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Abstract 

A simple technique is described for reconstructing missing 

data for use in principal component analysis. The technique is 

described in the context of track finding and track reconstruction 

in wire chamber spectrometers, but should have a much wider range 

or applicability. 
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Reconstruction of Missing Data 

in Principal Component Analysis 

The use of principal componenet analysis in track finding in wire 

chambers has been suggested by H. Win L!i %i28 everal papers; It is commonly 

thought that the method fails or at least becomes quite intractible if one or 

more of the wire chambers is inefficient and the corresponding data missing. 

This note is written to point out an efficient technique for constructing the 

missing data and handling the consequent reduction in the redundancy in the 

data. We first review the basics of principal component analysis, in order 

to establish our notation. 

In a wire spark chamber or proportional wire chamber spectrometer each 

plane or layer of wires measures a coordinate on a particle track. For a 

single particle passing through a spectrometer with M layers, M coordinates 

are measured. The M-tuple of coordinate values may be treated as a vector 

or a point in an M-dimensional space. Since we expect to have many tracks 

in an experiment we label tracks with a subscript c1 

%a = (Xal’ xa2, X(.p’. XaM) a = 1, 2, 3, . . . , N 

The points %u should cluster somehow in the M-dimensional space of all 

possible coordinate values. In fact, we know that a real track is fully 

describable by five independent parameters (e.g. two transver.se positions, two 

direction angles, and reciprocal momentum). As a consequence, all the points 

corresponding to real tracks must lie in a 5-dimension sub-space of our 

original M-dimension data space. Wind has suggested that for a wide variety 

of experimental situations, this subspace may be very close to a linear subspace 

or hyperplane of 5 dimensions. If one forms the dispersion matrix, A, such that 
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and solFes the eigen value equation. 
-f 
E=hiJ 

The resulting eigen vectors, 8, have some very useful properties which are 

set forth in the work of Wind. For a system with M dimension there areingeneral 
-f 

M eigen values and eigen vectors. The matrix, w", formed from the full set of 

eigen vectors isanorthonormal matrix which rotates the track coordinates ; so CY 

that the 5 dimensional hyper plane is aligned with the coordinate axis, We arrange 

the eigenvectors in a M by M matrix in W in order of increasing eigen value. In 

the resulting rotated system, the first M-5 components of a real track have 

values that, after a simple translation, are essentially zero. 
R 

The five 

remaining non-zero components fully characterize the track. The rotation and 

translation which accomplish the reduction in the number of non-zero compon- 

ents can be pre-computed using a Monte Carlo model of the apparatus or using 

data collected in special runs for which the operating conditions are such 

as to assure only one track per event. 

But if the spark chambers are at all inefficient, there will be tracks 

for which one or more of the original coordinates are missing and it is then 

not possible to perform the rotation. It is possible to reconsider the whole 

problem with one layer missing i.e. M-l dimension and repeat the whole analysis 

M times, once for each of the layers missing and introduce M additional rota- 

tion matrices of degree M-l. And to handle the possibility of two coordinates 

being missing simultaneously one would introduce M(M-1)/2 new rotation 

matrices each of degree M-2, and so forth until one has covered all possibili- 

ties of missing data. For a spectrometer with 16 layers and allowing up to 

J( This translation, to the center of gravity, we will denote by gc 
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4 missing coordinates among the 16, one must precompute and store hundreds of 

thousands coefficients. This seems to me an unrealistic approach to the problem. __ 

InStead we notice that we can use the inherent redundancy in the data to 

construct a best estimate of the value of the missing coordinate (or coor- 

dinates) and then -apply .the M-dimension rotation matrix to the full set of 

M-"measurements" . (In quotes because some are real and some are constructed). 

We motivate this construction as follows: 

Define 6 to be the distance from a specific point 2 to the hyper plane 

fitted through all realistic track points 

Let : 

so that 62 = E5 (Yi) 2 
i&l 

For real tracks 62 s 0. For tracks with missing components we adjust the 

value of the unknown component(s) to minimize 6 2 

- 0 =+- w 
j ! 

(S2) = 2."55 (Yi)‘ -& Yi 
i=l j 

= 2."c5 Yi 
i=l ij 

M-5 
o=% w..E w x 

i=l =+=I ik k 
= 5 ,,,yfw.. Wik 

k-1 i=l ‘J 

Define C 
jk 

=y w..w. 
i=li 'J lk 

and the equation becomes 

0 = “c xk cjk 
k=l 

There is one such linear equation for each missing component. The M x M 
-f 

matrix C 
jk 

is constructed from the matrix w' once per experiment and because 
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it is symmetric, it requires a trivial amount of storage. The coefficients 

in any set of linear equations corresponding to any combination of missing 

data are-obtained by indexing into this small matrix. For K missing components 

one must solve an K-fold set of simultaneous linear equations using standard 

techniques. 

Since K, the number of missing components, is supposedly a small number, 

we thus invert a K by K matrix for each event with K missing components. The 

elements of the matrix to be inverted are C. 
Jlj2 

where and. 
h J2 

label the 

missing components. 

One can, in principal, anticipate all possible combinations of missing 

data and invert the corresponding matrix apriori. However, because inve;rting 

this small matrix is a relatively small computation, it can be done once for 

each event in which there is missing data. 

If the errors in the individual components are Gaussian distributed with 

unit variance, the variable 62 will be x2 distributed. With no missing data 

there are M-5 degrees of freedom for this x2 distribution. With K constructed 

components there are M-5-K degress of freedom. In fact, the errors in 

individual components are probably not Gaussian distributed so the above 

statement is not rigorously true for real data. On the other hand it is 

probably not so wrong as to be misleading for real present day spectrometers. 

I wish to thank Dr. J. Friedman of the Stanford Linear Accelerator Center 

Computation Group and Dr. H. Wind of CERN for helpful and illuminating 

discussions. 
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