
SLAC-PUB-1928 
April 1977 
P-7 - 

h 

GAUGE FIXING AND MASS RENORMALIZATION 

IN THE LATTICE GAUGE THEORY”? 

Bela1 E. Baaquie 

Stanford Linear Accelerator Center 
Stanford University, Stanford, California 94305 

. 

ABSTRACT 

The lattice gauge theory proposed by Wilson is discussed, Gauge 

fixing is defined for the lattice theory, and it is shown that gauge fix- 

ing is done in this theory solely for calculational purposes, The 

gauge-fixing method is used to study the mass renormalization of the 

gauge field quantum. An explicit calculation is done to lowest order 

which shows that there is no mass renormalization, This same re- 

sult is proved to all orders in perturbation theory using the Slavnov 

identity. 
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I. THE LATTICE GAUGE THEORY 

!Ghe lattice gauge theory has been introduced by Wilson’ to explain the dy- 

namics of strongly interacting elementary particles. The non-Abelian gauge 

field has many well-known and remarkable properties. In particular, it is a 

nonlinear field which couples to itself (and, of course, to anything else which 

carries the requisite quantum number) O In this sense it is similar to the grav- 

itational field. The gauge field also exhibits asymptotic freedom (that is, the 

strength of the coupling goes to zero for zero distance interaction); and, when 

coupled to the quark field, the coupled quark-gluon theory shows quark confine- 

ment in the strong coupling limit., The gauge field quantum is an elementary 

particle. For the case of strong interaction, this quantum is called the gluon. 

The quantum of the Abelian gauge field is the photon and its properties are 

fairly well understood, 

Wilsonl’ 2 has given an action functional formulation of quantum field theory 

using the Feynman path integral. In particular, the lattice gauge field is quan- 

tized on a discrete lattice embedded in a four-dimensional Euclidean space- 

time. The reason for going to a lattice is twofold. Firstly, the lattice provides 

an ultraviolet cutoff, and hence there are no ultraviolet divergences in the the- 

ory. We will sometimes work with a finite size lattice, and this will provide an 

infrared cutoff, The problem of renormalization has to be solved to go to the 

continuum limit, i, e, , to let the lattice spacing go to zero. Secondly, using the 

lattice as a cutoff allows one to formulate the cutoff theory so that we have ex- 

act local gauge invariance for the lattice gauge field, Any other conventional 

way of defining the cutoff theory usually destroys local gauge invariance. Local 

gauge invariance is the single most important property of the gauge field, and 

the lattice gauge field is a more accurate representation of it than, say, would 
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be a theory which preserves Lorentz invariance but gives up local gauge in- 

variance. We work in Euclidean spacetime as this allows us to rigorously 

define the Feynman path integral. Analytically continuing to physical time is 

necessary for computing physical quantities. 

Consider a finite lattice of N4 lattice sites, and with periodic boundary 

conditions. Let n specify the lattice site and /J the directions on the lattice. 

The local gauge degrees of freedom are the finite group elements U ~ belonging 

to the gauge group G, which for definiteness, is taken to be SU(n). 

The gauge field action functional is defined by 132 

.A=-+ c 
4 n P#v 

where go is the bare coupling constant 

Tr W WV) (1.1) 

(Tr signifies trace). Note 

W =u u 
WV W n+G,v Yi+; p lJ’ , nv (1.2) 

The gauge field theory is quantized by integrating eA over all possible values for 

u - w, i.e., 

(1.3) 

where dU is the invariant measure. 
w 

Note A is invariant under local gauge-transformations, which for the lattice, 

is defined by 

U’ 
w 

-+vnuwvl‘ * 
n+P 

where Vn is also an element of the gauge group. 

Let {Xa} be the generator’s of the group, Then 

[Xa, Xbl = i Cab’ Xc 

(1.4) 

(1.5) 
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Tr (Xa Xb) = 6 ab/s2 (1.6) 

for the fundamental representation, s2=2. 3 Let B” 
c, w 

be the local lattice space- 

time gauge field, $z a local scalar field, and let f” 
WV 

be the local gauge field- 

tensor. Then 
if X” a 

W 
npv=e 

WV (l-7) 

-* 

iB 
U =e 

& x” 

w 

Vn = e 
i$t X” 

(1.8) 

(1*9) 

B& and f” 
WV 

are bounded variables which take values in the compact parameter 

space of SU(n). We consider the case when B a << 1. 

eAeB = ,A+B+;[A, B]+. . . 
w 

Using the equation 

we find from (1.8) 

f” 
WV 

=ABa -A Ba -iCabc[Bb.. ’ 
i-v VW n+v,fiBn+i,v 

+Bb ~G~B; +Bb BC A 
, w n+w 

- Bb BC - Bb BC A 
VW w n+w 

_ Bb n+; vB;J + O(B3) = -cvp (1.10) , 

where repeated indices are summed over and APhn 3 h A - h, is the finite Iat- 
n+p 

tice derivative O In general, fa 
w 

is an infinite power series of the { Ba 
w’ 

B” n+j&’ 
Ba A Ba } variables, That fa n+vp’ nv nP 

is an analytic function of these variables is a 

consequence of the group multiplication law. We also determine the effect of 

the gauge transformation on the B” variables. Let Ga << 1; then, from 
w n 

(1.4 ), 

exp {iE&Xa} = exp ( i$iXa} exp ( iB&Xa} exp {-i$:+;Xa} 

giving 

-a B = B” 
w w 

- A& - &abc($n + $b .s)B; + kdcOf$;+; + W3) . (1.11) 

We will return to these equations in Section II. [In Section Ul3, we use 

Bz&$) to denote “Ba ., 
WI 
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II, THE WEAK COUPLING APPROXIMATION 

Th2 lattice gauge theory is studied for its weak coupling behavior. It will 

be shown that a gauge-fixing term is necessary in this limit solely for the pur- 

pose of calculations D A oounterterm has to be introduced into the action to can- 

cel the gauge-invariant effects of the gauge-fixing term. The counterterm will 

be evaluated in the weak coupling approximation, and the result is seen to be 

significantly different from the results of the conventional continuum non- 

Abelian gauge fields. We attribute these differences to the lattice cutoff that is 

built into the theory, The main purpose of the gauge-fixing/counterterm for- 

malism is to reduce the lattice theory, in the weak coupling approximation, to 

conventional field theory on a lattice. This, in essence, means that all the field - 

variables { BEp} take values over an infinite range (i.e., over the real line R) rather 

than over the compact parameter space. Having all the variables Ba range 
w 

over R will allow us to define Feynman perturbation theory for the lattice gauge 

field, In this section, we will basically discuss under what conditions the above- 

mentioned reduction is possible. The gauge-fixing/counterterm formalism will 

be introduced to make this reduction possible; we will also discuss why, without 

this formalism, we have a well-defined theory which is, however, unsuitable for 

calculations. We will first discuss, for pedagogical reasons, the theory without 

the gauge-fixing term, and then show the necessity for introducing it, The ne- 

cessity for the counterterm arises as follows: (a) The gauge fixing-breaks local 

gauge invariance of the theory, This is necessary, since it is local gauge in- 

variance which is the obstacle to setting up a Feynman perturbation expansion 

for the original action, (b) The counterterm is introduced to cancel the gauge- 

invariant effects generated by the gauge-fixing term, The resultant theory gives 

the same gauge-invariant vacuum expectation values as the original theory, 
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A, Gauge Fixing 

We will discuss gauge fixing from the weak coupling point of view, although 

the basic results are valid for arbitrary coupling. The reason for this is that 

the usefulness of this approach is obvious for the weak coupl’ing limit. By the 

weak coupling limit we mean the behavior of the lattice gauge field when we let 

80 -+ 0, The properties of the gauge field can then be computed as an expansion 

in 80” We will look at the O(gi) behavior of the field. 

We will first study the behavior of the theory without any gauge fixing, To 

do so, we have to make a change of variables such that all the variables in the 

path integral that have no coupling to the gauge-invariant sector are factored out 

of the path integral, This change of variables is called choosing a gauge for the 

gauge field. We choose the generalized axial gauge as defined in Ref. 1 for the 

Abelian lattice theory; the non-Abelian case is essentially the same as the 

Abelian case except for some not so minor complications. The choice of a 

specific gauge will help clarify the role of the gauge-fixing term, 

To choose the axial gauge, we have to partition the finite lattice into dis- 

joint domains, On each domain will be defined distinct change of variables. 

The domains are defined as follows, We consider a finite lattice 1~ nP 5 N 

with periodic boundary conditions. We partition the lattice sites into the fol- 

lowing disjoint domains: 

D(‘)=(nil- o- ,, _ < n < N-l 15 ni < N) : 4-dimensional hypervolume 

D(l) = (nine = N, 15 nl 5 N-l, 1 f n2,n3 ( N} : 3-dimensional volume 

Dt2)={n1no=n1= N, 15 n2 2 N-l, 15 n3 5 N} : 2-dimensional surface 

D(3) ={nlnO =nl =n2 = N, 15 n3 2 N-l} : l-dimensional line 
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D(4) = (N z (N, N, N, N),): single lattice point 

Do thes‘following gauge transformation 

The axial gauge is defined by the following change of variables 

and dUnv = dVn 

nED(Y), ~1 f v 

dU =dg e 
14-1 np’ nv 

=n 

For the single lattice site N we have 

n=N:V =L N and 

dU 
N/J 

= d6 NP for all p I 

(2.1) 

(2.2) 

(2.3) 

Note VN = B is the only choice for VN which is gauge-invariant. The only dif- 

ference, in the choice of gauge, between the Abelian and the non-Abelian case 

is in (2,3), the reason being that the Abelian case has a higher symmetry than 

the non-Abelian case, which allows one to eliminate the variables {UNP];=, ’ 

from the action. This is no longer possible for the non-Abel&n case, and 

causes some complications. We will return to this point in Section III. 

For concreteness, we examine the effect of the gauge transformation on the 

path integral of the action functional. Firstly, note that gauge invariance im- 

plies that the action is invariant under this transformation; that is, 

Al’W] = A[%j : independent of the {V,} variables 0 

Hence 

= II rr Ii 
v=or~ED(~) j.~(fv) 

denPdeNPeA [‘I 
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; then we show in Appendix A that 

+CO 

Z(g,) bt II’ 11 
/ 

d?&v(gW) iI / dcNaeA< co O 
n,p a --oo a G. 

(20 5) 

In other words, Z can be represented by a convergent multiple integral 

where all the variables { Ba 
rqu 

} (except at the lattice site N) range over an in- 

finite range. Note also from (2.4’) that the redundant variables { Vn} have been 

factorized in the path integral from the gauge-invariant sector, Note, however, 

that the variables (B&l are nonzero on very complicated domains, and this 

makes any tractable Fourier transform to k-space virtually impossible. Hence 

(2.5) is not suited for perturbation theory, although it is well defined. 
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The gauge-fixing term is introduced to control the divergence due to the 

hJg variables a This means, in terms of the original variables (B>} , that the 

action has added to it a term which necessarily breaks gauge invariance. To 

leave -&variant the gauge-invariant sector, we further add the counterterm. 

The counterterm is a gauge-invariant functional of the gauge field and is evalu- 

ated from the gauge-fixing term via a path integral. (We will relax the prop- 

erty of gauge invariance later on.) 

Let Aa be the gauge-fixing term, and AC the counterterm. The modified 

action is defined as 

A’=A+Aa!+Ac o (2.8) 

The actions A and A’ give the same gauge-invariant physics. (We will prove 

this later.) One has a wide choice as, to what functional of the field variables \ 

Aa! should be. The only necessary condition is that 

(We will make a specific choice for Aa in Section IIB.) To define A 
C’ 

we 

introduce the following notation 

dV = II dVn 
n#N dU = llrrduw np 

u(V) = 
w vu 9, n np n+p 

Define AC by 

AJUI 
// 

A [.(‘)I 
e =l dVe a! : gauge-invariant 

Note the identity 

(2.10) 

(2.11) 

(2*12) 

(2.13) 
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Let K [ U] be an arbitrary gauge-invariant function. Then 

[U(V)] A IV] c e 

Perform the gauge transformation on { Uw} variables such that 

U’ w=vu 6, 
n w n+P 

dU’ = dU 

(2.14) 

(2,15) 

K[U’]e 
A,Lu’l 

= K[U]e 
A$Jl 

We then have 

,dU K[U] = I/dvjcybU’ KIU’]oAc[U’l’Aa(U’l~, =bU KIU]eAcT’U1+Aa’U1 
- 

Ac+Ao! 
(2.16) 

We thus see that e leaves the gauge-invariant sector unchanged. Hence, 

in particular, 

Z(g,) =JdU eALul 
/ 

A+Ao+Ac 
= dU e (2.17) 

Note that the result (2.16) is valid exactly for the lattice theory. This for- 

mulation reduces to the Faddeev-Popov4 formulation in the weak coupling ap- 

proximation. We now choose a specific Aa! and calculate Ac for it, 

B. Evaluation of the Counterterm 

Choose the gauge-fixing term4 to be 

AJBI 
e = IT’ “(sn” - Q 

n,a 
‘(2.18) 

where { tz> are fixed numbers, IX’ = If , and 
n n#N 



Define B&(q) by 

and 

(2,19) -. 

(2.20) 

(2.21) 

Note c s,” = 
n 

c s:(q) = 0; hence there are only N4-1 independent variables for 

the si* Let C’S C 0 
n n#N 

Then, from (2.12) 

e Acx+Ac = l-1’ qs,” - t;) 
n, a 

/ 
jdv 11’ 6(s;( $) - t> = 

n, a 
ii’6(s:($)-~>~ 

n, a 
(2.22) 

Note that in taking the step to (2.22) we have lost gauge-invariance for e Ac , 

since it now depends on gauge-transformations through the variable stO How- 

ever, the combined effect of e Ack!+Ac is to leave the gauge-invariant sector un- 

changed. (W e will return to this point later,) 

From (2.22) we see that e Ac is independent of { ti] D Recall from (2.17) 

Z(g,) -/dU e 
A+Aly+AC 

= due / 
A 

ioe., Z(g,) is independent of (t-i} D Therefore4 
i-co 

z(g,) = (00llst.) lit J n,a --03 
dtiexp ;-$a” 1 ago) 

, (2.23) 

= / dUeA exp -$!C 
n, a 

11’ a(s~($) - sa 
n, a 

(2.24) 
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Equation (2 0 24) is the final form for Aa! and AC which we will use for corn-- 
I~ 

putatigns, We show in Appendix B that the combined effect of e Acx’Ac in fact 

-. 

leaves gauge-invariant sector unchanged, e Ac is no longer gauge-Invariant, 

but e AfY+Ac has a lower symmetry) which is the-Slavnov symmetry (see Section 

Let Q! = 0( l/g:); then th.e modified action A’ = A + Aa, + AC restricts g the 

variables (except Ba 
W 

) to be O(g,)* We look only at regions for which B” = 
N/J 

O(g,) and hence have, for all n,~: 

B” v = O(q)) 0 (2,X) 

What we mean by (2.25) is that in performing the path integral of e A’ , only 

, - 

those regions of the phase space contribute to the path integral for which B” = 
w 

O(go)” In other words, in this gauge the path integral is performed over those 

points of Q which are a distance 5 go from the origin. Equation (2.25) can be 

derived from the results of Section III. 

In summary, from (2.24) we have 

where 

A’=A -~F;(s;)~+A~ 
, 

(2.26) 

-Ac e = j-dV II’ S(s;( Cp) - s2 o (2.27) 
n, a 

We now evaluate AC [B] to O(gi) 0 For this, we need B&( $) up- to terms 

linear in @l and quadratic in Ba 
w’ We computed B&(G) to O(g$ in (1.13); the 

only two terms missing there are of order B$Gn and B&+n+;. Since there is 

no mixing of $n and $,+++, we can set one of them to zero and compute for the 

other. Using the equation 
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exp(A)exp(B) =exdA+B+i[A,B] +~~[A,B],BJ-~liA,B],A]+...) 

h 
(2.28) 

we have, for qa 6 = 0, 
n+P 

B&( $) =‘lower order + & CabeCcdeBb BC qd o 
np w n 

We can similarly do the calculation setting c$: = 0, and from these results and 

(1.11) we have 

B&(G) = Ba - A $a - $ Cab’@,; -I- $,b -)Bc 
n/J I-L n n+p w 

1 
+iF +f+;) + W2, B3$) 

Define u,” = $9) by 

. - Then from (2.27) 

-AC LB1 
e = jdV II’ 6(s;($) - s;) =/dV 11’ 6(u;) o 

ha n, a 

(2.29) 

(2030) 

(2.31) 

We will now make a change of variable from { $E} to {LIZ} to evaluate 

(2.31) D The 64unctions make II:($) = 0; this in turn implies $t = 0 as the 

a unique solution for which u = 0 (as long as Ba << 1) 0 We analyze the variable 
n w 

a u = n ul($). To do this, we define the Fourier transform of the variables, Let 

h, be any arbitrary function of n. Due to the torus structure of the lattice, we 

have h n+Np ,. = hn:periodic in all the coordinates with period N, 
ikn 

Hence hn can be 

expanded in terms of the basis functions (e ’ ‘1, kP = 0, 2n -, 000 N $(N-1) o 

That is 

hn = zeikn hk s 
n 

2n(N-1)/N ik n 

c 
e pp 

I 

hk ; 
kP=O 
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6 43 
k,q ~ N i~0 ‘ki:S i 

Let 

Then, from (2.29) and (2.30)) 

uz=Fe -&on ua 
n” 

Using (2 D 29) gives 

+iF 
1 abeCcde 

k,q P 
(2.32) 

. - 

. 

Note from (2,32) that ufco = 0; i.e., it is not coupled tb the GE0 We can hence 

redefine uEzo to be 

Then, from (2.32) and (2.33)) 

u; = d& + c tJfdtk, s) + Lad&, q))$; 8 q 
where 

ifk=O 

ifk#O 

jMad(k,q) =iCabdC(l-e 
-& * 

P 
P)(l+elqP)Bb,_,,, 

(2.33) 

(2.34) 

(2.36) 
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Ladtkg) = 12 C 
1 abeCcde 

-& - 
CIW-e lqp”, Bb c 

k-k’-q,pBk’,p 

-. 
(2,37) 

Let 

Tab = d (jabs 
k,q k 9 

k q + Mab(k,q) + Lab(k, s) 

and 

= dk[ 6ab6 + 1 Mab(k, q) 
k,q dk 

+ $ Lab(k, q) J 
k 

From (2.34)) making change of variable from ( $i} to (uz} gives 

du; = c Tk q q ab deb 
q,b ’ 

II II du; 
ka 

= det(T) IJ. d$i 0 
4, a 

(2,38) 

(2,39) 

(2.40) 

(2.41) 

Hence, from (2.31), 

-Ac e = 
J dV IT’ 6(uB = II dVn II’ 6(u;) I 

n#N 
/ = lI dVn i1 S($;) 0 Ii’ @u> 

n,a n, a n a n, a 

= n /d~~~(@ fl Wa,) o !J’ Wa 0 (2.42) 
ha a n, a 

The integrand fixes $t = 0; and /J($: = 0) = cord. Also II’ S(u;) = k$o “, S(u>, 
n,a 

giving 

-Ac e =ll 
k 

dua 11 II~(u~)~ 1; 6($j 
k k#O a 

AC [Bl 
:. e = det T 

, (2.44) 
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where we have used (2,39) to obtain (2.44) and we are using simplified notation. -. 

Usingproperty det(AB) = det A det B, and that dk is independent of the gauge- 

field (B&l gives 

-Ac[B]. 
e = (const) det 

= (const) det d 1 + d M [ ( L )jOexpTr(iL) , (2.45) 

where the overall constant is independent of the gauge-field. We evaluate 

=~~$Laa(k,k)=-$C -+jl-eikpi2xBa 
ak k ka kp k’ 

.+pB& 9 (2.46) 

where we have used 

Using the fact that 

CabcCabc = ngaol 0 (2.47) 

(2.48) 

gives 

that 

is completely local. Hence, we conclude from (2,45) and (2.49) 

AcDl 
e = det(dkaaba k , q + Mabtk, Wew - $ c 

1 wa I 
+ w$) 0 (2.50) 
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This is the final answer, The determinant in the expression for Ac[B] can 

be represented by a fermion integration; it is this term which is called the 

Faddeev-Popov ghost term, However, the extra local term c (B:p)2 is ab- 
npa . 

sent in the continuum formulation. This term is quadratically divergent (we 

will show this in Section III) and plays an important role in ensuring that there 

is no mass renormalization necessary for the lattice gauge field, We will re- 

turn to (2,50) in Section III, 

We note in passing that choosing the axial gauge and using a gauge-fixing 

term are both ways of choosing a gauge for the gauge field, The only difference 

is that in choosing the axial gauge there is no counterterm, whereas using ALY 

for gauge fixing introduces a nontrivial counterterm. However, from a practi- 

cal point of view, the two ways of choosing a gauge are vastly different. In con- 

trast to the axial gauge, gauge fixing using Aor allows us to treat all the field . - 

variables on an equal footing, and hence allows the systematic use of perturba- 

tion theory, 

C. Slavnov Identity 

Recall that in the last section we proved that 

Z =jdUeA =/due 
A+Acr fAc 

D 

We also had computed e Ac = det(Tab(k, q)) to O(gi). Note that AO! of necessity 
A 

breaks gauge invariance; also, our definition of e ’ is not gauge-invariant. 

However, the term A;+Ac is invariant under the Slavnov transformation,5 

which we will define in this section. This invariance is more restricted than 

gauge invariance, but its usefulness lies in that it holds for the gauge theory in 

the presence of gauge fixing. 

To define the Slavnov transformation, we first rewrite e Ac in a more 
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formal way. From (2,27) (for an infinite size lattice) 

-Ac e = 
/ 

dV 11 6(s;(@) - sj 0 
n, a 

(2051) 

The value of ($z> f or which the o-functions are -satisfied is @,” = 0. For an in- 

finite lattice 

dV= 11 Wn” /-G,) - iip($~,=o) 11 d$n” . (20 52) 
n, a n w 

Therefore 

-Ac e = (const.) ii d$: S(st($) - sa& / . (2.53) 
ha 

We make the change of variable from { $I:> to (+,a> defined by 

(2.54) 

In evaluating the Jacobian of the transformation, the d-functions make us 

evaluate this at 4,” = 0, i, e. , 

Wb 
m 

(all repeated indices to be summed over).. Hence 

11 d+t = det 
n, a 

and 

(2.55) 

(2.56) 

(2.57) 

Ac e = 11 d$zS(s:($)-sna) =de / d+,” S(+> = det( asi/a&J a (2.58) 
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A To define the Slavnov transformation, we have to represent the determinant e ’ 

using Ermion integration (this is discussed in Refs. 4 and 7). Let ci, c,t” be 

scalar fermion fields, and let <> denote II 
J 

a f-a dc,dc, 0 Then 
n, a 

Hence we have 

Aa! = a! aa 
- 2 ‘nSn 

(2.59) 

(2.60) 

. - 

AC = cia(asb,/a+a)cb n m” (2.61) 

Let h be a spacetime independent fermion variable which anticommutes with 

other fermion variables and commutes with bosons. We adopt the notation that 

tah,a(~)h&~ = ah/aGb ; let cabc be the structure constants. Then the 

Slavnov transirLation15 ismdefined by 

Ba --. Ba 
w w (2.62) 

a a C --c -o!As a 
n n n (2.63) 

eta - $a +h @c ,p ctc 
n n 2 n n” (20 64) 

From (2.62) we have 

a asa 
S n tb 
n +sna+h- c 

wb, m 
(2.65) 

(20 66) 

We now examine the effect of this transformation. The gauge field action A 
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is left unchanged since it is gauge-invariant, and (2,62) is a linearized gauge 

transf-ermation, For ALY we have 

(2.67) 

and for the counterterm 

AC -c (cia + $ .apy~ip tr 
n ‘n ) (cb m -ahsbm) 0 

After simplifications using anticommutation of fermion variables, we have 

as: b 
b 2b 

Ac - AC+&: -s + h $Pr ~,tP,tQ _ A a ‘m 
a+: m 2 a$: n n m a$)@ 

ta tccb 
c ‘n ‘Q m0 (2.68) 

Therefore, from (2.67) and (2,68), we have 

a2sb 
_ m ctactccb 

a+za$f n ' 1 m ' 
(20 69) 

Note that the term in the bracket is zero since 

a2sb 
m ctactccb =& 

a2sb 

a+$ 

m ,tacj-c + a2sbm 
n Q m 2 aq;aq; n Q 

a$+, 

7-c tacb 
a ‘1 ‘n m 

21 a 
2 a$:' asi [ 1 sb ctactc $ 

mn Q m 

andI 

cabc -a- 
nsm aeC ' n 

(2.70) 

(2.71) 

Therefore, the term in (2.70) cancels the other term in the bracket of (2.69), 

giving 
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Aa -I- Ac - Atr + AC : invariant (2.72) 

H&ce we have proven that A + AO! + AC is invariant under the Slavnov 

transformation. In the next section we will use this invariance to show for- 

mally-that the gluon has iero mass renormalization. 
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III. MASS RENORMALIZATION -~ 

Wcknow from general considerations that mass renormalization for the 

gauge field quanta is incompatible with local gauge-invariance - since any mass 

counterterms in the Lagrangian would violate gauge-invariande, Hence, for the 

renormalized theory to be gauge-invariant, all the quadratic mass divergences 

in the theory must exactly cancel, From asymptotic freedom, we know that we 

have to study the lattice theory for go - 0 to ascertain the high momentum be- 

havior of the quantum theory, i, e, , the behavior for a (lattice spacing) - 0 (see 

Ref. 6). 

In particular, we will study the Ba 
w 

field propagator in the weak coupling 

limit, and we will show by calculation that to lowest order the proper self- 

energy of the gauge field quantum for zero momentum is zero. This will show 

that there is no mass renormalization for it. We will then prove this same re- 

sult more formally by making use of the Slavnov identity. 

Due to the infrared instability of the non-Abelian gauge field, it is in gen- 

eral not possible to compute the behavior of the zeroth mode without solving the 

large distance strong coupling problem, The same is true for the lattice theory 

provided that there is no quadratic divergence arising from a nonzero mass re- 

normalization term, However, if there is a quadratic divergence in the theory, 

then this would despoy asymptotic freedom; the divergence would completely 

dominate the e 
-lko 

effects arising from the high momentum modes due to 

coupling constant renormalization, etc. ; and we could compute this divergence 

using the weak coupling approximation for the zeroth mode propagator. Hence, 

we assume that there is a quadratic divergence, and compute it using weak 

coupling for the zeroth mode, We will then show that the divergence is in fact 

absent, The calculation is self-consistent, since if there were a quadratic di- 

vergence our calculation would determine it. 
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We now discuss the main features of the calculation before going into the 

detailsa Define the (global) color singlet propagator 

D = J dUB&BzV e 
A+AolfA 

wv % 

Using translational invariance (due to the periodic lattice) gives 

(3.1) 

(302) 

(30 3) 

Let Dkoiv be the bare propagator defined by the quadratic part of A’; let ICLV(k) 

be the proper self-energy. Then, in matrix notation, Dyson’s equation states 

Dk = Df) + D;“’ II(k) Dk 0 (304) 

Recall from (1,6b) Ba! m.4 = agOSALYnp is dimensionless, making Ii(k) dimensionless 

in (304). Hence, the continuum self-energy, which has the dimension of (mass)2, 

is given by dimensional analysis. Since the only dimensional quantity in the en- 

tire theory is the lattice spacing a, we have 

rrphy(pj = -$ II(k=pa) (3.5) 

= -j{ fl(0) + (Ii - R(O))} 0 

It can be shown using perturbation theory that (p # 0) 

(3.6) 

lim +(il(pa) - ri(O)} N logarithmic divergences in a ., 
a-0 a 

Hence, in the a 4 0 limit, 

(30 7) 

ilpb (P) = 1 
a2 

II(O) + logarithmic divergences in a . (3.8) 

We conclude that for there to be no mass renormalization, the quadratic 
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divergence -$ II(O) must be zero, i.e., 

-c, 
rqo) = 0 O (3. q 

The logarithmic divergences in a are taken care of by wave-function renormal- 

ization 

when go -. 0, we have an expansion 

II(O) = rl() + iI1go + i12g; + 0 o 0 0 (3.8 1D) 

In our lowest order calculation, we will show that II0 = 0. The general result 

that Ii(O) = 0 is proven by the Slavnov identity. From (3.4) 

Dk = to)-’ -‘&k) ’ 
Dk 

It will be true that, for N - 00, k - 0, Dk”ii’ - 0; hence 

1 
Dk,() = - m ’ 

In order to evaluate 11(O), we will evaluate 

(3,ll) 

(3.18) 

(3.13) 

To calculate D, we will first perform integration over all { Ba kcl, kf0) in the 

path integral; this will leave us with an effective action involving only the 

B&) variables, and will provide us with II(O). In the following we will analyze 

Z(go/and then show how to extract II(O). 

A. The Weak Coupling Action 

Recall from (2.9); with a change of notation Ba + sa 
w nl-l 

z= 11 1-I r d?& j&L) IIbeNa! e 
A+A@+A C 0 

n#N p,a --03 
(3.14) 

a 

As we discuss in Appendix B, dcNo, could not be treated like the other 

variables since there is no Gaussian factor for it in the integrand. When we 
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Fourier transform the {EL}, we see that the role of UNa! is taken by the vari- 

able Bi-o , since there is no Gaussian factor for it either. 
P 

(This can be easily 

seen later.) We also have to isolate this zeroth mode in the action, since we 

are interested in integrating out all the other modes, We do’ this as follows 

(the original variables are g& = 2 efknB&) 
k 

-a B 
w 

= BiZo /N4 + Z’ eiknBa (3.15) 
P k 

kp t” - k$o)o 
k 

Define 

ea= BFZO /N4 
I-J P 

(3.16) 

Ba = Z’e ikn a 
w B@ l 

(3.17) 
k 

In the presence of AQ! + AC, we have (for Q! = -+) 
I 

2g0 

Ba w = O(g()) 

ea 
P 

= O(1) 0 

Therefore, since Ba N/J 
= OF+ Z ‘Ba = 0: + G(go) , 

k kP 

G Np = e + O(go) 

and 

where UP = e 

dc NV = dUp + otgo) 

0 

(3.18) 

(3.19) 

(3020) 

(3.21) 

Also 

U no = exp{ i(Ba ~ + 87 xa) = UP’ l+Aw) o (3.22) 



Aw is a matrix of O(go) 
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Let 

A = Ato) 
w w 

1 + iA;xa 

with 

Tr(XaXb) = $6ab 

Tr(L)=n 0 

(The gauge group is SU(n).) Then 

(3.23) 

(3.24) 

and, using (3.22), (3,23) gives a complicated expression involving the UP and 

A 
np’ 

As already discussed, the entire calculation is based on the assumption 

that there is a quadratic mass divergence. This means that we are interested 

only in the coefficient of the @p;term; if there is a quadratic divergence, then 

all the higher powers of $will be negligibly small. Hence, in the action, we 

keep only the terms for 0; which are at most quadratic. Secondly, we are doing 

the calculation to lowest order in go; i-e,, to O(1); this means that we will keep 

at most terms which are quadratic in the Ba 
w” 

We will show that A:; is of 

Wii$) and A& is of O(go); hence we keep terms linear in A (0) 
lqu 

and quadratic in 

Aa 
w” 

Note also that if the above approximations are consistently used for the 

action, then a simple bookkeeping rule is to consider all the UP as commuting. 

(If one goes to higher order in @; or Ba , 
w 

then this bookkeeping method is no 

longer valid.) To summarize, we use 

IUp, u, I = 0 + W3) , (3025) 

where 0( 8 3, means the order of the terms generated in the action by the ap- 

proximation in (3.25). Hence, the action is 
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A+ z;’ Tr[(UPUv + UPAn& + U&An+;, v + UVA~UvAn+;, v) 
2% wv 

0 (UtTJt +U’Al’ TJt +A? 6 U’U’ +A’ 
CL v p nv v n+v,p p v n+j , 

(3.26) 

Ii4 =- 2’ 
2g; PV 

Tr(U U TJtUt) + 1 Z 2:’ [4nA(‘)+ 2Aa 
P v CL lJ 2gi n pv w 

n+v 
, 
PALTr( Uv XaUl Xb) 

tb + A&AzV Tr(UI UPXaUV UPX ) + Aa ,, n+p, V Az+S, pTrtXaxb) 

- 2Aa A Ab n+v,p nv Tr(UPXaUF)] f O(e3, B3) 0 (3.27) 

In studying the above action, we will consider it as a polynomial in 8:and 

B& and, as already pointed out, keep at most terms of 0( 0 2B2) ~ We use the 

notation 

(a X b)@- = co”apbr 0 

Then, from (3.22) and (3.23)) 

nA2 = - $BEV ’ - @Jp X B,J 
2 3 

) + Oko) 

A =B 
w 

+b XBw+$f3pX(BpXBw)~ 
w 2 I-L 

Therefore 

(3.28) 

(3,29) 

A =B 
woAw WHEW (3.30) 

A 
nc1 

“AmY =‘B l Bmv 
w 

+4B 
2 w x Bmv’“‘@p - q)v> (3.31) 

AnPXAmv=BqxBmv ++9 21-1 
xBnCI)XB mv +~BnpW$, xBmv) 0 (3.32) 

We need the matrix 

G ab = Tr(UPXaUy) = ~6 
P 

1 ab 1 ~yp~CawCW~g~~~ - TC 
P 4 El. lJ* 

(3.33) 
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Therefore 

- A,“y G;bAb,, = + ( Anv . Amr - (Anv ’ Amn)o OP 

- &Anv x o/Jo (Amn x 6&l 0 (3,34) 

Collecting (3.28) - (3.34) and simplifying the action gives, from (3.25) and 

(3.27), 

A=AU+ 

+(A XA 
w ~+G,~J.‘v - $A, x Bv)o(An+; p X f?$l + +L4w4nV-(~w~~nVj , 

~~$-e~~-~A~xt~i*-~v~~.(Anv~te~-~v)~} +;An+P , 
/An+; ~ 

, 

- 2* ~ fAn+i; p4A,v - (A,+; p XAnv)‘ep- $An+; pi Op)~(Anv X Ov$! (3.35) , 9 , 

We break up the action as a polynomial in e:and write 

A = AU + A0 + Ai’) + Ai’) , 

where, after considerable simplification, 

(3.36) 

A0 = -+ 2 2 [(AvBw)2 - 
4go vv 

‘pBnVAVByl (3.37) 

-- 2 t: e;(APBLv 
n 1-1v 

- AvB&)(BC A 
n+v, p 

+Bh). (3038) 

(We have replaced Z’ by Z , using antisymmetry of the summa.nd.)- Note the 
pv (i)?” general structure of AI is 

At2) = 1 x 
I I; ZBaMabBb 

4gi m,n pv ab nP ” mv l 

(3.39) 

In the final calculation, we will keep only terms of O(Q2) in performing the Ba 
w 
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integrations. Since M$ = O(8 2), we will, due to integration over the B” , en d 
w 

up evaluating its trace, and hence need only the diagonal elements M;F of the 

matrix i!Pb 
PV’ 

Hence 

1 
- $B,C1 x QJ”P n+j,p x 8 )I + off diagonal in (it) 0 V [ 

We will work in the Feynman gauge, i, e, , 

AQ! = - -&Z(ZAB A )20 
4g2 n p P n-lJ,/J 

0 

(3.40) 

(3.41) 

Using the definition of B” = .Z ’ e iknBa 
kE.1 ’ 

we have 
JW k 

Ao+Aa = - -$ 2’ Cr(Z 11 - e %2 
1 )BakPB&= -1 Z:‘Zd Ba Ba 

4g2 k /J k -lyL ty” 
(3042) 

4g0k P CT 0 
. - 

A(l) - cabc 2’ 2 {oa(eikp _ l)(e-ikv 
-ik -ik 

--- 
I 4g; k I-1” ’ 

+1)+6 2ZBa(e 
PO. (7 

(r- l)(e cr -I- 1)) Bb_@B; 

cabc D 
ik 

ilT2I 22 {da(e p -l)(e 
-ik, -ik 

= 

4g; 
+l) -0;(e ‘- 

k PV 

ik 
W h 1) 

(3.43) 

(3.44) 

and finally 

I 



- $- 2 ev 6, (e 
+lJ 

b /3 %J + e-ikvjjBc 
j’ -kpB& (3.46) 

(3.47) 

Collecting Eqs, (3,42), (3.44), and (3.47) gives 

A+Aa!=-+ IZ’ 2 dk oab6 
4go kpv PV 

(3.48) 

where both Nab 
PV 

and Mab have been made explicitly Hermitian. cLv Let 

L=l+iN++M. (3.49) \ 

. 
The gauge-fixing term A has no dependence on 8 a ; however, the Ac term is 

I-1 
a function of Ba 0 

I-1 
In performing the { Ba 

kE.1’ 
k f 0) integrations, we can ignore the 

coupling of e:t0 B” 
kp 

coming from the Ac term, as this will produce O(go) terms 

multiplying Ba, 
P 

which we are ignoring anyway. The same is true for the mea- 

sure p(B&), for which we have, from Ref. 7, i c ,, 

or 

-&N42g2 

PW = e P p + O(gg) 0 (3.50) 

Then, collecting all the results, we have 

AU AcW +oO 
m9 e II 1 

I k#Op,a -m 
dB& e 

A+Aa 
= II (dU,,e AU 

/-4O)e 
Ac(B)(const.) 

/J-L T vaeL L ’ 

(3.51) 
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B . Self -energy Calculation 

We evaluate the lowest order contribution to the proper self-energy., This 

will consist of calculating the integrand of (3,51), i, e, , of 

Z(g,) = J$$q e AU eAc(oJ p(e)- 
P &let L(B) ’ 

(3.51) 

To do so, we calculate det L and e 
Ap) 

O We will make use of our results 

from Section II to evaluate e 
AC(e) 

o Since we are considering 8;to be small, we 

will expand exponential functions of Ba in a power series. I-1 
We will then con- 

sistently use the identity 

(3.52) 

= oza X (constant) O (3052’) 

We will signify the use of (3.52) by an arrow (--)0 We will also use (for XI(n)) 

CabaCaW = nsab a (3053) 

Therefore 

det L = det 

= exp 

Let 

(3.55) 

Then 

Tr (3.56) 
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Define 

-c, J=+- 0 
k k 

Then 

Tr ($Mj = 12$J 

.- 

(3.57) 

(3058) 

Also 

Define 

K = 2 (1-cos kl cos k2)/d; o 
k 

Then 
1 1 Tr( ;iN ;TN) = 12 r$ (1+2K) 0 

Therefore 

(125-i- 61- 12K) $ 
det L E e 0 

We now evaluate e Ac . Recall from (2,50) 

AC e =exp -2 2 Z(B 
i 

a 4 ) ,det(dk6abCj 
‘nga nP 1 

k , q + M,,tk,q)) s 

where 

Mab(k,q) = - iCabcZ (1 - e 
-& - 

‘)(l+ e ‘q/-l c 

P 
)Bkmq ~ 

, 

(3.61) 

(3.62) 

(3.63) 

(3.64) 

(3.65) 



’ Mab(kpq) = - 5 C 
ik 

abcx(e ‘-, 
.- IJ 

h 

Mab(k,q) = nab(k)6k q + O(gO) 0 P 

(3.66) - 

(3067) 

Therefore 

A 
e C- - exp (const.)det(l+&) + O(gO)mexp I-z i e I l $I 111 xp\-;Tr(;in@\ 0 

(3.68) 

But 

Therefore 

Also 

Ac e =exp t + 12 2 j I- ;L+h ’ -I- O(go) 0 

Hence, from (3,63), (3.70), and (3,71) we have, using (3.51), 

z’= iI s 
due Areas iw - 

fi= I-1 
lL dupe 

J 
AU exp(5/8 +%I+ 6K -6J)G 0 

I-L 

Let 

a=5+51+6K s 2 
- 6J 0 

From the identity 2’ (di/di) = 1, we have 
k 

I = 45 - 12K - $ , 

giving 

A= 4(J - 6K) o 

(3.69) 

(3,70) 

(3Q71) 

(3.72) 

(3.73) 

(3,74) 

(3,75) 
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It can be shown that 17 

h 

J = 6K + O(eBN) s 

giving 

A = 0 + O(emN) (30 77) 

-N =-ce , 

(3.76) 

(3.78) 

where c is a constant and is 0( 1). 

Therefore 

exp(A )exp(-ce U exp(AU) exp( -N4(cneBN/4)z B 3 0 
PC1 

(3.79) 

Let 

ITo = 4 lcne 0 -N (3.80) 

We discuss our results in the next section, and show how, if Ro 4 0 as N - 

CO, we would have a quadratic divergence. 

C ,, Discussion 

The main result of the last section, from (3.79) and (3,80), is 

Z = ll/dU, e AU 

P 
exp( -N4iLoZ .9$ o 

P 
(3.81) 

We now show how a finite Ho, in the N -. 03 limit, would lead to a quadratic di- 

vergence D Let 

< ’ = i1 d”P e J 
AU 

O 
(3.82) 

P 

The propagator was defined by 

L<B D = N4 exp (-N4110;0$/Z = N4 <@f exp(-N4Uoz0$Z 0 (3083) 
ct 

Suppose II0 > 0; then we can extend the range of $ integrations to infinity, giving 
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D-N4L=Lo 
N4n, ‘0 

(3.84) -- 

Hence we see that, if II0 4 0 as N -c 00, we get a quadratic divergence - LII 

-N 
a2 0” 

However, since II6 N e ., we have 

D-e 
N -co asN--m. 

Note that the bare propagator D (0) also diverges as N - 00 since 

(3,85) 

D(O) = N4<O;>/Z - co asN-m0 (3.86) 

We therefore conclude that, in the N + co limit, the lattice gauge theory has 

no mass renormalization. The continuum theory also shows zero mass re- 

normalization, and we conclude that discretizing spacetime doesn’t violate this 

property since the lattice gauge theory was defined to exactly preserve gauge 

invariance 0 

On the finite size periodic lattice, our calculation shows m2 -N 
quantum N e ’ 

however, for the infinite lattice we have no information about the mass of the 

gauge field quantum, since the absence of mass renormalization means that the 

large distance problem has to be solved for determining m2 quantum” 
The cubic and higher order terms in $ cannot affect the divergence of D for 

N - co; that is why they can be ignored, All arguments we used apply equally 

well for II(O), and we see that the coefficient of the quadratic term Z 0 2 in the 
0 

action contains all the information regarding mass renormalization,. The cal- - 

culation we performed for II0 can be done using Feynman diagrams, The ex- 

ternal lines are BEZO ; the propagator for the internal gluon lines is 6 /d and 

for the internal ghost’lines is l/dkO 
P-’ k 

The vertices are rather complicated and 

can be read off from the action. The graphs used are shown in Fig. 1. Note 

that, since the 6; variables were held fixed when performing the (Blafi, k#O} 
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integrations in the path integral, the proper self-energy is equal to the com- 

plete gelf-energy for the gauge field quantum, 

We now give a general proof that R(0) is zero to all order in perturbation 

theory using the Slavnov transformation,, We will obtain an identity involving 

Dkpv and this will give us the desired result. 

Recall from (2,63) and (2.65) 

a 
C ---Cl! n +AS; 

a s --L n 

In obtaining (3.88) we have used 

(3.87) 

(3.88) 

and the fact that S/SC: anticommutes with all fermion variables. In particular, 

we are using 

(3.89) 

Therefore, from (3,87) and (3.88)) 

c;Ao Bb A -caA B b 
n-o, (T II u nG,o - ahA Ba ,. b 

p Q-p,pAoBn-G, u ’ (3.90) 

Let 

< > 3 11 II J dU dcadcta eA 0 n ha w n n 
Then 
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<$A Bb ,. 
u n-a, oe 

ACt+AC > = <c”A Bb ACY+AC e Aa+Ac 

I u n-;,a > 

- cuh<A A2AC .> 

<A B”- b ACY+AC 

p Q-~,~A~Bn-~, ae 
A o! >. 

To perform integration by parts for the fermion variables, note 

Therefore 

(Je 
AQ+A 

9/z 

(30 91) 

(3.92) 

(3,93) 

(3.94) 

Fourier transforming the above equation and using translational invariance 

gives 

(1 - e*P)(l - e 
-ik 

‘)DE$ =$6ab . (3.95) 

To determine the behavior of 11(O), we need only the k N 0 behavior of the 

propagator 0 From (3,95), we have that Dk wLfork--OO 
k2 

Hence we conclude 

It(O) = 0, and there is no mass renormalization for the gauge field, 

One might be tempted to conclude from the above result that the gauge field 

quanta is massless for the exact theory, However, this conclusion cannot be 

made for the lattice theory. In the strongly coupled region for the lattice theory, 

the degrees of freedom are no longer Ba 
w ’ 

but instead are U ~ = exp{ iB&X”]. 

If the s,” are written directly in terms of the U* (such that (3.89) is recovered 

in the weak coupling limit), then one finds that the expression for e AC is no 
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-A 
longer a pure determinant, but instead e ’ is a sum of (determinants) -’ due to 

.the fast that the II a(~:($) - sa’) now no longer has a unique solution for the +r 
n, a 

at c$i=O. [This fact has also been recently recognized for the continuum theory 

by Gribov’ and leads to nontrivial modifications of the continuum Yang-Mills . . 

theory.] This in turn means that the Slavnov identity no longer holds, and hence 

the identity for the propagator is lost when we arrive at a strongly coupled theory. 

We hence cannot conclude that the gauge field quanta is massless for the exact 

lattice theory. This question can be resolved by studying the behavior of the 

lattice gauge field under the renormalization group transformation. 

I a.in thankful to K. Wilson for having explained the results of this section to 

9 me. 
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APPENDIX A: WEAK COUPLING 

Prom (2.4) we have 

Z(g,) = n. I-L 
~10 

e dc,d6 J We 

A%] 
nED( ) V tA. 1) 

P#v 

We are interested in go - 0. In this limit, the action has a sharp maxima about 

if+ 
WV 

=d, and expanding about this gives 

(A. 3) 

Recall we are in the axial gauge. For every domain except n=N, we have 

three independent ?a 
WV’ 

More precisely, we have’: 

v = 0,1,2,3 ; n E D(‘) 

P# pwv independent variables 
(A. 4) 

However, at n=N, all, the ?? 
WV 

are dependent variables. 

Hence we see that in each domain except n=N, eA provides a gaussian factor 

for the three independent variables g,“& (the non-Abelian index is irrelevant here) 

through the three independent variables ?a 
WV’ 

Hence, from the action, we see 

that g,“, = O(go), and we can extend their range to infinity. However, g’” has 
N/J 

no gaussian factor and remains O(1). Hence its range has to be kept over the 

compact space. This special behavior of ga 
N/J 

is not without consequence, since 

it is connected to mass renormalization. 
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Collecting our results, we have 
-. 

(A-5) 
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APPENDIX B: GAUGE-FIXING AND COUNTER-TERM 

R%all from (2.26) and (2.27) 

z= J dU e 
A+Aa+Ac 

(B-1) 

where (for an infinite size lattice) 

Aa=-5 

-AC 
e = / dV TI 6(s;($) -s;) 

n, a 

(B. 2) 

P. 3) 

We show that with this form for AQI and AC (where AC is not gauge-invariant), we 

still have 

z= Jdue 
A+Aa+Ac 

J A = (const) dU e 

Perform the gauge-transformation 

dU - dU 
nl-l w 

Then 

= J 

(B. 4) 

(B. 5) 

(-3) 

where, in taking the last step, we have used d@,Vn) =dV,. 
A 

Note e ’ is now a 

function of T, i. e. , not gauge-invariant. Since Z is independent of v n’ we can 
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trivially integrate it over all Vn, i. e. , 

J ZZ dU e*[” / d? (B. 7) 

Define a change of variables from 3: to Gt by 

Let 

J[B,Gl = det (%~($)/a@)) 
s;(;i;)=ttJ; . 

Then 

d?=II dvn= II dc II/+;) 
n n,a n 

= Jr; %l p[B,+l II d@; 
, n, a 

where 

We now evaluate e AC . 

-AC e ZZ /dv n. 6 (s;w -so 
n, a 

= 1~ J~~~wn) n 4 n,a n , a ($44 - *;) 

(B. 10) 

(B. 11) 

(B .12) 

(B. 13) 
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Define a change of variable from $,” to ui by _ - 

(B. 14) 

The &functions in (C. 13) force us to evaluate the Jacobian of the transfor- 

mation (C. 14) at the value of $i for which s:(q) = @i. Therefore 

IL duan = 
n,a 

(B. 15) 

Similarly, the value of the measure /.L(@,) is fixed by the &functions giving 

IJ ~1 (G&B, +I) = PD%+I (B. 16) 
n 

. - Therefore 

e 
-AC = /-dB,Qil/JD, +I 

Collecting Eqs. (C. 7), (C. 11) and (C. 17), we have 

(B. 17) 

Z = -/dU eAiul 
n Jd+n J[B,+l 

a @A 
n, a exp C-2 K)“) ,“Ei::; 

= dU e*[” Q J n,a J d+,” exp (-5 (+i)“) 

= (const) dU e J 4Ul (B. 18) 

Hence, we have proved the desired result. Note the result is exact and valid for 

any value of go. I thank M. Peshkin for discussion on this topic. 
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FIGURE CAPTION 

1, F;ynman diagrams for the computation of the lowest order self-energy of 

the gauge field quantum, 
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