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ABSTRACT 
., . 

A two-component SU(2) X SU(2) nonlinear a-model with a general 

symmetry-breaking term is presented in which an SU(2) symmetry of 

internal discrete transformations is introduced. In a redefined PCAC 

relation this model gives a modified Goldberger-Treiman’relation with 

a correction factor. The estimated value of the axial vector coupling 

constant gA in neutron P-decay is in good agreement with experiment. 
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Nowadays the validity of the Goldberger-Treiman (CT) relation’ is prop- .- - 

erly %derstood as a consequence of a slightly broken SU(2) X SU(2) chiral 

symmetry with the pion as the Nambu-Goldstone boson. 2,3 With the recent 
’ 4,5,6 experimental data the corrections to the G-T relation are about 6% 

(f&(exp) = 0.06 f 0.02). It was shown that in the unsubtracted dispersion 

treatment continuum contributions from 3n, ~7r, or ~7r states are too small to 

explain these corrections. 793 The most attractive candidate to enhance the 

corrections has been a heavy pion, the A’ (which is not a Goldstone boson). 799 

This two-component theory of PCAC was also used in the study of r” - 2y de- 

10 
cay and generalized to many heavy bosons. 11 The possibilities of hadronic 

symmetry-breaking due to weak and electromagnetic interactions have also 

been studied in connection with these corrections. 12,13 In spite of all these ef- 

forts the understanding of these corrections still remains unsatisfactory. 

In this article we present a two-component SU(2) x SU(2) nonlinear a-model 

with the general symmetry-breaking term 14 in the tree approximation. Here 

the two components form an SU(2) discrete symmetry doublet. We first intro- 

duce the SU(2) symmetry of discrete transformations in the context of the non- 

linear realization of the SU(2) X SU(2) o-model. Then the usual GT relation is 

derived in the one-component theory of our model where the PCAC relation is 

redefined. This one-component theory is then extended to the two-component 

case. It is shown that the two-component theory gives a modified .GT relation 

with a correction factor (a function of mN, $, G NT , and a characteristic con- 

stant of this model -y2) to the usual GT relation, and that the estimated value of 

gA (the aXid vector COUphg COnShIlt in IEUtrOII B-decay) iS in very good agree- 

ment with experiments. 
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The SU(2) X SU(2) nonlinear a-model which provides a realization of chiral 
..- 

symmetry in terms of the fundamental pion field alone is given by the condition -c. 

2 2 CT +A =-=fy 1 

(2a)2 * 
(1) 

a is a constant with the dimension of length and f, the pion decay constant. As 

pointed out by Weinberg, 15 the simplest nonlinear realization which rational- 

izes the relation between 7rQ and (T is as follows: 

p = ---dt- 
a2#J2 + 1 

, (a = 1,293) (2) 

(3) 

where 4°! is the fundamental pion field. Eq. (1) is invariant under the chiral 

gauge transformations in the (?;: o) -representation: 

which are expressed as 

01 A --lr o! 
-A%, 

ao! 
(T --a+RTr , 

(4) 

(5) 

in the &representation, RQ! being an infinitesimal constant vector component. 

To begin, let us consider a R(a) symmetry which contains the following 

gauge transformations in the $“representation: 

‘Rl(a)$cu(x)R;l(a) = ’ , 
a29”0 

R3(a)@d(x)Ri1(a) = - ’ 
a29% 

(7) 

(8) 

(9) 
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with the SU(2) commutation relations 

(k,P, m = 1,2,3) 

and 

[Rk@),Rl(a)j+ = 2(& . (11) 

Then from Eqs. (2) and (3) we obtain the following transformation properties in 

the (2 a) -representation: 

R,(a)uRi’(a) = -CT 

Rl: (12) 
:.: _..., .:. . . ,‘. ; . . . . . . .., -, :R,(~)~~RT~(~) = aOJ , :. . .‘-. I_ +. -. * ,, 

R2: 

R,(a)uRi’(a) = CT 

R,(a)n(yR,‘(a) = -TV , 
(13) 

I R3(a)crRi1(a) = -CT 

R3: 

\ 

(14) 
R3(a)raRi1(a) = -ra! . 

Such RI’s form an SU(2) symmetry of discrete transformations in the (<a)- 

representation. This symmetry commutes with the isotopic SU(2) subgroup of 

the internal O(4) symmetry in the (<a)-representation. In fact, we have 

[Rk, Rml _ = 2iekemRrn 9 

fRk,Rll+ = 26u . 

(15) 

(16) 

The chiral symmetric Lagrangian density in the linear realization is invariant 

under the R-symmetry. It is to be noted that the chiral gauge transformations, 

Eqs. (4) and (5), only commute with the total discrete transformation operator 

R3. For later use we introduce the R3 doublet, (?;;, al) and (F2, a2) obeying the 
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following transformation properties: 

- R3t?;;q)R3 = ( & 1 
-1 7 

-1 
R3tT2,a,)R3 = ( 2, y2) . -;r 

(17) 

(18) 

Here we assume the R3 transformation property of $# is the same as the o1e 

Next we start with the one-component SU(2) x SU(2) chiral invariant La- 

mwian densitytl6 s 
_, ;. : 7 ., ,: . : :.: ,_ . . ..I ._ ‘.- ..;, :-: . : ..;.,:: 

(19) 

The nucleon mass and the pion mass p’?r are generated by the following general 

symmetry-breaking term 14 

acT + b@ (0 > 0) (20) 

with the nonlinear constraint condition 

(21) 

We choose a, b, and CT to be 

2 a=fR*= c , 

b = frGNa - mN , 

and 

O’f?, l-n/f m ir ’ 

(22) 

(23) 

(24) 

where E is the symmetry-breaking parameter in the sense of Dashen 14 and m N 

the nucleon mass. In this broken chiral system we then have the following vec- 

tor and axial vector currents: 

(25) 

(26) 
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and their derivatives 

-c. apI$J = 0, (27) 

2cY a A” = f7(c”=, - b$ir,T*$ e 
I-r c1 

(28) 

Using the expansion of u (Eq. (24)) in terms of n2, the total Lagrangian 

density is rewritten as 

2 122 
- p,n - $(ypap + mN)$ + GN&hi5T(YJIrQ + . . .’ , (29) ” ‘. 

where the nucleon mass mN fixes the symmetry breaking constant b by Eq, 

(23). From the leading part (associated with one pion) of Ltot in Eq. (29), we 

get an approximation consistent with Eq. (28) by setting 

i 
and 

Then we rewrite Eq. (28) as 

(39) 

(31) 

(32) 

where we have used Eq. (32). Multiplying by a factor fXGN?,(frGNT - b) -ion 

both sides of Eq. (33), this relation has the standard PCAC expression l7 of 

2a! 
apA’jli eff = f#7r’ ’ , (34) 

where A o! 

i.b eff 
is given by 

(35) 

and the axial vector coupling constant gA GT is , 
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gA,GT=T=fAGNx-b ’ (36) -.- 

Eq. (36) is just the celebrated GT relation., Using the redefined PCAC relation 

(Eq. (34)), this result can be easily confirmed by the one-pion pole dominance 

approximation in the unsubtracted dispersion treatment or by the axial vector 

current conservation method, under the on- and off-shell smoothness hypothe- 

888. l8 It is to be.noted that in our model the axial vector current conservation. 

does not correspond to exact chiral symmetry (a Aa! = 0, ~5 = 0, and b = 0; 
I-1 I-1 

gA,GT = ‘b Hence the redefined PCAC relation in Eq. (34) should be reinter- 

preted as the consequence of deviations from the redefined (or partially) exact 

chiral symmetry (8 Ao = 0, pz f71GN7T 
P P 

=0, andb=fYGNa-mN>O;gA GT=m), I , N 
which is consistent with current algebra approach. 

Next, restricting to the tree approximation, we proceed with the two- 

component SU(2) X SU(2) chiral invariant Lagrangian density: 

(37) 

(GN, = GNn (-P$)* 
n n 

Here we have identified the total discrete symmetry doublet (Tl, al) and (T2, a2) 

as (“i; z < al = a) and (“ii = 2, a2 3 u’), respectively. The general sym- 

metry breaking terms are given by 

2 
c anun + bib 
n=l 

Can > 0) (20’) 

with the conditions 

2 2 on + ?r n = f”, (n = 1,2) e (21’) 



I 

-8- 

Now let us choose an and an as follows: 
..- 

u = rq , n n 

where b = frGNa - mN has been fixed in Eq. (23). We observe that the R3- 

symmetry breaking terms in Ltot are 

which guarantees GNa 1 + GNU 2 
and p; # p; . 

Then, the vector and axial vector currents of this system are 

whence 

(24’) 

(38) 

(39) 

(40) 

(41) 

Using the expansion of on (Eq. (24’)) in terms of rt, the total Lagrangian density 

is rewritten as 

where the shifted nucleon mass m’ N is given by 

mk =ZfG -b. n n Na n 
(43) 

Just as in the one-component theory we take the approximation which is con- 

sistent with Eq. (41): 
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.- - 

and 

(44) -_ 

(45) 

(46) 

Thus the divergence of axial vector current can be taken in the standard PCAC 

form: 

with 

or 

’ fnGNl, 

gA = Z?G -nb ’ 
n n Nn n 

y2fTGNT 
gA= 2 

= 

?’ f~GN1, - b (y2-l)f?iGN,pmN 

where 

Y2 = 1+ f2GNa 
2 

/ flGNn 
1 

(47) 

(48) 

(49) 

Eq. (50) is just the desired modified GT relation. This gA can be expressed in 

terms of the corrections %r 

where 

ANT = AN,$mNa f+ GNr; r2) = 
(y2-l)tfTGNn - mN) 

(r2-1) fTGNa + mN * 

(52) 

(53) 
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Using the recent experimental numbers for mN, f,, GNa, and gA (or ANT), 

we obtain the characteristic constant 19 of this model 

..- 

n y2$=c, (2rtl)2) r 1:233X... 

Conversely, if we postulate y2 as the one given in Eq. (54), then the estimated 

value of gA (or AN& is in excellent agreement with data (see Table I). 

From Eqs. (22’), (51), and (54) we have 

2 

f = !kf 
2n’ r2 p2 1 

(55) 

Both Eqs. (55) and (56) suggest that there exists the heavy pion, n2 = ?, obey- 

ing the bounds: 

G NT' 2 (y2-1)gGNn = 2.1GNa, 

(57) 

In conclusion, our results indicate that the corrections to the GT relation 

are almost covered by the effect from the heavy pion +. Using the redefined 

PCAC relation (Eq. (47)), the modified GT relation (Eq. (50)) canbe easily ob- 

tained by summing up the effect from the heavy pion ?-pole dominance in the 

unsubtracted dispersion treatment, 20 or by the axial vector current conserva- 

tion method, under the on- and off-shell smoothness hypotheses. It is to be 

noted that a shift in the experimental numbers has been all in the direction of 

reducing the experimental values of ANTo In fact, the value of g A, exp 
has 
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increased with time and the NN?r coupling constant GNr has tended to decrease 

with t&e. The estimated values for gA with variant GNr’s in the one- and two- 

component theories are summarized in Table I. 

-. 
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TABLE I ..- 

Esttiated numbers of gA in the one- and two-component theories 

iGNa ‘%A GT =g~ 1 -gA 2-= gA AN,,.’ , , , - gA, exp 

13.90 13.22 1.296 1.228 0.052 

14.00 13.26 1.300 1.230 0.054 

14.30 13.41 1.315 1.241 0.056 

14.64 [Ref. 51 13.56 1.330 1.252 0.059 1.25zko. 009 [%f* 

15.00 13.73 1.346 1.264 0.061 

15.20 13.82 1.355 1.270 0.063 

"N = +rn 2 +mn) = 6.72 = 0.932 p /J +, &fl; p iRef. 61, 1-1 = + + 139.7 MeV. 
T 7r 7r 


