points worth mentioning. The function Bl(x) is slowly 

varying over the range of x considered, x 2 0.25. The average value of Bl(x) 

around the valence peak (x= l/3) is roughly consistent with 2/3 which is the ratio 

of the sum of the squares of the valence quark charges, neutron/proton = (2/3)/l. 

However, at large x, Bl(x) is dropping but still safely extrapolates to be larger 

than the lower bound of l/4 at x=1, which holds in the valence quark model. 
25 
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The value of l/3 found for B2(x) is the ratio of the sum of the squares of the 

valence diquark charges, neutron/proton = (2/3)/2. (A slightly better fit can 

be obtained by taking B2(x) to be slowly varying, with an average value of l/3. ) 

These three features of the fit are evidence of the consistency of our interpre- 

tation and fit (but certainly not its uniqueness). 

Moderate q 2 : Using only the above terms, 

for all values of xD using Eq. (10). The result 
3 

we can now compute F 2D 

labelled inelastic is given in 
3 

Fig. 8 at large q’ and in Figs. 9 and 10 at moderate q- as a function of 

1 M2 

ur===F ’ 

which has been used in the presentation of the data of Schlitz et al. 11 At this -- 

stage our curve for the inelastic contribution falls below the present data for 

(-q2) 2 2 (GeV/c)2 for 1 > wT > l/2 (xD - 1). This is not surprising since the 

quasi-elastic and fully coherent lYresonance” contributions have not been 

included. Quasi-elastic scattering should be important for x j-, - 1/2 

and for the lower range of q2 values. 

This contribution which should be added to the F2D xD, q2 given by Eq. (10) ( > 
is 

(12) 

It has been plotted separately in Figs. 9 and 10 for (-q2) = 6 and 1 (G~V/C)~ 

respectively. For the smaller q2 value there is a clear quasi-elastic peak 

which has been suppressed at the larger q2 by the nucleon form factor. It would 

be very interesting to have data in this region to explore the properties of the 

quasi-elastic peak. 
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In the region of xD very close to one, the data is clearly larger than the 

sum of the contributions considered so far, even if the experimental resolution 

is used to smear the prediction. In Ref. 11, the suggestion is made that this 

could be due to a final state resonance in which the two nucleons share the 

momentum of the virtual photon. This contribution can be fit to the data if 

written in the form 

= (-q2) F;(q2) 10 
3-2x; 

(13) 

which for q2=-6 and 1 is shown in Figs. 9 and 10. We are not sure that this is 

a correct interpretation but a contribution which roughly has the above structure 

was predicted by Jankus 26 in scattering from the deuteron near the inelastic 

threshold. Jankus found a strong localized enhancement in this region that was 

due to nonresonant (scattering length) final state interactions. Such an effect 

was found experimentally. 27 It would be very interesting to compute this effect 

with a relativistic treatment of the deuteron to check its consistency with the 

data. A different approach to fitting this data has been described by Frankfurt 

and Strikman. 28 

V. CONCLUSIONS 

In this paper we have shown that the ordinary parton model, which nor- 

mally is assumed to scale (except for mass corrections), has physically identi- 

fiable terms that do not scale. The final states that were of most interest here 

were one quark recoiling with the photon momentum and two quarks sharing 

this momentum. The predicted form of the structure functions and form factors 

for these terms were shown to provide a reasonable fit to the proton and neutron 

data for x 2 l/3 and (-q2) 2 2 (GeV)2. The ratios between the proton and 

neutron are as expected in the model. Due to the uncertainties involved, our 
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parameters should be considered as having ‘Yypicalr* values. The errors are 

correlated between the parameters of the scaling and nonscaling terms and no 

systematic error’analysis has been made. 

-Cur model and fit is certainly not the only way to understand the non- 

scaling behavior of the structure function at large x. This behavior is also fit 

by using ” [-scaling” 29 plus asymptotic freedom models. 576 There should be 

experimentally measurable differences between this approach and ours, however. 

While we do not know precisely what the latter models predict, if our explana- 

tion is correct there should be protons in the photon fragmentation region for 

large x. The single quark recoil or scaling term should prefer to decay to 

mesons (the leading mesons would then have a (l-x) decay function behavior). 

The diquark recoil term should decay not only to mesons but also should decay 

strongly to baryons (the leading baryons should also have a (l-x) decay function 

behavior). Therefore if our explanation is correct, the proton/pion ratio should 

follow the ratio of the nonscaling term to the full structure function. The obser- 

vation of recoil protons arising from a preferred x value of 2/3 and a q2 behav- 

ior of (-q 2 -2 ) would be confirmation of our general picture. The absence of such- 

protons may be more consistent with asymptotic freedom models. At the 

present time, the proton/pion ratio can not be predicted since we do not know 

the decay probability functions for a diquark system to produce pions and protons. 

These functions can be measured in principle in several independent ways, 

however, such as in e’e- annihilation and in the target fragmentation region of 

deep inelastic lepton scattering. 

The scaling teams in Fl and F2 were found to be in reasonable agreement 

with the Callan-Gross 17 relation. If the diquark system is predominantly spin 

one, then one expects large asymmetry effects in deep inelastic lepton scattering 

with polarized beam and target. 30 
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It is clearly possible to ascribe the lack of scaling at large x to either our 

model or to asymptotic freedom models or to any linear combination. This is 

not the case at small x. Our model is not able to explain the probable rise in 

q2 at small x of the structure function suggested by high energy p-scattering 31 

or the nonscaling behavior at small x seen in neutrino scattering. 32 (A general 

fit to all this data has been given in Ref. 33. ) This behavior is strong evidence 

for asymptotic freedom and/or the production of new, heavy quarks, and/or 

Regge-duality effects, 34 but this is unfortunately in a region where it is difficult 

to make quantitative calculations. However, since the diquark terms can be 

used to decrease the size of the nonscaling effects due to asymptotic freedom at 

large x, then there may not be enough rise left at small x to explain the data in 

such theories. 

A relativistic model of the deuteron has been developed and used to extract 

the neutron structure functions. We do not believe this has been done before. 

Our method is easily susceptible to a more accurate treatment (especially 

important here would be the inclusion of 

deuteron model by comparing it with the 

spin effects). We have checked our 

measured elastic form factor and inelastic 

data for all xD. 

To conclude, we have shown that a simple extension of the parton model, 

together with dimensional counting, provides a reasonable fit to the nonscaling 

behavior of the proton and neutron structure functions for x larger than the valence 

quark peak at l/3. The model can be tested by looking at the proton yield in the 

photon fragmentation region. We therefore conclude that if one wants to differ- 

entiate between basic theories of hadrons by studying only the structure functions, 

it must be done at small x where the above nonscaling terms are probably 

unimportant. Even in this region of x, however, one is faced with the problem 
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of demonstrating that such effects are indeed small, especially if one is making 

a quantitative comparison with a particular basic theory. 
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FIGURE CAPTIONS 

1. Contributions to the proton structure function, with one (a), two (b), and 

three (c) quarks recoiling coherently. 

2. Fits to the data of the proton structure function F (x, q2), for different -, 2P 
values of x, as a function of q2. See Eq. (4). 

3. Scaling part of the proton structure function , and coefficient 

As(x) of this same function. 

4. Fit to the (deuteron form factor)2. 

5. Ratio of the scaling parts of the neutron and proton structure functions 

6. Fits to the deuteron structure function F 2D(x, q2), for different values of 

x, as a function of q2, used in the extraction of the neutron data. 

7. Comparison of the neutron and proton scaling and nonscaling contributions 

(for q2 = -8 (GeV)2) to the structure functions. 

8. Prediction for the deuteron structure function for very large q2. 

The data is from Refs. 10 and 11. 

9. The three contributions to the deuteron structure function (inelastic, quasi- 

elastic, resonance), for q2 = -6 (GeV)2. 

10. The same three contributions for q2 = -1 (GeV)2. 
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