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ABSTRACT

The lattice gauge theory proposed by Wilson is discusséd“ Gauge
fixing is defined for the lattice theory, and it is shown that gauge fix-
ing is done in this theory solely for calculational purposes. The
gauge-fixing method is used to study the mass renormalizat‘ion of the
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sult is proved to all orders in perturbation theory using the Slavnov
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I. THE LATTICE GAUGE THEORY

Fhe lattice gauge theory has been introduced by Wilsom1 to explain the dy-
namics of strongly interacting elementary particles. The non-Abelian gauge
field Elas many well-known and remarkable properties. In particular, it is a
nonlinear field which couples to itself (and, of course, to anything else which
carries the requisite quantum number). In this sense it is similar to the grav-
itational field. The gauge field also exhibits asymptotic freedom (that is, the
strength of the coupling goes to zero for zero distance interaction); and, when
coupled to the quark field, the coupled quark-gluon theory shows quark confine-
ment in the strong coupling limit. The gauge field quantum is an elementary
particle. For the case of strong interaction, this quantum is called the gluon.
The quantum of the Abelian gauge field is the photon and its properties are
fairly well understood.

Wilsonl’ 2 has given an action functional formulation of quantum field theory
using the Feynman path integral. In particular, the lattice gauge field is quan-
tized on a discrete lattice embedded in a four-dimensional Euclidean space-
time. The reason for going to a lattice is twofold. Firstly, the lattice provides
an ultraviolet cutoff, and hence there are no ultraviolet divergences in the the-
ory. We will sometimes work with a finite size lattice, and this will provide an
infrared cutoff., The problem of renormalization has to be solved to go to the
continuum limit, i.e., to let the lattice spacing go to zero. Secondly, using the
lattice as a cutoff allows one to formulate the cutoff theory so that we have ex-

act local gauge invariance for the lattice gauge field. Any other conventional

way of defining the cutoff theory usually destroys local gauge invariance. Local
gauge invariance is the single most important property of the gauge field, and

the lattice gauge field is a more accurate representation of it than, say, would



.

be a theory which preserves Lorentz invariance but gives up local gauge in-
.variamnce. We work in Euclidean spacetime as this allows us to rigorously
define the Feynman path integral. Analytically continuing to physical time is
necessary for computing physical quantities,

Consider a finite lattice of N4 lattice sites, and with periodic boundary
conditions. Let n specify the lattice site and u the directions on the lattice.
The local gauge degrees of freedom are the finite group elements Un“ belonging
to the gauge group G, which for definiteness, is taken to be SU(n).

The gauge field action functional is defined byl’ 2

IH

= > X Tr(W_ ) (1.1)
2g, n pFy fld

(=3 \V]

where g is the bare coupling constant (Tr signifies trace). Note

_ .yt o a
LA UnMUn_l_u’vUn_’_V’“UnV | (1.2)

The gauge field theory is quantized by integrating eA over all possible values for
U ,ie.,
ny
z<g(2))= oo de o (1.3)
n u
where dUn,u is the invariant measure.
Note A is invariant under local gauge-transformations, which for the lattice,

is defined by

| T '
Unu —_ Vn Unu Vn+u (1.4)

where Vn is also an element of the gauge group.
Let {X?} be the generator's of the group. Then

[x2, xP]=icPcx® (1.5)
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Tr X2 XP) =52 /52 (1.6)

for the fundamental representation, s2=2. 3 Let fo,u be the local lattice space-

-

time gauge field, qﬁi a local scalar field, and let fi,uv be the local gauge field-

tensor. Then

. : ‘ it x®
W =€ Rald (1.7)
ig? x?
U, =e i (1.8)
i(i)i x?
V =e (1.9)
n

Bi’# and fiuv are bounded variables which take values in the compact parameter

space of SU(n)., We consider the case when Biu <« 1. Using the equation

1
efe = eA+B+2[A’ Bl+... we find from (1.8)

a a a 1 ~abe. L b c b ¢ b c
fw 8B, 8,B,, - 3C [an’uan,v+an’“BnV+Bn#Bn+“’v

—BbBC -BbBc b

c 3, _
nu nuonH, Bn+ﬁ,VBnV] + OB = ‘fi

” (1. 10)

where repeated indices are summed over and A h =h + -h is the finite lat-
, En Tt n

. i e . e . a a
tice derivative. In general, fz W is an infinite power series of the {Bnu’ Bn o

a a . a
Bn +ﬁu’ an} variables., That fn w

consequence of the group multiplication law. We also determine the effect of

is an analytic function of these variables is a

the gauge transformation on the Bi” variables. Let qbi « 1; then, from

(1.4 ),
.~=a _ . a,a .5 A PR
exp {1Bn“Xa} = exp {1¢nX } exp {anuX } exp{ 1¢n+“Xa}
giving
~a _ _.a a _1.abc, b b c 1~3bc b c 3
Bnu = Bnu - A“qbn 3C (¢n + ¢n+ﬁ)Bnu + 35C ¢n¢n+ﬁ +O0(¢97) . (1.11)

We will return to these equations in Section II. [In Section OB, we use

Bzu(qb) to denote ﬁiuo]



II. THE WEAK COUPLING APPROXIMATION

THhe lattice gauge theory is studied for its weak coupling behavior. It will
be shown that a gauge-fixing term is necessary in this limit solely for the pur-
pose of calculations. A counterterm has to be introduced into the action to can-
cel the gauge-invariant effects of the gauge-fixing term. The counterterm will
be evaluated in the weak coupling approximation, and the result is seen to be
significantly different from the results of the conventional continuum non-
Abelian gauge fields. We attribute these differences to the lattice cutoff that is
built into the theory. The main purpose of the gauge-fixing/counterterm for-
malism is to reduce the lattice theory, in the weak coupling approximation, to
conventional field theory on a lattice. This, in essence, means that all the field
variables {Biu} take values over an infinite range (i.e., over the real line R) rather
than over the compact parameter space. Having all the variables Bzﬂ range
over R will allow us to define Feynman perturbation theory for the lattice gauge
field. In this section, we will basically discuss under what conditions the above-
mentioned reduction is possible. The gauge-fixing/counterterm formalism will
be introduced to make this reduction possible; we will also discuss why, without
this formalism, we have a well-defined theory which is, however, unsuitable for
calculations., We will first discuss, for pedagogical reasons, the theory without
the gauge-fixing term, and then show the necessity for introducing it. The ne-
cessity for the counterterm arises as follows: (a) The gauge fixing breaks local
gauge invariance of the ‘theoryo This is necessary, since it is local gauge in-
variance which is the obstacle to setting up a Feynman perturbation expansion
for the original action. (b) The counterterm is introduced to cancel the gauge-
invariant effects generated by the gauge-fixing term. The resultant theory gives

the same gauge-invariant vacuum expectation values as the original theory.



A. Gauge Fixing
| We will discuss gauge fixing from the weak 'coupling point of view, although
the basic results are valid for arbitrary coupling. The reason for this is that
the usefulness of this approach is obvious for the weak coupling limit. By the
weak coupling limit we mean the behavior of the lattice gauge field when we let
89— 0. The properties of the gauge field can then be computed as an expansion
in go° We will look at the O(g(z)) behavior of the field.

We will first study the behavior of the theory without any gauge fixing. To
do so, we have to make a change of variables such that all the variables in the
path integral that have no coupling to the gauge-invariant sector are factored out
of the path integral. This change of variables is called choosing a gauge for the
gauge field., We choose the generalized axial gauge as defined in Ref. 1 for the
Abelian lattice theéry; the non-Abelian case is essentially the same as the
Abelian case except for some not so minor complications. The choice of :;1
specific gauge will help clarify the role of the gauge-fixing term.

To choose the axial gauge, we have to partition the finite lattice into dis-
joint domains. On each domain will be defined distinct change of variables.

The domains are defined as follows. We consider a finite lattice 1 in“ <N
with periodic boundary conditions. We partition the lattice sites into the fol-

lowing disjoint domains:

D(O) = {nl 1 ino <N-1, 1 ini < N} : 4-dimensional hypervolume -
D(l) = {nlnO =N, 1 <ny <N-1, 1 inz,n3 S.N} : 3-dimensional volume

D(z) = {nln0 =n, = N, 1 <n, <N-1, 1 5_n3 SN} : 2-dimensional surface

D(3)={nln0=n =n,=N, 1<n

1 9 iN—l} : 1-dimensional line

3
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b = {N= (N, N, N, N)}: single lattice point
Do the following gauge transformation

LT = T
Upy = O = VU Vias | (2.1)

The axial gauge is defined by the following change of variables

nED(V), p#v )
dUnu = dUn“, U,=1 (2.2)
and du_ =dVv
nv n

For the single lattice site N we have

n=N:VN=1 and

(2.3)

du.. =4dU

N for all p

Nu
Note VN = 1 is the only choice for VN which is gauge-invariant. The only dif-
ference, in the choice of gauge, between the Abelian and the non-Abelian case
is in (2.3), the reason being that the Abelian case has a higher symmetry than
the non-Abelian case, which allows one to eliminate the variables {UNM}2=O
from the action. This is no longer possible for the non-Abelian case, and
causes some complications. We will return to this point in Section III.

For concreteness, we examine the effect of the gauge transformation on the
path integral of the action functional. Firstly, note that gauge invariance im-

plies that the action is invariant under this transformation; that is,

A[W] = A[W]‘ : independent of the {Vn} variables .

Hence
- AjU] _ ‘ A[U]
Z(g,) =HI[dU_ e —{ I |dv }{ n : I|qu_ndu_e }o2.4
U, J ny J nCD( )“(7@ np g N )
3 ~Y
_— o (ab aF, ALYl (2.4)

v=0 nED( ) U(#v)



Let Ii' = HV)} I ; then we show in Appendix A that
n,u V nED( pEEv)

+o0 A
Z(g)ull'll[ dB? u(B )ﬂde e < oo, (2.5)
0 No
n,u a—e a G _

In other words, Z can be represented by a convergent multiple integral
where all the variables {Bg,u} (except at the lattice site N) range over an in-
finite range. Note also from (2.4') that the redundant variables {Vn} have been
factorized in the path integral from the gauge-invariant sector. Note, however,
that the variables {Bﬁu} are nonzero on very complicated domains, and this

makes any tractable Fourier transform to k-space virtually impossible. Hence

(2.5) is not suited for perturbation theory, although it is well defined.
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The gauge-fixing term is introduced to control the divergence due to the
7{4)2} variables. This means, in terms of the original variables {Biu} , that the
action has added to it a term which necessarily breaks gauge inv:;lrianceo To
leave invariant the gauge-invariant sector, we further add the counterterm,
The counterterm is a gauge-invariant functional of the gauge field and is evalu-
ated from the gauge-fixing term via a path integral. (We will relax the prop-
erty of gauge invariance later on.)

Let Aoz be the gauge-fixing term, and Ac the counterterm. The modified
action is defined as

A'=A+Aa+AC, (2.8)
The actions A and A' give the same gauge-invariant physics. (We will prove
this l\ater;) One has a wide choice as, to what functional of the field variables
Aa should be. The only necessary condition is that

+
7 [
-0

n;éN Ksa

00

I
a
dB G[ﬂdUN e ”(Bnu) < oo, (2.9)

(We will make a specific choice for Aa in Section IIB.) To define Ac’ we

introduce the following notation

dv = 1l an dU =111I4U (2.10)
n#N np ™
v - T.
Un VnUannw (2.11)
Define AC by
A U] Aa[U(V)]
e = 1/ dV e : gauge~invariant (2.12)

Note the identity

=ldave @ avte ¢ . (2.13)

/
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Let K[U] be an arbitrary gauge-~invariant function. Then

- A vtV
f [ dive ¢
dU K[U] = [dUK[U] ;
: dV'e

A 1tV A v
= fav Jauk[ule ® e C (2. 14)

Perform the gauge transformation on {Unu} variables such that

t = T ~
Uy = VU Vo

du' = du (2.15)

A [U'] A [U]

K[{U'le © =K([Ule ©

We then have

,dUK[U] = ;fdvi(. ﬁiU' K[U']e =

( A [U'+A_[U']D A_[U]+A_[U]
¢ @ : /dUK[U]e c. @

-

A +A
We thus see thate © ¢ leaves the gauge~invariant sector unchanged. Hence,

(2. 16)

in particular,

A+A +A
Z(g,) =deU AU =[1U e @ (2.17)

Note that the result (2. 16) is valid exactly for the lattice theory. This for-
mulation reduces to the Faddeev—Popov4 formulation in the weak coupling ap-
proximation. We now choose a specific Aa and calculate Ac for it.

B. Evaluation of the Counterterm

Choose the gauge-fixing term4 to be

AOZ[B] a !
e = ' (s - tfl) (2.18)
n,a

where {ti} are fixed numbers, II'= II , and
: n  n#N



s, = %:A“Bn_ﬁ’” . (2.19)
Define B (¢) by
] - exp{iB] (¢) X = VnUanLu | (2.20)
and
S2(9) = LABL 2 (9) . (2.21)

Note Z s = E sa(¢>) = 0; hence there are only N4—1 independent variables for
h

the s2. Let Z' =3 .

n n#N
Then, from (2.12)
Aa+Ac a .a a a .a a
— Ji? - t - — t - I -
e = II ('S(Sn tn)/de I?aé(sn((;b) tﬁ) nﬂad(sn tn)/fdvnn;é(sn(qb) Sral)"

n,a

(2.22)

Note that in taking the step to (2.22) we have lost gauge-invariance for e C,
since it now depends on gauge:gtrarzsformations through the variable sio How-
ever, the combined effect of e a"e is to leave the gauge-invariant sector un-

changed. (We will return to this point later.)

From (2.22) we see that e ©is independent of {tz} . Recall from (2. 17)

A+A +A

Z(go) rrde e de e, (2.23)

i.e., Z(g,) is independent of { ti} . Therefore*

cO

i +
- £y I A ovp -2 2]
Z(go) (const.) 1 fdtnexpl E(tz) ‘Z(go)
n,a -w
f A+AC +o0 o 2?
1 4 =77t a
Jdde nl’la _l; dtnexp; E{»i} ﬁd(sn_tfl)

n,a

= [au et exp[-—;‘- (s ]/frw ' a(s2(9) - 8% (2.24)
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Equation (2.24) is the final form for Aoz and Ac which we will use for com-
A +A

o

putatigns. Wé show in Appendix B that the combined effect of e in fact

A
. . c . : .
leaves gauge-invariant sector unchanged. e = is no longer gauge-invariant,
Aa+AC
but e has a lower symmetry, which is the Slavnov symmetry (sse Section

11C).

Let a = O( l/gz); then the modified action A'= A+ A+ A restricts all the
0 a4 ali

variables (except B;M) to be O(go)., We look cnly at regions for which B%ﬂ =

O(go) and hence have, for all n,u:

a
nu

B =0(g,) - (2. 25)

What we mean by (2.25) is that in performing the path integral of eA', only
those regions of the phase space contribute to the path integral for which Biu =
O(go)° In other words, in this gauge the path integral is performed over those
points of © which are a distance <8 from the origin. Equation (2.25) can be
derived from the results of Section III.

In summary, from (2.24) we have

« o a2
AT=A-ZYT(s) + A, (2.26)
n,a
where
_Ac s a
e = [dv 0! 6(s(¢) - sfl) . (2.27)
n,a

We now evaluate AC[B] to O(g(z))., For this, we need sz‘(gb) up-to terms
. . a e a a 2. .
linear in ¢,, and quadratic in Bnu° We computed Bnu(¢) to O(gy) in (1.13); the
2 2 . .
only two terms missing there are of order Bnu (Pn and Bn#¢n i Since there is

&Y

no mixing of qbn and ¢n ~, we can set one of them to zero and compute for the
other. Using the equationr |
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exp(4)exp(B) = exp{A+B+3 (A, B] + 55 [[A,B],B] - 1 [[A, B], A]+...}

- (2.28)
we have, for gb;_ﬁ =0,

1

1 .abe.cde b .c .d
75 CPoCoCB BS 00

a _ '
Bnu((m = lower order +
We can similarly do the calculation setting ¢§ =0, and from these results and
(1.11) we have

a_1 _.abc b b c

a — ni
B u(®) = Bnu S8 -5 CTTe, T ? ) By
* 1?2 c*ecodep gu nu(¢n ¢g+ﬁ) +0(9%,B9) (2.29)
Defmeu =u (gb) by
Si(‘b) :ui + Sz' . (2.30)
Then from (2.27)
-A |B]
e © [dV ' é6(s (gb) -8 ) —[dV Iy 6(u ) (2.31)
n,a n,a

We will now make a change of variable from {cpi} to {uﬁ} to evaluate
(2.31). The 6-functions make ui(qb) = 0; this in turn implies ¢§ =0 as the

unique solution for which uz = 0 (as long as Biu <<1). We analyze the variable

u;' = uﬁ(cb), To do this, we define the Fourier transform of the variables. Let

h][1 be any arbitrary function of n. Due to the torus structure of the lattice, we

have h

n+Nii h :periodic in all the coordmates with period N. Hence h can be

2w

expanded in terms of the basis functions {e L M} k =0, N oe

—I\T(N—l) .
That is
2m(N-1)/N ikun

h = Ze h, = N4‘r1 Z e b
o H k=0



Let

a _ ikn. a a _ ikn _a a _. ikn ,a
un—Ek:e s, B,nu—%e- Bk“,cpn—§e ¢y ¢

Then, from (2.29) and (2.30),

a ~-ik°n a
u, = e u .
k Xn: n

Using (2.29) gives
ik 2 ig

-ik
a _ K a, 1 .abc _ U Uy 0 c
Uy %: I11-e "1 ¢ +5C qE “(1 e ")(1+e )Bk-q,u ¢q

-ik iq
1 _abe_cde _ [P AP TR C d
+35C7C k};q %; (1~e ")(1l-e )Bk_k,_q,“Bkm ¢q

-~

Note from {2.32) thatu

. a
redefine uk___0 to be

Then, from (2.32) and (2. 33),

a _ a d ad d
u = dk¢k+%(Ma (<, ) + L0k, )9 »

where

1 if k = 0
S l1-e H2 if k # 0

-ik iq
d 1 abd b
Mk, q) =5 CT y (1-e Fy(re FyB)_
" Qb H

(2.32)

1i=0 =0; i.e., it is not coupled to the ¢§o We can hence

(2.33)

(2.34)

(2. 35)

(2.36)
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2k, 9) = 15 CPCUE T (1-e ik“)u-eiq'“)lsb BS (2.37
=Rl k-k'-q, 1 ki -0
Let
B} ab _ 4 zab - ab ab ‘
TR, = 4870+ Mk + L (&, q) (2. 38)
_ ab 1 b 1 _ab
- (0%, g M2k, o) r g1kl (2.39)

From (2.34), making change of variable from {(i)i} to {uf{l} gives

Z Tk qd¢ (2.40)
and
Iﬂdu =det(T) UL d¢ . (2.41)
ka q,a

Hence, from (2.31),

= = 1 a _ y a 1
= de ni};é(uz) = n;INden I 5(un) —Hfdvn il 6(¢N) . II 6(ug)

n,a n a n,a
_ a a, . m
o fagl ol maed) + I o) (2.42)
n,a a n,a
The i . a _ .. a _ - 1 a, _
e integrand fixes ¢_ = 0; and p(¢ = 0) = const, Also II'é6(u )= L 11 6(ua)
n n n
n,a k#0 a
giving
A 1 ay
e © =I nf—-—- w? I 6 (ug) - 11 5(2¢
g g det T kk;éO a a

jn du_ ) B(up_ 0+z ¢a)§ g (2.49)

1 ‘
=—=) 1 1I|dqu? 6(u E
det Tgkfo a k

AC[Bl
e =det T

=det§d<1+é—M+Ell—L)§ , (2. 44)
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where we have used (2.39) to obtain (2. 44) and we are using simplified notation.

Using property det(AB) = det A det B, and that dk is independent of the gauge-
field {B? ives
ie { nu} giv

'AC[B]. : 1 1
e = (const) det (1 + 'JM + EL)

- 1yl
= exp Tr£n<1+dM+dL>

= (const) det(d (1 + al-M» ° exp Tr(é—L) ’ (2.45)
/

where the overall constant is independent of the gauge-field. We evaluate

ik
n 1 w2 a a

kk Sy T xll-e ¥ B B, , (2.46
( > ZZ d ) = 12%1; dk E LE' -k'u"k'u ( )

where we have used
cabegabe _ a0 : (2.47)

Using the fact that
ik
Yali-e H2=l (2.48)
k "k

gives
Tr($L) = - %);{; > BB D O (Bf;u)2 . (2.49)
n p,a
Note Tr(al-L> is completely local. Hence, we conclude from (2.45) and (2.49)
that
A lB] ab

e = de(do O, q+M (k,q))exp{ nzu: (B2 o) g (gg)a (2.50)
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This is the final answer. The determinant in the expression for AC[B] can
be represented by a fermion integration; it is this term which is called the
Faddeev-Popov ghost term. However, the extra local term E (Bflu)2 is ab-
sent in the continuum formulation. This term is quadraticalil;;c a(lii_v'ex'gent (we
will show this in Section III) and plays an important role in ensuring that there
is no mass renormalization necessary for the lattice gauge field. We will re-
turn to (2.50) in Section III.

We note in passing that choosing the axial gauge and using a gauge-fixing
term are both ways of choosing a gauge for the gauge field. The only difference
is that in choosing the axial gauge there is no counterterm, whereas using Aoz
for gauge fixing introduces a nontrivial counterterm. However, from a practi-
cal point of view, the two ways of choosing a gauge are vastly different. In con-
trast to the axial gauge, gauge fixing using Aa allows us to treat all the field
variables on an equal footing, and hence allows the systematic use of perturba-
tion theory.

C. Slavnov Identity

Recall that in the last section we proved that

z=deeA=dee o« c
A

We also had computed e €= det(Tab(k, q)) to O(gg)o Note that Aoz of necessity
breaks gauge invariance; also, our definition of e © is not gauge-invariant.
However, the term A&+Ac is invariant under the Slavnov transfofmation,5
which we will define in this section. This invariance is more restricted than
gauge invariance, but its usefulness lies in that it holds for the gauge theory in
the presence of gauge fixing.

A
To define the Slavnov transformation, we first rewrite e € in a more
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formal way. From (2.27) (for an infinite size lattice)
- A a
e =/dV Il 5(sn(q>) - sfl) .
n,a

»

The value of { ¢§}' for which the d-functions are -satisfied is qbf‘1 =0,

finite lattice

AV = I d¢5 p(e )= p(¢ =0) L d¢2 .
n

n,a n,a
Therefore

-A
e ©= (const.) [ /dcpz 6(s§(¢) - SIal)
n,a

We make the change of variable from {(pz} to {@i} defined by

_ a
e, = 8,(9) -8,

(2.51)

For an in-

(2.52)

(2.53)

(2.54)

In evaluating the Jacobian of the transformation, the 6—funétions make us

evaluate this at ¢g’ =0, i.e.,

a
s, (9)
a _ " 'n b
dcbn = 5 do

91 1 6=0

m

- a
os
n b
= — do¢
ac;bb m

m

(all repeated indices to be summed over). Hence

a
a_ . (%% .
I de? =det!—3 ) 1 d¢
n,a 84) n,a o

and

(2.55)

(2.56)

(2.57)

Ac a., a as; / a a b
e C=1 nn dp25(s2(¢)-s2) = de — llafdcbné(@i)=det(asn/8¢m)o (2.58)

ya n
m
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A
To define the Slavnov transformation, we have to represent the determinant e €
using f&rmion integration (this is discussed in Refs. 4 and 7). Let ci, cga be

scalar fermion fields, and let <> denote II fdcidcTan Then

n
n,a )
i b b
A 9s os
e ¢ =det = <exp cTa —-—I-Beb . (2.59)
8<ba n 8¢>a
n n
Hence we have
. _o aa
A, = -5ss (2. 60)
_ ta, . b b
A, =c/ (asm/acpfl)cm., (2.61)

Let A be a spacetime independent fermion variable which anticommutes with
other fermion variables and commutes with bosons. We adopt the notation that
(3ha(¢)/aq’)?&' = aha/aqbb ; let cabe be the structure constants. Then the

n $=0 n" “"m

Slavnov transformationl® ig defined by

§B>
B2 . B® a1, 1P (2. 62)
ny nu 8¢b m
m
a a a
Ch—=Cp ~ ozksn (2.63)

fa fa +l\_ c:abc ch c’rc

c. ~c
n 2 n n

" . (2. 64)

From (2.62) we have

asa
Nl o W S L (2. 65)
n n 8(1) m
m
a, b a, b 2a, b vty
os /8¢ —bs /9 + \(® s /9¢, 89, )e, (2. 66)

We now examine the effect of this transformation. The gauge field action A
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is left unchanged since it is gauge-invariant, and (2. 62) is a linearized gauge

transfermation. For Aa we have

a
BE]
A, — -2+ r—P Tb =4, - o sies?/og )ch (2. 67)
T 2 8¢b o
m
and for the counterterm
b 8ZSb
A __(cTa+_caﬁv TBTY) m”\ m e (Cb —axsb),
c n 2 a c !Z m m
8<¢>n 8¢ 8¢ﬁ

After simplifications using anticommutation of fermion variables, we have

b b 2 b

os o 8
A — A +oz>»cTa “m b }icaﬁy—chBcwcb - K——cTacchb . (2.68)
n a m 2 a n n m a..cn £ m
8¢n 8¢n 8¢n3¢

Therefore, from (2.67) and (2. 68), we have

b 2 b
9 s
A, +A, —A +A +:rde apy Pmotp tv b _ % m tacteb | (2. 69)
a’n °n °m cn f m
9%, 8¢ 8%

Note that the term in the bracket is zero since

2Db 8ZSb 82 b
asm ta fe b 1 m ta fc “m Tc ta b
a.cn % °m”32 c% % tT o 2% % °m
8<¢>n<9<;l>1Z 2¢ 8(732 8¢28¢
=18 8 b fatecb (2,70)
2 8¢a aqbc mmn £ “m
n I
a_nd15
9 9 abc g
——, — | =6 c — (2.71)
a b J n,m c
[BCPn 8¢m 8q§n

Therefore, the term in (2.70) cancels the other term in the bracket of (2. 69),

giving
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Aa + AC — Aoz + AC : invariant (2.72) -
Hence we have proven that A + Aoz + Ac is invariant under the Slavhov

transformation. In the next section we will use this invariance to show for-

mally-that the gluon has zero mass renormalization.



-99 -

III. MASS RENORMALIZATION -

W€ know from general considerations that mass renormalization for the
gauge field quanta is incompatible with local gauge-invariance - since any mass
counterterms in the Lagrangian would violate galige—mvarianéeu Hence, for the
renormalized theory to be gauge-invariant, all the quadratic mass divergences
in the theory must exactly cancel. From asymptotic freedom, we know that we
have to study the lattice theory for 8o — 0 to ascertain the high momentum be-
havior of the quantum theory, i.e., the behavior for a (lattice spacing) — 0 (see
Ref. 6).

In particular, we will study the Bz’u field propagator in the weak coupling
limit, and we will show by calculation that to lowest order the proper self-
energy of the gauge field quantum for zero momentum is zero. This will show
that there is no mass renormalization for it. We will then prove this same re-
sult more formally by making use of the Slavnov identity.

Due to the infrared instability of the non-Abelian gauge field, it is in gen-

eral not possible to compute the behavior of the zeroth mode without solving the

large distance strong coupling problem. The same is true for the lattice theory

provided that there is no quadratic divergence arising from a nonzero mass re-
normalization term. However, if there is a quadratic divergence in the theory,
then this would dgsgroy asymptotic freedom; the divergence would completely
dominate the e—l/gO effects arising from the high momentum modes due to
coupling constant renor‘malization, etc. ; and we could compute this divergence
using the weak coupling approximation for the zeroth mode propagator. Hence, \
we assume that there is a quadratic divergence, and compute it using weak

coupling for the zeroth mode. We will then show that the divergence is in fact

absent. The calculation is self-consistent, since if there were a quadratic di-

vergence our calculation would determine it.
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We now discuss the main features of the calculation before going into the
details. Define the (global) color singlet propagator

A+A +A

Doy =deB§u33Ve * /2 | (3.1)

» Dy,p = %e'ik"nnmw (3.2)
Using translational invariance (due to the periodic lattice) gives

Dy = -édeBfk“ B2 Az . (3.3)

Let Dl({(;) Y be the bare propagator defined by the quadratic part of A'; let ﬂuv(k)

be the proper self-energy. Then, in matrix notation, Dyson's equation states
= plo . o)
Dk Dk + Dk (k) Dk . (3.4)

Recall from (1. 6b) B?m = agosAiu is dimensionless, making iI(k) dimensionless
in (3.4). Hence, the continuum self-energy, which has the dimension of (mass)z,
is given by dimensional analysis. Since the only dimensional quantity in the en-

tire theory is the lattice spacing a, we have

1P () = 11 (k=pa) S (3.5)
a )
= {11(0) + (W(pa) - M(0))} (3.6)
a

It can be shown using perturbation theory that (p # 0)

lim iz{ﬂ(pa) - I(0)} ~ logarithmic divergences in a . (3.7
a—0 a

Hence, in the a — 0 limit,

ﬂphy(p) = -15 I1(0) + logarithmic divergences in a . (3.8)

a

We conclude that for there to be no mass renormalization, the quadratic
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divergence —12— lI(0) must be zero, i.e.,
a

I(0) =0 . (3.9

-

The logarithmic divergences in a are taken care of by wave-function renormal-
ization. |
When gy — 0, we have an expansion
o) = 1y + il g, + 112g§+ (3. 10)
In our lowest order calculafion, we will show that IIO = 0. The general result
that i1(0) = 0 is proven by the Slavnov identity. From (3.4)

1

D, =i (3.11)
k Dl({O) 1 (k)
. (0)-1
It will be true that, for N —- », k — 0, Dk=0 — 0; hence
D, =- e 3.12
k=0~ " TI(0) ° _ (3.12)
In order to evaluate 11(0), we will evaluate
— __1 a a Al
D=D__, = 4de.‘Bk:O BY , ¢ /Z . (3.13)
pu N Y 7

To calculate D, we will first perform integration over all {Ba , k%O} in the
path integral; this will leave us with an effective action involving only the

BE=O variables, and will provide us with II(0). In the following we will analyze
Z(go)“and then show how to extract II(0).

A. The Weak Coupling Action

Recall from (2.9), with a change of notation B2 . B2
ng np
to va ~a N A+Aoz+Ac
z= 0 I dB: w®) 1 [dU e . (3. 14)
n#N u,a <o oy D No

As we discuss in Appendix B, du - could not be treated like the other

N

variables since there is no Gaussian factor for it in the integrand., When we
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No 18 taken by the vari-

able Bfi:o , since there is no Gaussian factor for it either. (This can be easily
i

seen later.) We also have to isolate this zeroth mode in the action, since we

Fourier transform the {ﬁiu}, we see that the role of U

are interested in integrating out all the other modes. We do this as follows

.. . ~a ikn_a
th 1 bles BT =X B
(the original variables are i e kﬂ)
B2 Bﬁzo /N + 3 eﬂmB; Z'= 2). (3. 15)
i M k ko kA0
Define
a_ a 4
6, = Beg /N (3.16)
7
a ikn_a
=X'e B 3.17
o ku ( )
1
In the presence of Aa + AC, we have (for o = --1—2-)
2g0
a —
By, = Olgg) (3.18)
0% = 01 . (3.19)
i
. & _,a, swpd _ o4
Therefore, since BNu BH + i Bku 9“ + O(go),
iﬁimxa ielfxa
UN“ =e =e + O(go) (3.20)
and
U. = .21
dUNM dU“+O(gO) (3.21)
ig 3%
where U =e M .
I
Also
U =exp{iB2 +HXx% =U (1+A_). (3.22)
ng ngo M i
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Anu is a matrix of O(go)a Let

-

Ay = A;‘I’} L+ 1A} X* (3.23)

with

(3.24)
Tr(l) =n .

(The gauge group is SU(n).) Then

A= ;;—gi ;' Tr(ﬁnuﬁnﬂ’z, VﬁLﬁ ,uﬁgv)
and, using (3.22), (3.23) gives a complicated expression involving the Uu and
Anu' As already discussed, the entire calculation is based on the assumption
that there is a quadratic mass divergence. This means that we are interested
only in the coefficient of the 95‘95 term; if there is a quadratic divergence, then
all the higher powers of Hiwill be negligibly small. Hence, in the action, we
keep only the terms for 95 which are at most quadratic. Secondly, we are doing
the calculation to lowest order in g5 i.e., to O(1); this means that we will keep
at most terms which are quadratic in the B?w" We will show that Agl)i) is of
O(gg) and Aiu is of O(go); hence we keep terms linear in Ag;) and quadratic in
Aiﬂo Note also that if the above approximations are consistently used for the
action, then a simple bookkeeping rule is to consider all the U,u as commuting,

(If one goes to higher order in Hi or Biu, then this bookkeeping method is no

longer valid.,) To sum’marize, we use
(U ,U 0+ O(g 3.25
L “: 'l'] - ( ) ’ ( ° )

where 0(03) means the order of the terms generated in the action by the ap-

proximation in (3.25). Hence, the action is
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1
= X! U +UA U +UUA ~ +UA ~
A 2&3 v Tr[(Uu AR T/ A A e T nuUVAnw,v)
ool +utal ol 2 aT . uful & af ot of
(UMU +UALT, An_w " HUV An+V “UHAHVUV)] (3.26)
Nt FoEL 1 (0) b ayt
==5 2 Tr(UUUU)+-——2-EZ‘.'[4nAnu+2A oy A Tr(UXU )
2g0 3% Zgo muv 1
b tb b a,b
+A Al Tr(U U“X U,UX)+ Anm vAned, , TE(XX0)
a b a..Tb 3 .3
- 2An+V’HAnV Tr(UuX U X )] +0(6°,B%) . (3.27)

In studying the above action, we will consider it as a polynomial in 0:1 and
Bzu and, as already pointed out, keep at most terms of O(GZBZ)° We use the
notation

a-b = a%®
(axb)® = ABY By

Then, from (3.22) and (3.23),

(0) - 12 1 2 3
nAn# Z(Bnu ﬁ(@uwa) ) + O(g,) (3.28)
A =B +i9 xB +is x4 xB ). (3. 29)
ng g 2 op nu 6 B nu
Therefore
1
A A =B _*B_ -—%(B_ X@)(B_ X8 3.30
ng - ompy numulz(nu u)(m# u) ( )
_l . 1 ° —
AnqumV «Bnu B_, +§(Bn“ xB_ ) (6” g,) (3.31)
_ 1 1
o XA —Bn“ xB_, +§(e” XBnu) B ., +3 Bn“ X @, ¥B,) - (3.32)

We need the matrix

_ T ab aba,a 1 aay Bv,a,p
= Tr(U XaUX) 2c 0,-7C cPleer. (3.33)
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Therefore

a ~ab,b _1 _
AnvGu Apr =32 {Anv Apr = Ay, X Am1r)°9u

1
- 5A, ><- 0, (A % 9#)} . | (3.34)

Collecting (3.28) - (3.34) and simplifying the action gives, from (3.25) and
(3.27),

gl g L 2 plin oa .
A—AU+2222 4 i){BnM 130, X By ) 20 A —_—y
gy D UV ,

. 1 e R 1 A -
(A, X Anw,“) g, - E(An’u X 6) (An+v’u X eV)} + 2{Anu A, (/AnMXAnV)

(6,-6,) —%(wa(e“ -8,))- (A, %(6,-8,))} +2A

<A
U

n+il, ¥ Tn+v,u

—l— A L] 1 I
-2y {An+'1),u°Anv - (An+v,u XAny) 6?“ - E(An+13,ux eu)°(Anv X ev)}‘ (3.35)

We break up the action as a polynomial in 9; and write

- (1) , A(2)
A=Ap+Ag+AY + A7, (3.36)

where, after considerable simplification,

1 2
Al=-—= ZZ[(AB ) -AB A B ] (3.37)
0 4gg npy Y M [N (LR S 1V
abc
(1) _c™ a b b c c
AI g 22 ev(Auan Aanu)(BnH/,u * Bn,u) ’ (3.38)

4g0 nuv

(We have replaced Z' by X, using antisymmetry of the summand.) Note the
uy (2 [
general structure of AI ) is

AP -l 5 3 5p2pyPgb (3.39)
I 2 wY T my
4g0 m,n gV ab

In the final calculation, we will keep only terms of 0(6?2) in performing the Bz'#
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integrations. Since MZ’B = 0(02), we will, due to integration over the Blal‘ W end -
ﬁp evaliating its trace, and hence need only the diagonal elements Mﬁz of the

matrix MZ‘B . Hence

(2) .- 1 $i ‘
A; - 52 2500, ><B ) 2(B xa)(BnWeru)
go n uv
-iB x6).(B x 8.} + off diagonal in (**) (3. 40)
2 "nu n+V;.L v’ ag uv’ ’ °
We will work in the Feynman gauge, i.e.,
1 2
A =-—=Z(ZAB . ), (3.41)
a 4g§ n oy WODTHE
Using the definition of B? =E'elknBa , we have
e ky 1
A+A =-—isizn eik‘ﬂz)Ba B =--L z13q 8% B2 (3.42) |
0 to - - T2 k- - ° ?
* Okuo kp 4g0ku k“_k“ ‘
1 e ik ik, L ik ik |
A;? = 22'2{9 e ¥ -1y +1+6 207 T-1)e +1)}Bk,uky
4g0 k uv e @ ‘
abe ik _ik -ik ik |
=S %z' 2{6%e *-1e “+1-0%E -1 P+
M
4g0 k pv
- 416M z 6 2 sink }B Jku kv (3.43) |
A§1)E 1l ows B‘fkuNb‘;(k)BliV (3. 44) |
4g0 kuv a :
and finally
abec .afBy ik ik
A(I?‘) Rl z%i—ebeﬁ—-lizeﬁeﬂ Te V-1 3 ef,efe ”l B®, B ¥ (3.45)
2g k pult kR B VAU VAU H



abc .a k, -k
A§2)=C ZC E'E&é"beﬂ‘élzebeﬁ Z (e "re )
- -2, kpt hoH H vEu

ik -ik
1 b g, Hv volae oY
-5 2 876, (e +e ) B, By
- 4u;éuv g - ) Tk
(2) _ 1 c C LY
A =-—3 2B, M_ B
I 4g§k " -kp " up T kp

Collecting Eqs. (3.42), (3.44), and (3.47) gives

1

A+A =--L.mizg (aaba ) +iNab+~1—Mab>B

o 2 k

180 kv d kYo dy Twv

where both Nab
%

—1+in+d
L=1+5N+5M.

a

Bb

~ku kv ?

and MEB have been made explicitly Hermitian. Let

(3.46)

(3.47)

(3.48)

(3.49)

The gauge-fixing term A has no dependence on Hua; however, the AC term is

a function of G; . In performing the {Bzu, k # 0} integrations, we can ignore the
coupling of e; to BEH coming from the Ac term, as this will produce O(go) terms

multiplying éﬁl, which we are ignoring anyway. The same is true for the mea-

sure M(lei)’ for which we have, from Ref. 7; -

n a 2
-= Z (B + 48
(nu ;f)

24
p= HM(Bfw) =e ¥ +O(g,)
ny
or
n .4 2
"3 N 24
pe) = e L O(g,) -
Then, collecting all the results, we have
A A (8) +oo A+A
A=ﬂde e Upg)e © 1 1 / dBy e = nde e
w’ o H k0, a <o poo F

A

A (6)
Uuioye ©

(3.50)

(const.)
vdet L. °

(3.51)
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B. Self-energy Calculation

We evaluate the lowest order contribution to the proper self-energy. This
will consist of calculating the integrand of (3.51), i.e., of

' A A (9) ' ‘
- S u(g)
Z =11/dU . 3.51
€0 “f kS ° et i) 850

A _(8)
To do so, we calculate det Lande ¢ We will make use of our results

A _(8)
from Section II to evaluate e . Since we are considering G:'to be small, we
will expand exponential functions of 6: in a power series. We will then con-

sistently use the identity

A A
nde e Vg .0 =5 nde e Ug? (3.52)
M T o Ta 7] T
u u
= 1
67r0 X (constant) . (3.52")

We will signify the use of (3.52) by an arrow (—). We will also use (for SU(n))

c2baabg _  sab

@ (3053)
Therefore
1.1 g o Lo _ Lol 1001
det L = det (1 + a—N + d—M>z= eXplTr(\a-N + 3M> - 5Tr<a-N a—M’
. \ ’
e eode o - Loe(lx 1M
_exp)Tr dM, —2Tr<dN dN>; . (3.54)
Let
p=nN*1lz ei n , (3.55)
U
Then
1 4 T )
Tr<a—M)—»—¢§13{'q<-3+16dk : (3.56)
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Define
- J=3'3,
k "k
Then
. S 7
Tr(a-l\/[) = 12¢J-qu o
Also
. 2
‘ ik —ik‘
1 1 1-cosk, cosk
Tr(AN +N) — (+inN* L5 0%) 12 31 & =€ +2 12
a~d d? " £ 2
K k k
Define
ik, ‘ﬂ{llz
1=2'-2 e
k dk
K =2'" (1-cosk, cosk )/d2
K 1 2/ "k °
Then
1.1
Tr(FN3N) = 12¢ (I+2K) .
Therefore
(12J —-Z—— 6I-12K) ¢
detL o~ e °
Ac
We now evaluate e ~. Recall from (2.50)
eA°=e Ly oz )2]det(d 6205+ M (k,q)
*Py"4g nu! k° %k,q " Vapt©O )
4rwa
where
-ik ig
ab __1.abc _ U M, C
MUk, q)=-5CT 2 (1-e Hire HBy

u

°

(3.57)

(3.58)

(3.59)

(3.61)

(3.62)

(3. 63)

(3. 64)

(3. 65)
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Malbk :__l_cabcz eiku_ iku 65 + O
(k,0) = - 5 (e ¥-e Hyoo o+ 0y

- i
ab ___ab
Mk, q) =0 ()8 + Olgy) -

Therefore

But
Tr (—én -én) ey}
Therefore
eAc _ exp’,-cp{—l—lz—-;—-;—l ‘ +0(gy) -
Also

4

w(g) = exp \'— —Z%N Zei)= exp(—%cp) o

\ B
Hence, from (3.63), (3.70), and (3.71) we have, using (3.51),

A A

A
7= ndee Ug ¢ £0) . L’l[dU“e U exp(5/8+21+6K - 63)¢ -
" u

det L
Let

A=%+ I+6K -6J.

o)

From the identity Z! (di/di) =1, we have
k

I=4J-1K-7,
giving

A = 4(J - 6K) .

e =~ =exp (——-—f 9“2) (consto)det(1+%-n) + O(go)ueXp‘l-Tlé-q;% expﬂl_ Tr(%n—é-n))

(3. 66)

(3.67)

S -]
(3. 68)

(3.69)

(3.70)

(3.71)

(3.72)

(3.73)

(3.74)

(3.75)
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It can be shown that’ 7
N _ "N
J=6K+ O(e "), (3.76)
giving
. A=0+0e - (3.77)
= -C e_N , (3.78)

where ¢ is a constant and is O(1).

Therefore

- -N .. _ 4 -N
Z —il]dU“ exp(AU)exp(—ce ) —IEIde“ exp(AU)exp(—N (cne /4)2;9“2) . (3.79)

Let

cne "~ (3.80)

We discuss our results in the next section, and show how, if HO 4 0as N —
w0, we would have a quadratic divergence.
C. Discussion

The main result of the last section, from (3.79) and (3.80), is

A
7 = nde e Uexp(-N'I 203 , (3.81)
2 0 “u
M M

We now show how a finite 110, in the N — « limit, would lead to a quadratic di-

vergence. Let
AU
<> = nde e o, (3.82)
wo # »

The propagator was defined by

D =i<Ba_ BY  exp N 292}/2 = N4<e2exp -N411 ZaV/z . (3.83)
N4 k—Ou k—Ou 0“ 1) T OH 1

Suppose I > 0; then we can extend the range of 6;5 integrations to infinity, giving

0



D~ N —— = = . (3.84)
- 0

Hence we see that, if HO 4 0 as N — «, we get a quadratic divergence ~ —]é—ﬂoo
However, since [ ~ e—N, we have
Dr~el ~was N . (3. 85)

Note that the bare propagator D(O) also diverges as N — » since
pl©) =N4<95‘>/z o a5 N e, (3.86)

We therefore conclude that, in the N — « limit, the lattice gauge theory has
no mass renormalization. The continuum theory also shows zero mass re-
normalization, and we conclude that discretizing spacetime doesn't violate this
property since the lattice gauge theory was defined to exactly preserve gauge
invariance.

On the finite size periodic lattice, our calculation shows mczluantum ~ e_N;
however, for the infinite lattice we have no information about the mass of the
gauge field quantum, since the absence of mass renormalization means that the
large distance problem has to be solved for determining mguantum"

The cubic and higher order terms in GZL cannot affect the divergence of D for
N — «; that is why they can be ignored. All arguments we used apply equally
well for [I(0), and we see that the coefficient of the quadratic term Z6 % in the
action contains all the information regarding mass renormalization.. The cal-
culation we performed for il o can be done using Feynman diagrams. The ex-
ternal lines are B§=0 ; the propagator for the internal gluon lines is 6#1//dk and
for the internal ghostulines is l/dko The vertices are rather complicated and

can be read off from the action. The graphs used are shown in Fig. 1. Note

that, since the 92 variables were held fixed when performing the {Bau,kaéo}
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integrations in the path integral, the proper self-energy is equal to the com-
plete gelf-energy for the gauge field quantum.

We now give a general proof that [I(0) is zero to all order in perturbation
theory using the Slavnov transformation. We will obtain an identity involving

Dk;.LV and this will give us the desired result.

Recall from (2. 63) and (2. 65)

e® —c? - aas? (3.87)
n n n
a
os 0A
LB o "o (3.88)
n n 8¢b m n 5o
m n

In obtaining (3.88) we have used
A =c¢'"—= cb (3.89Y)
n m

and the fact that 6/ éci anticommutes with all fermion variables. In particular,

we are using

2=zaAB*. (3.89)
n u IR Y

Therefore, from (3.87) and (3.88),

O0A

A B2 .~ L cPABP . 4P S _anaB?. A BP . (3.90)
£%¢ "n-o,0 {7 ¢ n-o,0 £ . b P l-f,u o n-o,o
Gcn
Let
<> =1 H]dU dcadcTa eA .
ng n on

ny,a

Then
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a b Aa+A a b Aa+AC aéA A +A
<c, A B ~ e > = <«?A B> . & >+ Acet—S8e ¥ C,
2 o n-g,0 {0 n-g,0o ﬁécb
n
A +A
a b a ¢
—OM<AHB1’-—#,N UBn'—cr,(re > (3.91)
A
A +A c A
a b ac__1 _abde a
<AuBﬂ—u,quBn—3,oe > =5 <¢ '5cb e >, (3.92)
n
To perform integration by parts for the fermion variables, note
' A
A\ /A c
6 [a_ ¢ —qn = sab c _ /.ade
b(cne > §=0=0 Gn,ﬂ<e > + <cn b> . (8.93)
éc r‘e,e c,¢C 6c c,C
2 L
Therefore

A

+A
a b o @ C>/Z=C—t'6&b5

(BB s BB - (3.94)

n,L°
Fourier transforming the above equation and using translational invariance

gives

1-e Ha-e V)Dkw =

. Ty pab 1 gab : (3.95)
o

To determine the behavior of 11(0), we need only the k ~ 0 behavior of the
propagator. From (3.95), we have that Dk ~ k—%for k ~ 0. Hence we conclude
II(0) = 0, and there is no mass renormalization for the gauge field.

One might be tempted to conclude from the above result that the gauge field
quanta is massless for the exact theory. However, this conclusion cannot be
made for the lattice theory. In the strongly coupled region for the lattice theory,
the degrees of freedom are no longer Biu, but instead are Unu = exp{iBg'uXa} .
If the si are written directly in terms of the Un,u (such that (3.89) is recovered

A
in the weak coupling limit), then one finds that the expression for e € isno
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-A
longer a pure determinant, but instead e isa sum of (determinants)_l due to

-the faet that the nﬂa é(si(cp) - si) now no longer has a unique solution for the (j)fl1
at qbi=0. [ This fa,ct has also been recently recognized for the continuum theory
by Grr_@bov8 and leads to . nontrivial modifications of the continuum Yang-Mills
theory.] This in turn means that the Slavnov identity no longer holds, and hence
the identity for the propagator is lost when we arrive at a strongly coupled theory.
We hence cannot conclude that the gauge field quanta is massless for the exact
lattice theory. This question can be resolved by studying the behavior of the
lattice gauge field under the renormalization group transformation.

I am thankful to K. Wilson for having explained the results of this section to
me. 9
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APPENDIX A: WEAK COUPLING

From (2.4) we have

3 ~
~ o~ A[U]
Z(@g,) = I II [dUu_dU A1
. (gO -0 neD(V) by nu Nue ( )
=1 [af o $O AlU] (A.2)
n, p

We are interested in 8y~ 0. In this limit, the action has a sharp maxima about

meﬂ[, and expanding about this gives

A=—5 T Te(W, )

-—1-2- E Tr<expffa X)

2g0 npy 28, nhuv
2
RN Z Z( ) (A.3)
4g0 niy a

Recall we are in the axial gauge. For every domain except n=N, we have

three independent}f]l#v. More precisely, we havelz

vy =0,1,2,3; nedWV
(A.4)

dent b
u# fnuv independent variables

However, at n=N, all, the NfaN;w are dependent variables.

Hence we see that in each domain except n=N , eA provides a gaussian factor
for the three independent variables §ia (the non-Abelian index is irrelevant here)
through the three independent variables Iciuv . Hence, from the action, we see
that Eia = O(go), and we can extend their range to infinity. However, ﬁ;ﬂ has
no gaussian factor and remains 0(1). Hence its range has to be kept over the

compact space. This special behavior of ﬁim is not without consequence, since

it is connected to mass renormalization.
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Collecting our results, we have

-,

oo o
~a ~ ' AT
Z(go)znl'::a foo as, “(Eny)l;-[crdUNu e

< o

(A.5)
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APPENDIX B: GAUGE-FIXING AND COUNTER-TERM

Recall from (2.26) and (2. 27)

A+Aa+A

z= [due c (B.1)

where (for an infinite size lattice)
o a\2

A,=-2 % (sn) (B.2)
n,a

-A a a

= f av I 6<sn(q5) - sn> (B.3)
n,a

We show that with this form for Aa and AC (where Ac is not gauge-invariant), we

still have

N
I
~—
o
L]
o

/ (const) dU eA

Perform the gauge-transformation

v % u ¥, (B. 4)

dU_ —dU (B.5)
ny ny

Then

/ dUeA[U]exp[—_ i >] | ®.6)

Jav u 6( (®)-s5(3)

n,a

A

where, in taking the last step, we have used d(VnVn) =an. Note e Cis nowa

function of $ , i.e., not gauge-invariant. Since Z is independent of \an, we can
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trivially integrate it over all %n’ i.e.,

-

z=fd§z

exp{-% > (s i(E))zj

i} ' 3 A[U]
Jav e Jav a( (¢>-s§(7¢>>)

Define a change of variables from qNbi to d)i by

Let

J(B,8] = det <asi(q3’)/a$’fn> W

s& @)=e2

Then

=1 d¥ =1 o nu(lf)f‘l)
n n,a n

]u[B ol 1 d<1>

1
J[B<1>
n,a

where

ulB,@] = 0 u<¢n[B,<I>]>

n

A

We now evaluate e ©
-A

_ a a,~

- [av 1w s(s26)-52(3)

n,a

=1 [agtue) 1 5(s2)-07)

n,a n,a

(B.7)

(B.8)

(B.9)

(B. 10)

(B.11)

(B.12)

(B. 13)
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Define a change of variable from ¢2 to ui by

-

up = s2(¢) - &2 (B. 14)

The 5-functions in (C. 13) force us to evaluate the Jacobian of the transfor-

mation (C. 14) at the value of ¢i for which si(cp) = @i. Therefore

~_a

a 98, (¢) a

II du_ = {det o de¢

n b n

n,a a¢ n,a
s (g)=a?
n n
—_— I ag? (B. 15)
J[B ] a ’

’

Similarly, the value of the measure p(¢>n) is fixed by the §-functions giving

I 4(¢,[B,21) = ulB,a] (B.16)
n
Therefore
-A
e ®=ulB,3l/J[B, ] (B.17)

Collecting Egs. (C.7), (C.11) and (C. 17), we have

Z = /dU eA[U] I /d@n %—[]-3—@—% exp (—% (®i>2> 3—%%‘-%

’

a0 N [t o (1)

= (const) /dU eA[U] » (B.18)

Hence, we have proved the desired result. Note the result is exact and valid for

any value of g, I thank M. Peshkin for discussion on this topic.
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FIGURE CAPTION

1. ngnman diagrams for the computation of the lowest order self-energy of

the gauge field quantum.
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