
SLAC -PUB-l925 
April 1977 
(T/E) 

THE DECAY 1-1 - ey IN MODELS WITH NEUTRAL HEAVY LEPTONS* 
-h 

James D. Bjorken and Kenneth Lane 

Stanford Linear Accelerator Center 
Stanford University, Stanford, California 94305 

Steven Weinbergt 

Department of Physics 
Stanford University, Stanford, California 94305 

ABSTRACT 

We explore possible muon number nonconserving processes in 

gauge theories in which the right-handed muon and electron appear 

along with neutral heavy leptons in SU(2) @ U(1) doublets. The same 

mechanism which gives a mass to the electron and muon is expected 

to mix the left-handed neutral leptons with the neutrinos. In the 

simplest case, this leads to a rate for p -c ey 25 times larger than 

previously calculated in such models . Other phenomenological con- 

sequences of these theories are discussed. Formulas are given for 

the magnetic dipole transition matrix element in general gauge 

theories, and these are used to derive general conditions for sup- 

pression of p - ey to acceptable levels. 
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I. INTRODUCTION 

A-wide range of renormalizable gauge theories of the weak and electro- 

magnetic interactions predict that muon-number-nonconserving processes like 

J.J --) ey should be very slow, even if the Lagrangian does not conserve muon 

number . Thus, the stringent experimental limits on muon nonconservation’ do 

not yet reveal whether muon number conservation is really a fundamental sym- 

metry of nature. 

One hint is provided by the well-known analogy between strangeness and 

muon number: they both are r’flavorsrl which distinguish the bottom members 

of weak SU(2) doublets. Nonconservation of strangeness is an experimental fact, 

so we suspect that muon number is also not conserved. The avalanche of 

theoretical papers2 which have emerged in the short span of three months, just 

from the stimulus of a tenuous rumor of an observation of the process p -. ey, 

is ample evidence that muon nonconservation is indeed a natural theoretical 

possibility. 

Cheng and Li3 have proposed an attractive mechanism for muon-nonconserva- 

tion, which leads to an estimated branching ratio of magnitude interesting from 

the point of view of both theory and experiment. Working in the context of the 

standard SU(2) 6 U(1) weak and electromagnetic gauge theory, Cheng and Li couple 

the electron and muon via right-handed currents to a corresponding pair of 

heavy neutral leptons Nz, Ni, which are allowed to mix. The radiative transi- 

tion p-. ey then proceeds at the one-loop level of radiative corrections via the 

diagrams shown in Fig. 1. 

In their original work, Cheng and Li did not deal in detail with the origin 

of the muon and electron masses, and considered only right-handed couplings 

at the two lepton-W vertices shown in Fig. 1. However, whatever mechanism 
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produces the muon and electron masses will generally also mix the heavy neu- 

tral leptons with the neutrinos. This gives rise to additional terms in the 

amplitude for ~1 - ey, in which one of the right-handed couplings in Fig. 1 is 

replaced by a 1eftAhanded coupling. 

At first glance, despite a suppression factor of order mP/mw at the left- 

handed vertex, this additional “left-right” term seems to be much too big. A 

simple estimate of this term would give a result larger than the “right-right” 

term calculated by Cheng and Li by a factor of order m$rni. However, a 

detailed calculation reveals a remarkable cancellation of leading terms. When 

the dust settles, the “left-right” term turns out to be of the same form as the 

“right-right” term, differing only in that its sign is opposite and that it is six 

times larger. Hence the ,u - ey rate in this model is expected to be just 25 times 

larger than originally calculated by Cheng and Li. 

The purpose of this paper is to document this phenomenon. In Section II 

we consider the nature of the mixing of neutrinos with neutral heavy leptons 

expected in the Cheng-Li model. In Section III we set up the calculation of the 

amplitude for p - ey. It turns out to be convenient to do this in a general gauge 

theory, and in a general renormalizable gauge, if for no other reason than that 

it is easiest to see how the many individually gauge-dependent terms combine 

and cancel in the context of a general formalism. We also discuss the general 

condition for the sort of cancellation of leading terms which we have found in 

the Cheng-Li model, and which seems to be required by the present stringent 

experimental limit on the ~1 --L ey branching ratio. In Section IV we apply the 

general results of Section II to the Cheng-Li model, and compute the branching 

ratio for p -c ey. Section V deals with some other consequences of this model. 
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11. DESCRIPTION OF THE MODEL 

.- The Cheng-Li model is based on the familiar SU(2) @U(l) gauge group of 

the weak and electromagnetic interactions .4 However, instead of the usual 

pairs of left-handed doublets (ve, e-)L; (~~,~-)~-and right-handed singlets eR, 

pi, the leptons in this model form two left-handed doublets, two right-handed 

doublets, and two left-handed neutral singlets: 

(2-l) 

with i a two-valued index. We do not yet assume that these fields correspond to 

lepton states of definite mass. 

With two pairs of neutral left-handed fields but only one pair of neutral 

right-handed fields, this model must evidently contain two left-handed neutral 

leptons of zero mass, provided overall fermion-number is conserved. These 

we of course identify with the two neutrinos, ve and v . Mass terms are to be 
P 

introduced so that the remaining left- and right-handed pairs of neutral lepton 

fields correspond to two heavy neutral lepton states NY and Ni, with masses 

MI and M2. 

Cheng and Li introduce neutral mass terms which couple only b& with co 
JL” 

Thus, in their work, the fields ayL are associated purely with the neutrinos, 

while bk and ce have no neutrino components. This picture would be correct 

for instance if the only Higgs bosons which could generate lepton masses were 

all doublets, and if there were some sort of global symmetry which prohibited 

bare lepton mass terms. 

However, it is also necessary to include masses for the charged leptons. 

Indeed, if the charged leptons were massless, we could define the p- and e- in 
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the Cheng-Li model so that the matrix element for p - e+y vanished. Cheng 

and Lj&mply insert mass terms for e- and /A-, without introducing any mass 

terms which couple a:L to bo 
JR’ 

This is certainly a possible picture. For 

instance, it can be arranged by introducing a mixture of Higgs singlets and 

triplets, whose vacuum expectation values are adjusted so that they couple IiL 

with I’: 
JR’ 

but not ayL with bo 
JR 

. 

We consider it to be much more reasonable and natural to suppose that the 

charged leptons receive their masses either from an SU(2)Anvariant bare mass 

term, or from the vacuum expectation values of singlet Higgs boson fields. 

The effective mass terms in the Lagrangian (after spontaneous symmetry 

breaking) would then take the form 

Lx? mass 
= -mij (rTiLbyR +riiliR) - Mij ‘Eb jR + h* ‘* (2.2) 

The 2x2 matrices m.. 
11 

and Mij are in general neither diagonal nor even 

Hermitian. However, we can subject the doublet fields to transformations 

0 ayL - U. .a. 
11 IL 5L -L u. .r 

11 jL 

b& - VijbyR %R - v. .r 
11 jR 

with the unitary matrices U and V chosen so that U -1 mV is real and diagonal. 

We shall henceforth assume that this has already been done, so that m takes 

the form: 

m 0 e m= ( ) 0 
mP 

(2.3) 
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The fields QiL and Qi are thus identified for i=l and 2 with the left- and right- 

handed’ parts of the electron and muon fields. 

With b& now fixed by the condition that m.. be real and diagonal, it is not 
13 

..- 

generally possible to choose the lepton fields so-that M.. is also diagonal. 11 

Therefore the neutral lepton fields a;, bp, cp must be expressed as linear com- 

binations of the fields ve, vV, NY, Ni of definite mass. To accomplish this we 

introduce the matrix-notation 

a0 iL = Aijuj + B..N. 
11 IL 

0 C. 
1L 

= Cijvj I- D..N. 
11 IL 

b; = E..N. 
11 JR 

(2.4) 

(2.5) 

(2.6) 

where the vj are the ve, 5 ’ 
eigenstates and the Nj are mass-eigenstates. 

Inserting this into Eq. (2.2), and demanding a diagonal mass-matrix in the 

transformed basis, leads to the conditions 

(Atm+C’M)E = 0 

M1 o 

In addition, we have the unitarity constraints 

EEt = 1 

AAt+BBP=l 

‘AC? + BDt = 0 

CCt+DDt=l 

(2.7) 

(2.8) 

(2.9) 

(2.10) 

(2.11) 

(2.12) 

We can use (2.11) to eliminate the unknown matrix M from Eqs. (2.7) and (2.8), 

and obtain a relation between B and E: 

BmN = mE (2.13) 
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By choices of phases of the lepton fields one may reduce E to a real orthogonal 

matrix, 

so that (2.13) gives 

B=mEmi.= 

i 

me cos C$ me sin @ 

M1 M2 
m sin $ 

- lJ r?liz! 
M1 M2 

(2.14) 

We can also define the neutrino states ve, uP so that A is Hermitian; the uni- 

tarity relation (2.10) then allows us to express A in terms of B: 

A = II - BBt11’2 

OF, to first order in mz/m2 N and mi/m2 : 
N 

l 

me2 (*+*) memP cos + sin+ z (i2 -2) 
memP cos $ sin C$ (--$---Jig) 

i 
rni[T+qj 

(2.16) 

To summarize, we have obtained a description of the SU(2) @U(l) doublets 

in terms of mass eigenstates, as follows: 
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N1 cos@ +N2 sin+ 

e- 

-Nl 

The ci are given by the formulae 

1 ~2 sin2 $I 
E2v-?p M2 

( 1 

+S$L 
2 i 

1 
E3 

M -g memp cos r#~ sin $ 

i i 
4-k 

. 
‘b 

me cos q5 
E4 = 

M1 

me sin Cp 

'5 = M2 

m cos C#I 
c7=-$f--- 

2 

..- 

(2.17) 

(2.18) 
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III. CALCULATION OF THE DECAY AMPLITUDE 

- IN GENERALIZED FORMALISM 

We describe here our calculation, to one-loop order, of the transition 

magnetic form factor F1 defined by the electromagnetic current matrix element 

-d2(.p-q.) I j’(O) l-t,@)> = ~,(p-s)Thul@) 

TA = F ,(s2) f $” qp + F2(s2) (qA&q2gu)yp 

(3. I) 

where Ok= yX,p /2i. [ 1 The calculation will be carried out for an arbitrary uni- 

fied gauge model of weak and electromagnetic interactions, We assume through- 

out that fermions RI and R2 are distinct in that they correspond to different 

eigenstates of the zeroth-order fermion mass matrix. It follows that T h van- 

ishes at q2=0 in zeroth order. The form (3.1) for Th, a consequence of current 

conservation, guarantees that F I and the monopole form factor F2 will be finite ’ 

in renormalizable gauges. Note that both F I and F2 may contain terms propor- 

tional to y5. 

Our calculation will apply to processes of the type p -. ey, to which only the 

transition moment F I(O) contributes. Both form factors contribute to such 

processes as p - 3e and h+& (A, Z) --L e +&(A, Z). If they occur at all, these 

transitions are very rare, and whether F I and F2 can be small enough in a given 

model is a basic concern. While F I is gauge-invariant and completely specifies 

the p -t ey process, F2 is not, and Th does not describe the complete amplitude 

for processes such as /J - 3e. There are additional contributions from box 

graphs, massive neutral gauge boson exchange, and Higgs meson exchange. We 

have not computed these contributions and so do not report our results for the 

gauge-dependent F 2. We mention, however, that in many models the 
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gauge-invariant part of T* controls the rates for ,u -+ ey and p-.. 3e. For 

examtie, models in which p - ey proceeds via photon emission from a virtual 

heavy charged lepton can give an unacceptably large p - 3e rate via the 

monopole form factor F2. 

The general notation used by one of us5 in discussing perturbative 

symmetry breaking is very convenient for computing F 1 in an arbitrary unified 

gauge model. In an R5 gauge,6 the effective interaction Lagrangian for gauge 

bosons Aa! 
CL’ 

fermions $,, Higgs scalars ei=$! 1' and spinless fermion ghosts w o! 
is 

. . 
-i aP$i 6: (pjA”’ + (6ae$)i $A;A” 

, * 

(3.2) 

with 5 a free parameter which defines the gauge. The fermion and Higgs gener- 

ators to and B1y satisfy 

[ 1 t ,t 
o! P 

=iC 
Q&Y c 1 

8&,e 
P 

= iC 
wYey 

= et = _ e* CY o! 

Yek Yq 
02 

0 u’ 0 i 
= -&jr 

a j 

(3.3) 
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The Higgs fields have been shifted by their vacuum expectation values Xi, so 

that <$Yi>o = 0 in lowest order. The gauge-boson, fermion, Higgs, and ghost 

propagators are 

-1 
A /.+ pvtw = %Jk2-P2~,lp F-4) , + tf; -1) kpkv P2-p2) t5k2-p2) ap [ 1 
S(k), = (J&m); 

Alj(k) = (k2-M2)Lj1 - teolVitepW j [k2t5k2-F2;Ii, 

= (A) 
k -M 

- 5 te$ JitepV j [12Bk2-P2;I i, 
ij 

(3.5) 

(3.6) 

P-7) 

where the gauge boson mass matrix is p2 alp= WJi (epWis the fermion fields are 
. 

defined so that m =m@+ rihi is y5-free, and gij projects onto the physical Higgs * 

scalar subspace, 

Pij = aij + (ecriqi p$(ephjj 

9ij(eah)j = Mfj(e(yhjj = 0 
(3.3) 

for all a! 

From now on, the gauge index y is reserved for the photon (in general, a mass- 

less linear combination of gauge bosons), so that 

eyh = p2 
Q!Y 

=~y,m]=[t,,Iihi]=O (3.9) 

Naturally, we assume ty does not connect fermions QI and Q2. We further assume 

that electric charge is the only unbroken gauge symmetry. 

To compute F I, we need consider only the proper graphs in Fig. 1. Improper 

graphs involving the fermion self-energy and graphs involving the gauge boson 

polarization tensor contribute only to F2 provided the fermions QI and Q2 are on 

.- 
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the mass shell. The calculation is straightforward, following closely the method 

used i*Ref. 5 . Identities such as 
-.- 

S@-k) BP = S(p-k) mp + W-k) rotpyoS-l@) - tp (3.10) 

were Particularly useful; here 

m a! =yo ta,yom = r.(e A). [ 1 lcil 
(3.11) 

and we set S-l@) (or S-‘(p-q)) on the extreme right (or left) equal to zero. Also 

useful is the relation 

which follows from Eq. (3.9). 

Then, by writing out all diagrams, using only the previous identities and 

neglecting everything not contributing to Fl, one finds massive and intricate 

cancellations of gauge dependent terms. Denoting by Tt that part of Th which 
I 

contributes to F l, we find for the gauge-independent remainder: 

T; = /$4 I 
2i C y6E ‘ha S@-k) & - &, S@-k) rht 

7-r I (K2-P2& Q2-P2$gj 

p& t 
+ icy6 ,W-q) 

yPto, VP-k)Y 

[ 
Pi3 +ie W2-p2& Or2-~2)ps 

y ’ ta S&q-k) y’t S@-k) y t 
+ 

’ ’ + 

ma! S(p-q-k) yht S(p-k)m 

[~2tk2-i$ap ’ 

- (2k-qp riS@-k) 
K2rM2 eY k2rM2 

-riS(p-q-k) ‘$ S(p-k) r I 

I 

(3.13) 
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where K= k-q and l/A Since we have assumed that the only ..- 

unbroken gauge symmetry is that of electric charge, only massive gauge boson 

exchange and physical Higgs scalar exchange enters this expression if 8,. and Q2 are 

distinct. If Ql=Q2, -photon exchange contributes in the fifth term (only) of Eq. (3.13). 

We may extract F1 from Eq. (3.13) by the following procedure: 

(i) For simplicity, imagine that we have diagonalized the gauge boson and 

physical Higgs meson mass matrices so that ,u2 ap=pEbap and 9ijMfk=Mf6ik. 

Then ta and Fi are understood to be the gauge and Higgs couplings to fermions 

in this diagonal-mass basis. Note, for example, that the first term in Eq. (3.13) 

is now written 

(3.14) 

where a sum over (Y (#y) is understood, and we have used Eq. (3.3). 

(ii) After doing the Feynman integrals in the usual way, convert all 6 and 

g-d) factors to their mass shell values by moving them to the extreme right or 

left and using (with definitions fa = yotcryo, gQ! = yOmayO, I?! = yoFiyo) 

. ..dt. = . ..F@m 

. ..$ri= . ..r$ 

to&&... = rnTa... 

rp-d). . . = mry. . . 
(3.15) 

Remember that m is a matrix which need not commute with tQ! or Fi. 

(iii) Noting that, even though F 1 is a matrix and may contain terms propor- 

tional to y5, 

i W C2(P-q) z o c$ F ,ts2, ml u,(P) 

l+F lyhm - (2~-q)~F 1 u,(p) 1 
(3. 16) 
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and that, by Eq. (3. l), this is the only source of terms proportional to ph. We .- 

therekre may drop all terms proportional to yh or to qh and .then make the 

replacement 

i W pL-zo (IF = -$ YX,d [ 1 (3.17) 

For q2=0 and in the approximation that external fermion masses p2 and 

(p-Q2 are much less than gauge boson and Higgs masses, p”, and MB, we find 

F1=FFe+FFs (3.18) 

where 

1 

+ (2-x) mt,!Dotyt,! + xQDOtyTorn 
C 1 

+ 4( l-x)T@mD t t - 4TarmD t t 
Q! QY QYa! * 

Damaty + map~2Da~atym 1 
1 - -2 

+-pmmaPCLa! 1 Datyma + mQ! hi2DoltyEQm 1 
- xmcymp~2Damolty + x’rn mpi2D 

1 
l-xl 01 t m 

CrY f2 
(3.19) 

and 

(3.20) 
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In Eqs. (3.19) and (3.20) we introduced 

(3.21) 

We remind the reader that to, ri, m, Dar, and Di are matrices whose indices 

label fermion species. 

As we previously mentioned, the very small experimental limits on p -c ey 

3e decay amplitudes (of order 10 -8 or p - in branching ratio), restrict the kind 

of gauge theory experimentally allowed. If we suppose mixing angles such as 

C$ (introduced in Section II) are not extremely small (a supposition supported 

by the relatively large value of ec, along with some assumption of lepton-quark 

parallelism), then the p - ey branching ratio needs suppression by a factor 

other than the square of the gauge-coupling constant N z, . ( ’ Such a small factor . 

may be attained by assuming that gauge boson masses are much greater than 

fermion masses. Then several interesting conditions may be obtained from 

Eqs. (3.19) and (3.20) regarding the degree to which processes such as /.J - e-y 

are suppressed. Since all ~2o in (3.19) are positive, 

Da = /+1-x) [ 1 
-1 2 mx - 

+ m2x 1 
(3.22) 

where the second term on the right corresponds to two mass insertions on the 

internal fermion line. Then, the conditions that the leading order terms vanish, 

leaving corrections suppressed (in amplitude) by a factor - m2/p2 are as follows: 

(i) Models for which QI - Q2y proceeds only via photon emission from virtual 

charged massive gauge bosons so that t D t t = f,mDoltyta! = zoDat o! CrycY 7 
-,” = 0 
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will have FFe =O(~J.J~~) unless 

and 

C iamtcvpi2 1 = 0 

Q2Q1 

(3.23a) 

(3.23b) 

where [ ] 
Q2Ql 

means the element of the enclosed matrix connecting Q1 to Q 2’ If 
Gauge these conditions are met, then F1 since the remaining terms, 

involving ftiru~~D~m(yty and so on, are manifestly of this order. A sufficient 

condition that Eqs. (3.23) be met is that separate Q1- and Q2-number conserva- 

tion is respected by all gauge couplings. 

(ii) Models for which Q1 - Q2y also may proceed via photon emission from 

a virtual charged fermion (so that t D t t a! o!ya’ etc. , do not vanish) will have 

F Gauge 
1 = O(mpi2) unless 

1 mt tt I-1 
-2 + iatyTry pi2rn = 0 

o!yo! a 1 
Q2Ql 

and 

= 0 
Q,Q, 

(3.24a) 

(3.24b) 

as well as Eqs. (3.23a) and (3.23b). If conditions (3.24) are met, the resulting 

contribution to Q1 - Q2y is 0 ( m 3 -4 ln($/m2)), ~1, where the logarithm is an 

infrared singularity at zero fermion mass. 

(iii) Since, in general, there are no very large lower limits on the Higgs 

scalar masses (comparable to 1-1~2 50 GeV), it is difficult to make model- 
Higgs 

independent estimates of the strength of F I . Usually, lYi=O(e m lepton’P) ’ 

but with the models currently entertained, m lepton/p may range from about 
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0.002 (for m lepton = 100 MeV) to 0.05 or greater. In the former case, con- 

sidered by two of us, 7 FHiggs . I is a negligible contribution to 1-14 ey, while two- 

loop graphs in which the Higgs scalar couples only once to the fermion are not. 

In the Cheng-Li model with more than one Higgs doublet, however 

mlepton/p N 0.05 is quite reasonable, and such a model could very well give an 

unacceptably large /A --c ey rate, unless Higgs masses are large, say 

Mi> ~1,260 GeV. The most general statement we can make is that model- 

builders should exercise great caution with the Higgs sector insofar as rare 

processes such as p --r ey are concerned. 
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IV. CALCULATION OF THE /J - ey RATE IN THE MODIFIED CHENG-LI MODEL 

I&the preceding section we have derived the amplitude for decay of a muon 

into an electron and a photon, to one-loop order of an arbitrary unified gauge 

model of weak and electromagnetic interactions! To demonstrate the use of the 

general formulae , Eqs . (3.18) -( 3.20)) we compute this amplitude in the 

SU(2) x U(1) model of Cheng and Li, modified as in Section II. We assume that 

the model contains just one Higgs doublet or, if more than one doublet is present, 

that Higgs couplings to leptons are so small that their contribution to one-loop 

order is negligible. 

For this model, only the diagrams in Figs. la-d contribute to the amplitude 

s= eh(q) <e-@-s) I jhlp-(p)> = eh(q) ii,@-q) i ohc” sFluP(p) (4.1) 

where o The transition moment F I is given by those terms in 

Eq. (3.19) with the charge matrix ty (or tym) on the extreme right, namely 

1 
dx(l-~)~ 

- 4i,, 2 m 2 ta 
p (1-x)+m x 

(4.2) 

In Eq. (4.2), we have put ty= -e, the electron charge; g is the weak SU(2) gauge 

coupling constant, and p the mass of charged weak vector boson (W). tQ! and 

Ta=yOtcryO are matrices representing the SU(2) generators on the fermions in 

a basis in which the fermion mass matrix m is y5-free, the summed index 01 
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takes the values 1 and 2, and 

m Q! =yo ta,yom =Tam-mta , [ 1 
m Q! = yOmayO = tam - rnTly . 

(4.3) 

Finally, the subscript eh on the bracket in Eq. (4.2) labels the desired element 

of the enclosed matrix. 

To compute the various terms in Eq. (4.2)) suppose m has been diagonalized 

by putting 

1 i 

Q; \ 

$ \ 

a: 
I a0 I 

= UL 
c1 a 

e” 

EC- \ 

‘e 

VP 

\ 

N1 I 

N2 L I 

= UR 

(4.4) 

In the basis (2.3)) with Qe=e and QP=p, the unitary transformations UL, R are 

‘L,R = 
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l-E1 E3 e4 e5 

u; = e3 l-e2 E6 e7 

-i I 9 ‘6 l-Es 50 

u; = 
i 

cos cp sin C$ 

-sin $ cos cjl 1 

The tol in the diagonal-mass basis are given by 

t,=t$p)+t$q 

(4.5) 

(4.6) 
R,L 

tR,L -1 ‘Q! u 
a =‘R,L 2 R,L 

where T “& are essentially Pauli matrices which couple (Qe)R to (bz), and (Q,), to 

@;),, 
L 

with similar definitions for ro. 

It is a good approximation to set me =O; this allows us to drop terms with 

m on the extreme left. Then, for pL- - e ‘y, the surviving terms in Eq. (4.2) 

are: 

[ 
i(Y 2 l 2 G] = f (3 p p2(l-;+m2xt:]mp 

FL P-x)+m x cl-L 

I 

Ah!12 sin -@ cos @ 

+M”lx] 

(4.7) 
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where t* = tl f it 2, AM”=M; -M;, and we have kept only those terms which are 

of leading order in mP/Ml 2. Continuing, 
, 

Next 

m AM2 sin $I cos $ + p2(1-x) AM2 sin Cp cos $ 1 
+ M;x p2(1-x) +M;x I[ 1 

(4.9) 

and finally, 

m 
,[ 

p2(1-x) AM2 sin $ cos + - p2(Z-x) AM2 sin $ cos # 1 

ZZ 0 (4. 10) 

We remark in passing that the Cheng-Li model with just one Higgs doublet 

satisfies the conditions discussed in Section III for strong suppression of p - ey. 

In particular, Eqs. (3.23) become 

(4.11) 
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and .- 

(4.12) 

where the sums extend over all gauge indices. - Equation (4.11) is a consequence 

of the fact that separate ‘Jo- and e-number conservation is violated in this model 

only by mass terms. If me=m 
P 

, lepton fields could be redefined so that separate 

lepton-number conservation was restored. Equation (4.11) states that the gauge 

couplings themselves do not violate separate conservation. This requires 

fermion mass insertions (the second term on the right in Eq. (3.22)), and strong 

suppression of p - ey results. Similarly, Eq. (4.12) states that there is no 

divergent, off-diagonal mass term in the e-p self-energy matrix. This is expected 

since there is no counterterm to remove such a divergence (in the basis in which 

m is diagonal). Again, mass insertions are required for a nonvanishing result 

in Eq. (4.8). 

Putting Eqs. (4.7)-(4.10) into Eq. (4.2), we find, to leading order in Mf/h2, 

ie g2m AM2 sin C#I cos $ 
Fl= 

647r2 p4 

5ie GFm AM2 sin 2$ 
= 

16 ,i2 r2p2 
(4.13) 

where GF/& = g2/8p2 is the Fermi coupling and 6 comes from ~1; -e 7, i -1 

from j.~i - eiy. Let 

E= AM2 sin2+ 
0 

Then the branching ratio for p - ey in this model is 

B(p - ey) = w - 75@ E2 
r 32~ 

P 

(4.14) 

(4.15) 
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where I? z G2m5/1927r3 
cc F/J ’ 

For AM2 sin c$ cos $I - 1 GeV2 and /.L- 60 GeV, 

Br5~10 -10 which is to be compared with the present experimental upper limit 
.- 

-8 of 2.2x10 . 
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V. OTHER EXPERIMENTAL CONSEQUENCES 

Cur modification of the Cheng-Li model has a number of other experimental 

consequences: 

(a) The mixi-ng of neutrinos with heavy neutral leptons in the upper mem- __ 
bers of the left-handed lepton doublets produces a small but nonnegligible viola- 

tion of electron-muon universality. From Eqs. (2.4) and (2.5), we see that the 

Fermi coupling constants Ge, Gk, and G 
w 

measured respectively in electronic 

semileptonic processes, muonic semileptonic processes, and 1-1 - ev V are 
v 

related to the ?rue” Fermi coupling G by 

Neglecting terms of order rnt/Mf , we have then 

Gp = G 
i-= 

Ge -E 
G 

w 

(5 * 1) 

(5.2) 

That is, for neutral lepton masses Mi of order 1 GeV, we would find that the 

Fermi coupling constant of beta decay should be about 0.5% greater than would 

be expected (after radiative corrections and the Cabibbo angle are taken into 

account) from the rate for ,u - ev V . 
IJe 

At present, using a Cabibbo angle Bc with 

sin Bc=O. 229&O. 003, and taking into account only nuclear Coulomb effects, it 
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8 appears that the Fermi coupling in beta decay is greater than expected from 

g -e 
%e 

v by1.04*0.08%,. However, according to the best current estimates,’ 

the “inner” radiative corrections in nuclear beta decay and p --c evPFe would 

increase the Fermi coupling of beta decay relative to that in /J --c ev i 
w 

by 1.0 1%. 

This would leave no room for an additional 0.5% enhancement of beta decay 

relative to p - ev V 
I-le 

due to the mixing effects discussed here. 

There are many ways of resolving this discrepancy. There might be a new 

heavy quark with charge -l/3; if this quark appears in a linear combination along 

with the s and d quarks as the bottom member of the weak doublet containing the 

u quark, then the factor “~0s 6 c’t appearing in the beta decay coupling would be 

less than would be expected from the “sin Bcl’ measured in AS=1 semileptonic 

decays. Also, the calculations of radiative corrections in nucleon beta decay 

may be invalidated by effects of the strong interactions. And of course, if l/M: 

is of order (2 C&.Z!V)-~ . instead of (1 GeV) -2 , the effect of V-N mixing is reduced 

to 0. l%, well within present experimental uncertainties. 

In considering radiative corrections to p-e universality, one must take into 

account possible contributions due to new leptons and/or quarks. In the present _ 

model, all such new contributions are at most of order mP/MI 2 times as large 
, 

as those in the standard model, and so do not affect our conclusions. 

(b) The classic two-neutrino experiment!’ should show a finite but very 

small probability for muon-number nonconservation. If v is the neutrino 

produced in the decay ‘$ - ,UV, then the probability of producing an electron 

rather than a muon in v-nucleon collisions is 

(l- l 2)e3 + (l-eI)e3 2 o(v - e) = 

a(v - P) (l-E2)2 f E; 

52 4~: 2 rn:rni cos2 $ sin2 $ l2 

i 1 
4-q (5 * 3) 
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Even if Ml or M2 were as small as 500 MeV, this probability would be less 

than Iew8. 

(c) The heavy neutral leptons can be produced by the neutral currents in 

neutrino-nucleon collisions. At energies sufficiently far above threshold, the 

ratio of the cross section for N-production to that for “ordinary” neutral current 

processes is 

c’(v - Nl) +a(v - N2) 
qv - v) (5’4) 

For MI and M2 of order 1 GeV, this is about 1%. Alternative production mech- 

anisms are e+e- colliding beams, electroproduction via high energy muon beams, 

or semileptonic decays of heavy quarks. 2 

(d) We also note that the coupling of the neutral intermediate boson Z” to 

electrons and muons is purely vector in this model. This would eliminate the 

leading partiy-violating effects of neutral currents in heavy atoms, though not in 

hydrogen. However, we can also consider an extended version of the Cheng-Li 

models, with multiplets 
0 a. 1 0 a; 

L - 
diR (5.5) 

Such a theory would contain two neutrinos, two massive neutral leptons, and 

four massive charged leptons, including two new heavy charged leptons as well 

as the e- and p-. If either of the d& contain an appreciable e- component, then 

the coupling of the Z” to the e- would have an appreciable axial-vector part. 

Of course, neither this model nor the original Cheng-Li model puts any 

constraints on the quark multiplet structure. If all the quarks are in left-handed 
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doublets, then neutrino-nuclear neutral current processes would exhibit pre- -. 

cisely-the same parity violation as in the original SU(2) @ U(1) model. 

(e) Finally, the correction to ap = 9 for the muon in this model is small. 

From a diagram with emission and absorption of a charged W and an intermedi- -. 

ate N, we find that “right-right” diagrams (analogous to Fig. 1) contribute a 

term equal to that of the “left-left” diagram with an intermediate neutrino. 

11 This “left-left” term has been calculated to be well below the present experi- 

mental limit. 12 “Left-right” diagrams are enhanced by a factor M /m from 
N I-L 

the mass insertion in intermediate lines, but suppressed by a factor zmp/MN 

at the W-pL-NL vertex. The net result from the W-exchange graphs is 

2 
WC 

“cl 
GFm~ 
6 42 1r2 ’ 

(5.6) 

which is -2/5 the W-contribution of the standard model. 11 The contribution from 

Z-exchange graphs is found to be 

Z GFm21-2sin2BW2 

aP = 
A ) 

6 $2 r2 
. (5.7) 

Here, tan Qw =g’/g, the ratio of U(1) to SU(2) gauge coupling constants. For the 

model with only one Higgs doublet, there is no contribution to ap from physical 

Higgs mesons. 
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FIGURE CAPTION 

1. Graphs contributing to the transition magnetic moment for JIl -. I2 +y in 

an arbitrary R 
5 

gauge. Internal wavy lines are weak gauge bosons and 

dashed lines are Higgs mesons. 
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