
SLAC-PUB-1927 
April 1977 
(T/E) 

HIGH MOMENTUM TRANSFER ELASTIC e-d SCATTERING 

R. G. Arnold* 

Stanford Linear Accelerator Center? 
Stanford University, Stanford, California 94305 

- and 

American University, Washington, D. C. 20016 

C. E. Carlson$§ and Franz Gross$ 

College of William and Mary, Williamsburg, VA 23185 

ABSTRACT 

We have calculated the deuteron electromagnetic form factor to all 

orders of q2/M2 in the impulse approximation. Our results are com- 

pared to the data for selected deuteron wave functions. We also ex- 
\ . \ 

tract the ultra high q2 limit of our results, and obtain most naturally 

the same q -10 falloff predicted by the quark model. 
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Recent measurements1 have made it necessary to calculate electron deu- 

teron. dastic scattering without making nonrelativistic approximations or q2/ 2 

expansions. Here we report on a relativistic calculation of the deuteron elec- 

tromagnetic form factors in the impulse approxi.mation (RIA), retaining terms 

to all orders in q2/M20 Two effects are included in this relativistic treatment. 

First, relativistic kinematics is used throughout. Second, the two nucleons in 

the deuteron cannot both be on shell. We have included the most important 

consequence of the latter by allowing the interacting nucleon to be off shell, 

which requires that all four invariants (or, equivalently, four wave functions) 

be retained in the deuteron-nucleon-nucleon vertex. 2 We obtain the three deu- 

teron form factors as functionals of the four deuteron wave functions. 

We shall present two aspects of our results in this letter. We first exam- 

ine the ultra high q2 limit of our results, discussing its implications, and then 

compare numerical results for selected deuteron wave functions with the recent\ 

data at high q2. 

The key to understanding the high q2 behavior of the form factor lies in ex- 

amining the q2 dependence of the generic overlap integral 

I = /d3p u(k;) u9(k;) (1) 

where u and ut are any two of the deuteron wave functions. The arguments are 

the magnitudes of the relative momenta of the incoming and outgoing deuterons 

evaluated in their respective rest frames. This is related to the three-mo- 

mentum of the on-mass-shell spectator, p< and the momentum transfer <in the 

Breit or brick wall frame by 
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where pL and pli are components perpendicular and parallel to < Do = (Mi + 

q2/4)-‘, and Ep = (M2 + p2)k If we expand the wave functions in a series of 

Hulthen-like functions 

u(P) = C ‘i(p2 + ~~)-’ ) 
i 

we find that for very large momentum transfer 
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K1 = 87r2Mi’L ci Aarctan -L 
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(5) 

It may be seen that the second result is the one which is natural for the 

deuteron. The high momentum behavior of the vertex functions or wave func- 

tions may be determined by studying a covariant wave equation obtained by re- 

stricting one particle to the mass shell. 3 If the binding is due to one boson ex- 
2 2-l 

changes and if each BNN vertex has a form factor which goes like4 (t+pl+p2) , 

where t is the momentum transfer through the boson, and pt and pg are the nu- 

cleon four-momenta squared, then the momentum space wave functions used in : 
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Eq. (1) must fall like l/k: and may be arbitrarily well approximated by a sum 

of HuEhen functions with C ci = 0. Jf the nucleons and bosons were themselves 
i 

..- 

elementary particles, there should be no BNN form factor, the wave functions 

would+fall like l/k:, and we would get C ci # 0, 
i 

The e-d differential cross section is 

dv do 2 2 da MotttAtq ) + B(q ) tan 28 do _ jQ -- $ = m 
Mott 

F&i2, 6 1 

and an examination of the detailed formulas relating A and B to integrals like 

Eq, (I) yields 

Fdtq2s e, - 
q-2 FNtq2) CCi#O 

0 fixed Cl-6 FNtq2) cci=o 0 

(6) 

W 

0) 

where F N is the nucleon isoscalar form factor. The first result is consistent 

with work5 which showed that for a system composed of p elementary constitu- 

ents the electromagnetic form factor should behave as (q 2 l-n 
) ,, The second 

result shows that the RIA for the deuteron electromagnetic form factor falls 

like q -10 ----4 ~~ 
, provided FN falls like q e This is the same result predicted5’ 6 on 

the basis of the quark model. 7 

We note an interesting consequence of the above result concerning the rel- 

ative size of the RIA and meson exchange contributions to Fd(q2, 8) D Since the 

quark model and the RIA both fall like q -10 , their difference - presumably the 

meson exchange effects - must fall like q -lo (or faster), While- the constants 

multiplying the falloffs of the RIA and meson exchange effects remain to be de- 

termined, there is no a priori reason to expect one to dominate the other. 

Since the q -10 prediction follows from both the quark model and the (rel- 

ativistically calculated) conventional n-p bound state model of the deuteron, it 
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might be regarded as a fairly secure prediction. Nevertheless, one should ask 
-. 

how w&l1 it is verified by the present data. The cynic will point out that if one 

fits the data for q2 ) 0,8 GeV2 to a monomial qn, the best fit has n = 5,5. 

However, in order to fairly compare the q -10 prediction to the data, one needs 

to estimate the nonleading terms, which are important in the q2 region where 

the form factor has been measured. For the n-p bound state model, the nu- 

. - 

merical evaluations of the complete formulas will be presented shortly, and 

one will see that while the asymptotic falloff is q -10 , the falloff at finite q2 is 

slower, and indeed follows the trend of the data. For the quark model, a de- 

tailed examination has indicated’ that the form (l+q2/m$-lF$q2/4) is appro- 

priate for the deuteron form factor. The data 198 divided by this factor, with a 

scaling mass rni = 0.28 GeV2, are shown in Fig. la. Note the flatness of the 

implied curve for q2 2 1 GeV2, The data, thus properly analyzed, certainly do 

not disagree with the q -10 prediction. On the other hand, let us also compare 

the data to the odd possibility that the nucleons and the bosons that bind them 

together are elementary, i. e, , the BNN form factors are unity, but the nucle- 

ons still have their measured electromagnetic form factors, This leads to a 

leading q -6 falloff for the deuteron electromagnetic form factor, as given by 

Eq. (7a), The data divided by ( l+q2/mi)-lFN(q2) [the form of the first factor 

gives the correct normalization at q2=0, but differs from a pure -2 q falloff only 

at low q2] are plotted in Fig. lb, The flatness of the curve above q2 2 is again 

striking. We must conclude that,because of the importance of the nonleading 

terms, the data do not yet distinguish the models, and that we must go to 

higher q2 to clearly see the leading falloff. 

This leads us naturally to the question of the predictions for 3He and 4He. 

While the quark model predicts a falloff of q -16 and q -22 for these two cases, 
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the actual falloff in the q2 region of a few (GeVj2 would be much slower because 

of the large masses which enter the specific scaling prediction of Brodsky and 4 

Chertok. 6 If, for example, the quark predictions are compared with the forms 

qw4FN(q2) (for 3He). and q6FN(q2) (for 4He), which follow from the same as- 

sumptions leading to (7a), one finds less than a factor of two difference in the 

range 2(GeV)2 < q2 < 8(GeVj2, 

We now turn to the second part of this letter; we discuss our results for 

A(q2) for q2 < 6 (GeV)2 as numerically evaluated for several selected wave func- 

tions and plotted along with the data in Fig. 2. 

There are three theoretical curves in this figure, In each calculation, the 

nucleon isoscalar form factor was given a dipole form with a (mass)2 of 0.71 

(GelQ2. The curve labeled Reid Soft Core is the nonrelativistic impulse approx- 

imation with Reid soft core wave functions. 9 The curve labeled Reid Relativis- 

tic is a calculation with the relativistic formulas using the Reid soft core wave 

functions for the usual S and D states, and setting the two additional wave func- 

tions to zero. The difference between these two curves is due entirely to treat- 

ing the kinematics to all orders hi q2/M2. 

The Reid wave functions, however, were obtained from a nonrelativistic 

Schrijdinger equation, and it should be clear that a consistent evaluation of the 

form factors requires wave functions which were themselves calculated relativ- 

istically. There is no consensus on what the best such wave functions are and 

the curve labeled AU = 1 is representative of recent calculations fully described 

elsewhere, 10 

From the figure we see that the relativistic effects tend to decrease the 

form factor at q2 x 2 (GeV)2 and that the calculated form factors can vary by an 

order of magnitude near q2 = 6 (GeV)2.: Note also that our calculations fall 



-7- 

systematically below the data, so that there is room for other processes, such 

as meson exchange corrections 11 -. 
or contributions to the impulse approximation 

c, 
with the spectator off shell, to make up the difference, Also, further work on 

the high momentum components of the wave functions is needed, and this, along 

with relativistic evaluations of the meson exchange effects, will clarify the re- 

sults, 

A detailed report on this work will be presented elsewhere. 
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Figure Captions 

1. (a) The deuteron form factor data compared to /4); this is 

the quark model prediction of Ref, 6. 

(b) The data compared to The points 0 are from Ref. 1, 

points0 from Ref, 8, 

2. The data for A(q2) from Ref. 1 compared to the RIA for selected wave func- 

tions described in the text, 
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