A TWO-COMPONENT SIGMA MODEL
 AND MODIFIED GOLDBERGER-TREIMAN RELATION*

P. Y. Pac
Stanford Linear Accelerator Center Stanford University, Stanford, California 94305
and
Department of Physics
Seoul National University, Seoul 151, Korea

Abstract

A two-component $\operatorname{SU}(2) \times \operatorname{SU}(2)$ nonlinear σ-model with a general symmetry-breaking term is presented in which an SU(2) symmetry of internal discrete transformations is introduced. In a redefined PCAC relation this model gives a modified Goldberger-Treiman relation with a correction factor. The estimated value of the axial vector coupling constant g_{A} in neutron β-decay is in good agreement with experiment.

[^0]Nowadays the validity of the Goldberger-Treiman (GT) relation ${ }^{1}$ is properly understood as a consequence of a slightly broken $\operatorname{SU}(2) \times \operatorname{SU}(2)$ chiral symmetry with the pion as the Nambu-Goldstone boson. ${ }^{2,3}$ With the recent experimental data ${ }^{4,5,6}$ the corrections to the GT relation are about 6% $\left(\Delta_{N \pi}(\mathrm{exp})=0.06 \pm 0.02\right)$. It was shown that in the unsubtracted dispersion treatment continuum contributions from $3 \pi, \rho \pi$, or $\sigma \pi$ states are too small to explain these corrections. ${ }^{7,8}$ The most attractive candidate to enhance the corrections has been a heavy pion, the $\pi^{\prime \prime}$ (which is not a Goldstone boson). ${ }^{7,9}$ This two-component theory of PCAC was also used in the study of $\pi^{0} \rightarrow 2 \gamma$ decay ${ }^{10}$ and generalized to many heavy bosons. ${ }^{11}$ The possibilities of hadronic symmetry-breaking due to weak and electromagnetic interactions have also been studied in connection with these corrections. ${ }^{12,13}$ In spite of all these efforts the understanding of these corrections still remains unsatisfactory.

In this article we present a two-component $\operatorname{SU}(2) \times \operatorname{SU}(2)$ nonlinear σ-model with the general symmetry-breaking term ${ }^{14}$ in the tree approximation. Here the two components form an $\operatorname{SU}(2)$ discrete symmetry doublet. We first introduce the $\operatorname{SU}(2)$ symmetry of discrete transformations in the context of the nonlinear realization of the $\mathrm{SU}(2) \times \operatorname{SU}(2) \sigma$-model. Then the usual GT relation is derived in the one-component theory of our model where the PCAC relation is redefined. This one-component theory is then extended to the two-component case. It is shown that the two-component theory gives a modified GT relation with a correction factor (a function of $\mathrm{m}_{\mathrm{N}}, \mathrm{f}_{\pi}, \mathrm{G}_{\mathrm{N} \pi}$, and a characteristic constant of this model γ^{2}) to the usual GT relation, and that the estimated value of g_{A} (the axial vector coupling constant in neutron β-decay) is in very good agreement with experiments.

The $\operatorname{SU}(2) \times \operatorname{SU}(2)$ nonlinear σ-model which provides a realization of chiral symmetry in terms of the fundamental pion field alone is given by the condition

$$
\begin{equation*}
\sigma^{2}+\pi^{2}=\frac{1}{(2 \mathrm{a})^{2}}=\mathrm{f}_{\pi}^{2} \tag{1}
\end{equation*}
$$

a is a constant with the dimension of length and f_{π} the pion decay constant. As pointed out by Weinberg, ${ }^{15}$ the simplest nonlinear realization which rationalizes the relation between π^{α} and σ is as follows:

$$
\begin{align*}
\pi^{\alpha} & =\frac{\phi^{\alpha}}{\mathrm{a}^{2} \phi^{2}+1},(\alpha=1,2,3) \tag{2}\\
\sigma & =\frac{-1}{2 \mathrm{a}} \cdot \frac{\mathrm{a}^{2} \phi^{2}-1}{\mathrm{a}^{2} \phi^{2}+1} \tag{3}
\end{align*}
$$

where ϕ^{α} is the fundamental pion field. Eq. (1) is invariant under the chiral gauge transformations in the $(\vec{\pi}, \sigma)$-representation:

$$
\begin{align*}
& \pi^{\alpha} \rightarrow \pi^{\alpha}-\Lambda_{\sigma}^{\alpha} \tag{4}\\
& \sigma \rightarrow \sigma+\Lambda^{\alpha} \pi^{\alpha} \tag{5}
\end{align*}
$$

which are expressed as

$$
\begin{equation*}
\phi^{\alpha} \rightarrow \phi^{\alpha}-\frac{1}{2 a}\left(1+a^{2} \phi^{2}\right) \Lambda^{\alpha} \tag{6}
\end{equation*}
$$

in the $\vec{\phi}$-representation, Λ^{α} being an infinitesimal constant vector component.
To begin, let us consider a $R(a)$ symmetry which contains the following gauge transformations in the $\vec{\phi}$-representation:

$$
\begin{align*}
& R_{1}(a) \phi^{\alpha}(x) R_{1}^{-1}(a)=\frac{1}{a^{2} \phi^{\alpha}(x)} \tag{7}\\
& R_{2}(a) \phi^{\alpha}(x) R_{2}^{-1}(a)=-\phi^{\alpha}(x) \tag{8}\\
& R_{3}(a) \phi^{\alpha}(x) R_{3}^{-1}(a)=-\frac{1}{a^{2} \phi^{\alpha}(x)} \tag{9}
\end{align*}
$$

with the $\operatorname{SU}(2)$ commutation relations

$$
\begin{align*}
& {\left[R_{k}(a), R_{\ell}(a)\right]_{-}=2 i \epsilon_{k \ell m} R_{m}(a),} \tag{10}\\
& (k, \ell, m=1,2,3)
\end{align*}
$$

and

$$
\begin{equation*}
\left[R_{k}(a), R_{\ell}(a)\right]_{+}=2 \delta_{k \ell} . \tag{11}
\end{equation*}
$$

Then from Eqs. (2) and (3) we obtain the following transformation properties in the $(\vec{\pi}, \sigma)$-representation:

$$
\begin{align*}
& R_{1}:\left\{\begin{array}{l}
R_{1}(a) \sigma R_{1}^{-1}(a)=-\sigma \\
R_{1}(a) \pi^{\alpha} R_{1}^{-1}(a)=\pi^{\alpha}
\end{array}\right. \tag{12}\\
& R_{2}:\left\{\begin{array}{l}
R_{2}(a) \sigma R_{2}^{-1}(a)=\sigma \\
R_{2}(a) \pi^{\alpha} R_{2}^{-1}(a)=-\pi^{\alpha}
\end{array}\right. \tag{13}\\
& R_{3}:\left\{\begin{array}{l}
R_{3}(a) \sigma R_{3}^{-1}(a)=-\sigma \\
R_{3}(a) \pi^{\alpha} R_{3}^{-1}(a)=-\pi^{\alpha}
\end{array}\right. \tag{14}
\end{align*}
$$

Such R_{ℓ} 's form an $\operatorname{SU}(2)$ symmetry of discrete transformations in the ($\vec{\pi}, \sigma$) representation. This symmetry commutes with the isotopic $\operatorname{SU}(2)$ subgroup of the internal $O(4)$ symmetry in the $(\vec{\pi}, \sigma)$-representation. In fact, we have

$$
\begin{align*}
& {\left[R_{k}, R_{\ell}\right]_{-}=2 i \epsilon_{k \ell m} R_{m},} \tag{15}\\
& {\left[R_{k}, R_{\ell}\right]_{+}=2 \delta_{k \ell} .} \tag{16}
\end{align*}
$$

The chiral symmetric Lagrangian density in the linear realization is invariant under the R -symmetry. It is to be noted that the chiral gauge transformations, Eqs. (4) and (5), only commute with the total discrete transformation operator R_{3}. For later use we introduce the R_{3} doublet, $\left(\vec{\pi}_{1}, \sigma_{1}\right)$ and ($\vec{\pi}_{2}, \sigma_{2}$) obeying the
following transformation properties:

$$
\begin{align*}
& \mathbf{R}_{3}\left(\vec{\pi}_{1}, \sigma_{1}\right) \mathbf{R}_{3}^{-1}=\left(\vec{\pi}_{1}, \sigma_{1}\right) \tag{17}\\
& \mathbf{R}_{3}\left(\vec{\pi}_{2}, \sigma_{2}\right) \mathbf{R}_{3}^{-1}=\left(-\vec{\pi}_{2},-\sigma_{2}\right) \tag{18}
\end{align*}
$$

Here we assume the R_{3} transformation property of $\bar{\psi} \psi$ is the same as the σ_{1}.
Next we start with the one-component $\mathrm{SU}(2) \times \mathrm{SU}(2)$ chiral invariant Lagrangian density: ${ }^{16}$

$$
\begin{equation*}
\mathrm{L}=-\frac{1}{2}\left[\left(\partial_{\mu}\right)^{2}+\left(\partial_{\mu} \pi\right)^{2}\right]-\bar{\psi} \gamma_{\mu} \partial_{\mu}^{\left.\psi-\mathrm{G}_{\mathrm{N}} \pi^{\bar{\psi}\left(\sigma-\mathrm{i} \gamma_{5}\right.} \tau^{\alpha} \pi^{\alpha}\right) \psi \cdot} \tag{19}
\end{equation*}
$$

The nucleon mass and the pion mass μ_{π} are generated by the following general symmetry-breaking term ${ }^{14}$

$$
\begin{equation*}
\mathrm{a} \sigma+\mathrm{b} \bar{\psi} \psi \quad(\mathrm{a}, \mathrm{~b}>0) \tag{20}
\end{equation*}
$$

with the nonlinear constraint condition

$$
\begin{equation*}
\sigma^{2}+\pi^{2}=\mathrm{f}_{\pi}^{2} \tag{21}
\end{equation*}
$$

We choose a, b, and σ to be

$$
\begin{align*}
& \mathrm{a}=\mathrm{f}_{\pi} \mu_{\pi}^{2} \equiv \epsilon \tag{22}\\
& \mathrm{~b}=\mathrm{f}_{\pi} \mathrm{G}_{\mathrm{N} \pi}-\mathrm{m}_{\mathrm{N}}, \tag{23}
\end{align*}
$$

and

$$
\begin{equation*}
\sigma=\mathrm{f}_{\pi} \sqrt{1-\pi^{2} / \mathrm{f}_{\pi}^{2}} \tag{24}
\end{equation*}
$$

where ϵ is the symmetry-breaking parameter in the sense of Dashen ${ }^{14}$ and m_{N} the nucleon mass. In this broken chiral system we then have the following vector and axial vector currents:

$$
\begin{array}{r}
\mathrm{v}_{\mu}^{\alpha}=\left(\vec{\pi} \times \partial_{\mu} \vec{\pi}\right)_{\alpha}+\bar{\psi} \mathrm{i} \gamma_{\mu} \frac{1}{2} \tau^{\alpha} \psi \\
\mathrm{A}_{\mu}^{\alpha}=\left(\sigma \partial_{\mu} \pi^{\alpha}-\left(\partial_{\mu} \sigma\right) \pi^{\alpha}\right)+\bar{\psi} \mathrm{i} \gamma_{\mu} \gamma_{5} \frac{1}{2} \tau^{\alpha} \psi \tag{26}
\end{array}
$$

and their derivatives

$$
\begin{align*}
& \partial_{\mu} \mathrm{V}_{\mu}^{\alpha}=0 \tag{27}\\
& \partial_{\mu} \mathrm{A}_{\mu}^{\alpha}=\mathrm{f}_{\pi} \mu_{\pi}^{2} \pi^{\alpha}-\mathrm{b} \bar{\psi} \mathrm{i} \gamma_{5} \tau^{\alpha} \psi \tag{28}
\end{align*}
$$

Using the expansion of σ (Eq. (24)) in terms of π^{2}, the total Lagrangian density is rewritten as
$L_{\text {tot }}=-\frac{1}{2}\left(\partial_{\mu} \pi\right)^{2}-\frac{1}{2} \mu_{\pi}^{2} \pi^{2}-\bar{\psi}\left(\gamma_{\mu} \partial_{\mu}+\mathrm{m}_{\mathrm{N}}\right) \psi+\mathrm{G}_{\mathrm{N}} \bar{\pi}^{\bar{\psi}} \gamma_{5} \tau^{\alpha}{ }_{\psi \pi}^{\alpha}+\ldots$,
where the nucleon mass m_{N} fixes the symmetry breaking constant b by Eq.
(23). From the leading part (associated with one pion) of $L_{\text {tot }}$ in Eq. (29), we get an approximation consistent with Eq. (28) by setting

$$
\begin{gather*}
\mathrm{A}_{\mu}^{\alpha} \simeq \mathrm{f}_{\pi} \partial_{\mu} \pi^{\alpha}+\bar{\psi} \mathrm{i} \gamma_{\mu} \gamma_{5} \frac{1}{2} \tau^{\alpha} \psi, \tag{30}\\
\partial_{\mu}\left(\bar{\psi} \mathrm{i} \gamma_{\mu} \gamma_{5} \frac{1}{2} \tau^{\alpha} \psi\right) \simeq \mathrm{m}_{\mathrm{N}^{\bar{\psi}} \overline{\mathrm{i}} \gamma_{5} \tau^{\alpha} \psi,}, \tag{31}
\end{gather*}
$$

and

$$
\begin{equation*}
\left(\square-\mu_{\pi}^{2}\right) \pi^{\alpha} \simeq-\mathrm{G}_{\mathrm{N} \pi} \bar{\psi} \mathrm{i} \gamma_{5} \tau^{\alpha_{\psi}} \tag{32}
\end{equation*}
$$

Then we rewrite Eq. (28) as

$$
\begin{equation*}
\partial_{\mu}\left(\mathrm{A}_{\mu}^{\alpha}-\frac{\mathrm{b}}{\mathrm{G}_{\mathrm{N} \pi}} \partial_{\mu} \pi^{\alpha}\right)=\partial_{\mu}\left(\left(\mathrm{f}_{\pi}-\frac{\mathrm{b}}{\mathrm{G}_{\mathrm{N} \pi}}\right) \partial_{\mu} \pi^{\alpha}+\bar{\psi} \mathrm{i} \gamma_{\mu} \gamma_{5} \frac{1}{2} \tau^{\alpha} \psi\right)=\left(\mathrm{f}_{\pi}-\frac{\mathrm{b}}{\mathrm{G}_{\mathrm{N} \pi}}\right) \mu_{\pi}^{2} \pi^{\alpha} \tag{33}
\end{equation*}
$$

where we have used Eq. (32). Multiplying by a factor $f_{\pi} G_{N \pi}\left(f_{\pi} G_{N \pi}-b\right)^{-1}$ on both sides of Eq. (33), this relation has the standard PCAC expression ${ }^{17}$ of

$$
\begin{equation*}
\partial_{\mu} \mathrm{A}_{\mu, \mathrm{eff}}^{\alpha}=\mathrm{f} \pi^{\mu} \pi^{2} \pi^{\alpha} \tag{34}
\end{equation*}
$$

where $A_{\mu, \text { eff }}^{\alpha}$ is given by

$$
\begin{equation*}
\mathrm{A}_{\mu, \mathrm{eff}}^{\alpha}=\mathrm{f}_{\pi} \partial_{\mu} \pi^{\alpha}+\mathrm{g}_{\mathrm{A}, \mathrm{GT}} \overline{\mathrm{~T}}_{\mu} \gamma_{\mu} \gamma_{5}^{\frac{1}{2} \tau}{ }_{\psi}, \tag{35}
\end{equation*}
$$

and the axial vector coupling constant $\mathrm{g}_{\mathrm{A}, \mathrm{GT}}$ is

$$
\begin{equation*}
g_{A, G T}=\frac{f_{\pi} G_{N \pi}}{m_{N}}=\frac{f_{\pi} G_{N \pi}}{f_{\pi} G_{N \pi}-b} \tag{36}
\end{equation*}
$$

Eq. (36) is just the celebrated GT relation. Using the redefined PCAC relation (Eq. (34)), this result can be easily confirmed by the one-pion pole dominance approximation in the unsubtracted dispersion treatment or by the axial vector current conservation method, under the on- and off-shell smoothness hypotheses. ${ }^{18}$ It is to be noted that in our model the axial vector current conservation does not correspond to exact chiral symmetry ($\partial_{\mu} A_{\mu}^{\alpha}=0, \mu_{\pi}^{2}=0$, and $\mathrm{b}=0$; $\mathrm{g}_{\mathrm{A}, \mathrm{GT}}=1$). Hence the redefined PCAC relation in Eq. (34) should be reinterpreted as the consequence of deviations from the redefined (or partially) exact chiral symmetry ($\partial_{\mu} A_{\mu}^{\alpha}=0, \mu_{\pi}^{2}=0$, and $b=f_{\pi} G_{N \pi}-m_{N}>0 ; g_{A, G T}=\frac{f_{\pi} G_{N \pi}}{m_{N}}$), which is consistent with current algebra approach.

Next, restricting to the tree approximation, we proceed with the twocomponent $\mathrm{SU}(2) \times \mathrm{SU}(2)$ chiral invariant Lagrangian density:

$$
\begin{array}{r}
\left.\mathrm{L}=-\frac{1}{2} \sum_{\mathrm{n}=1}^{2}\left[\left(\partial_{\mu} \sigma_{\mathrm{n}}\right)^{2}+\left(\partial_{\mu} \pi_{\mathrm{n}}\right)^{2}\right]-\bar{\psi} \gamma_{\mu} \partial_{\mu} \psi-\sum_{\mathrm{n}=1}^{2} \mathrm{G}_{\mathrm{N} \pi_{\mathrm{n}}} \bar{\psi}\left(\sigma_{\mathrm{n}}-\mathrm{i} \gamma_{5} \tau \pi_{\mathrm{n}}^{\alpha}\right)^{\alpha}\right) \psi, \tag{37}\\
\\
\left(\mathrm{G}_{\mathrm{N} \pi_{\mathrm{n}}}=\mathrm{G}_{\mathrm{N} \pi_{\mathrm{n}}}\left(-\mu_{\mathrm{n}}^{2}\right)\right),
\end{array}
$$

Here we have identified the total discrete symmetry doublet $\left(\vec{\pi}_{1}, \sigma_{1}\right)$ and $\left(\vec{\pi}_{2}, \sigma_{2}\right)$ as $\left(\vec{\pi}_{1} \equiv \vec{\pi}, \sigma_{1} \equiv \sigma\right.$) and $\left(\overrightarrow{\pi_{2}} \equiv \pi^{\top}, \sigma_{2} \equiv \sigma^{\prime}\right)$, respectively. The general symmetry breaking terms are given by

$$
\sum_{n=1}^{2} a_{n} \sigma_{n}+b \bar{\psi} \psi \quad\left(a_{n}>0\right)
$$

with the conditions

$$
\sigma_{n}^{2}+\pi_{n}^{2}=\mathrm{f}_{\mathrm{n}}^{2} \quad(\mathrm{n}=1,2)
$$

Now let us choose a_{n} and σ_{n} as follows:

$$
\begin{align*}
& \mathrm{a}_{2}=\mathrm{f}_{2} \mu_{2}^{2}=\mathrm{f}_{1} \mu_{1}^{2}=\epsilon, \\
& \sigma_{\mathrm{n}}=\mathrm{f}_{\mathrm{n}} \sqrt{1-\pi_{\mathrm{n}}^{2} / \mathrm{f}_{\mathrm{n}}^{2}}
\end{align*},
$$

where $b=f_{\pi} G_{N \pi}-m_{N}$ has been fixed in Eq. (23). We observe that the $R_{3}-$ symmetry breaking terms in $\mathrm{L}_{\text {tot }}$ are

$$
-\mathrm{G}_{\mathrm{N} \pi_{2}} \bar{\psi}\left(\sigma_{2}-\mathrm{i} \gamma_{5} \tau^{\alpha} \pi_{2}^{\alpha}\right) \psi+\mathrm{a}_{2} \sigma_{2}
$$

which guarantees $\mathrm{G}_{\mathrm{N} \pi_{1}} \neq \mathrm{G}_{\mathrm{N} \pi_{2}}$ and $\mu_{1}^{2} \neq \mu_{2}^{2}$.
Then, the vector and axial vector currents of this system are

$$
\begin{align*}
& \mathrm{V}_{\mu}^{\alpha}=\sum_{\mathrm{n}}\left(\vec{\pi}_{\mathrm{n}} \times \partial_{\mu} \vec{\pi}_{\mathrm{n}}\right)_{\alpha}+\bar{\psi} \mathrm{i} \gamma_{\mu} \frac{1}{2} \tau^{\alpha} \psi, \tag{38}\\
& \mathrm{A}_{\mu}^{\alpha}=\underset{\mathrm{n}}{\Sigma}\left[\left(\sigma_{\mathrm{n}} \partial_{\mu} \pi_{\mathrm{n}}^{\alpha}-\left(\partial_{\mu} \sigma_{\mathrm{n}}\right) \pi_{\mathrm{n}}^{\alpha}\right]+\bar{\psi} \mathrm{i} \gamma_{\mu} \gamma_{5} \frac{1}{2} \tau^{\alpha} \psi,\right. \tag{39}
\end{align*}
$$

whence

$$
\begin{align*}
& \partial_{\mu} v_{\mu}^{\alpha}=0 \tag{40}\\
& \partial_{\mu} A_{\mu}^{\alpha}=\sum_{\mathrm{n}} \mathrm{f}_{\mathrm{n}} \mu_{\mathrm{n}}^{2} \pi_{\mathrm{n}}^{\alpha}-\mathrm{b} \psi \bar{\psi} \gamma_{5} \tau^{\alpha} \psi \tag{41}
\end{align*}
$$

Using the expansion of σ_{n} (Eq. (24')) in terms of π_{n}^{2}, the total Lagrangian density is rewritten as
$L_{\text {tot }}=-\frac{1}{2} \Sigma_{\mathrm{n}}\left(\partial_{\mu} \pi_{\mathrm{n}}\right)^{2}-\frac{1}{2} \Sigma_{\mathrm{n}} \mu_{\mathrm{n}}^{2} \pi_{\mathrm{n}}^{2}-\bar{\psi}\left(\gamma_{\mu} \partial_{\mu}+\mathrm{m}_{\mathrm{N}}^{\prime}\right)+\sum_{\mathrm{n}}^{\mathrm{G}_{\mathrm{N} \pi_{\mathrm{n}}} \bar{\psi} i \gamma_{5} \tau} \tau^{\alpha} \psi \pi_{\mathrm{n}}^{\alpha}+\ldots$,
where the shifted nucleon mass $\mathrm{m}_{\mathrm{N}}^{\prime}$ is given by

$$
\begin{equation*}
m_{N}^{\prime}=\sum_{n} f_{n} G_{N \pi_{n}}-b \tag{43}
\end{equation*}
$$

Just as in the one-component theory we take the approximation which is consistent with Eq. (41):

$$
\begin{gather*}
\mathrm{A}_{\mu}^{\alpha} \simeq \sum_{\mathrm{n}}^{\alpha} \mathrm{f}_{\mathrm{n}} \partial_{\mu} \pi_{\mathrm{n}}^{\alpha}+\bar{\psi}_{\mathrm{i} i \gamma_{\mu} \gamma_{5} \frac{1}{2} \tau^{\alpha},}, \tag{44}\\
\partial_{\mu}\left(\bar{\psi} \mathrm{i} \gamma_{\mu} \gamma_{5} \frac{1}{2} \tau_{\psi}^{\alpha}\right) \simeq \mathrm{m}_{\mathrm{N}}^{\prime} \bar{\psi} \mathrm{i} \gamma_{5} \tau_{\psi}^{\alpha}, \tag{45}
\end{gather*}
$$

and

$$
\begin{equation*}
\left(\square-\mu_{\mathrm{n}}^{2}\right) \pi_{\mathrm{n}}^{\alpha} \simeq-\mathrm{G}_{\mathrm{N} \pi_{\mathrm{n}}} \bar{\psi} i \gamma_{5} \tau^{\alpha} \psi . \tag{46}
\end{equation*}
$$

Thus the divergence of axial vector current can be taken in the standard PCAC form:

$$
\begin{equation*}
\partial_{\mu} A_{\mu, \mathrm{eff}}^{\alpha}=\sum_{\mathrm{n}=1}^{2} \mathrm{f}_{\mathrm{n}} \mu_{\mathrm{n}}^{2} \pi_{\mathrm{n}}^{\alpha} \tag{47}
\end{equation*}
$$

with

$$
\begin{align*}
A_{\mu, \text { eff }}^{\alpha} & =\sum_{\mathrm{n}} \mathrm{f}_{\mathrm{n}} \partial_{\mu} \pi_{\mathrm{n}}^{\alpha}+\mathrm{g}_{\mathrm{A}} \bar{\psi} \mathrm{i} \gamma_{5} \gamma_{\mu} \frac{1}{2} \tau^{\alpha}{ }_{\psi}, \tag{48}\\
\mathrm{g}_{\mathrm{A}} & =\frac{\sum_{\mathrm{n}} \mathrm{f}_{\mathrm{n}} \mathrm{G}_{\mathrm{N} \pi_{\mathrm{n}}}}{\sum_{\mathrm{n}} \mathrm{f}_{\mathrm{n}} \mathrm{G}_{\mathrm{N} \pi_{\mathrm{n}}}-\mathrm{b}}, \tag{49}
\end{align*}
$$

or

$$
\begin{equation*}
\mathbf{g}_{\mathrm{A}}=\frac{\gamma^{2} \mathrm{f}_{\pi} \mathrm{G}_{\mathrm{N} \pi}}{\gamma^{2} \mathrm{f}_{\pi} \mathrm{G}_{\mathrm{N} \pi}-\mathrm{b}}=\frac{\gamma^{2} \mathrm{f}_{\pi} \mathrm{G}_{\mathrm{N} \pi}}{\left(\gamma^{2}-1\right) \mathrm{f}_{\pi} \mathrm{G}_{\mathrm{N} \pi^{+}} \mathrm{m}_{\mathrm{N}}} \tag{51}
\end{equation*}
$$

where

$$
\begin{equation*}
\gamma^{2}=1+\left(\mathrm{f}_{2} \mathrm{G}_{\mathrm{N} \pi_{2}} / \mathrm{f}_{1} \mathrm{G}_{\mathrm{N} \pi_{1}}\right) \tag{51}
\end{equation*}
$$

Eq. (50) is just the desired modified GT relation. This g_{A} can be expressed in terms of the corrections $\Delta_{\mathrm{N} \pi}$

$$
\begin{equation*}
\mathrm{g}_{\mathrm{A}}=\left(1-\Delta_{\mathrm{N} \pi}\right) \mathrm{g}_{\mathrm{A}, \mathrm{GT}} \tag{52}
\end{equation*}
$$

where

$$
\begin{equation*}
\Delta_{\mathrm{N} \pi}=\Delta_{\mathrm{N} \pi}\left(\mathrm{~m}_{\mathrm{N}}, \mathrm{f}_{\pi}, \mathrm{G}_{\mathrm{N} \pi} ; \gamma^{2}\right)=\frac{\left(\gamma^{2}-1\right)\left(\mathrm{f}_{\pi} \mathrm{G}_{\mathrm{N} \pi}-\mathrm{m}_{\mathrm{N}}\right)}{\left(\gamma^{2}-1\right) \mathrm{f}_{\pi} \mathrm{G}_{\mathrm{N} \pi}+\mathrm{m}_{\mathrm{N}}} \tag{53}
\end{equation*}
$$

Using the recent experimental numbers for $\mathrm{m}_{\mathrm{N}}, \mathrm{f}_{\pi}, \mathrm{G}_{\mathrm{N} \pi}$, and g_{A} (or $\Delta_{\mathrm{N} \pi}$), we obtain the characteristic constant ${ }^{19}$ of this model

$$
\begin{equation*}
\gamma^{2}=\frac{\pi^{2}}{8}\left(=\sum_{\mathbf{r}=1}^{\infty} \frac{1}{(2 \mathbf{r}-1)^{2}}\right) \simeq 1.2337 \ldots \tag{54}
\end{equation*}
$$

Converscly, if we postulate γ^{2} as the one given in Eq。(54), then the estimated value of g_{A} (or $\Delta_{N \pi}$) is in excellent agreement with data (see Table I).

From Eqs. (22'), (51), and (54) we have

$$
\begin{align*}
\mathrm{f}_{\pi_{2}} & =\frac{\mu_{1}^{2}}{\mu_{2}^{2} \mathrm{f}_{1}} \tag{55}\\
\mathrm{G}_{\mathrm{N} \pi_{2}} & =\left(\gamma^{2}-1\right) \frac{\mu_{2}^{2}}{\mu_{1}^{2}} \mathrm{G}_{\mathrm{N} \pi_{1}} . \tag{56}
\end{align*}
$$

Both Eqs. (55) and (56) suggest that there exists the heavy pion, $\pi_{2}=\pi^{\prime}$, obeying the bounds:

$$
\begin{gather*}
\mu_{\pi^{\prime}}^{2} \geq\left(3 \mu_{\pi^{\prime}}\right)^{2} \tag{57}\\
\mathrm{G}_{\mathrm{N} \pi^{\prime}} \geq\left(\gamma^{2}-1\right) 9 \mathrm{G}_{\mathrm{N} \pi} \simeq 2.1 \mathrm{G}_{\mathrm{N} \pi} \tag{58}\\
\mathrm{f}_{\pi^{\prime}} \leq \frac{1}{9} \mathrm{f}_{\pi} \tag{59}
\end{gather*}
$$

In conclusion, our results indicate that the corrections to the GT relation are almost covered by the effect from the heavy pion π^{\prime}. Using the redefined PCAC relation (Eq. (47)), the modified GT relation (Eq. (50)) can be easily obtained by summing up the effect from the heavy pion π^{\prime}-pole dominance in the unsubtracted dispersion treatment, ${ }^{20}$ or by the axial vector current conservation method, under the on- and off-shell smoothness hypotheses. It is to be noted that a shift in the experimental numbers has been all in the direction of reducing the experimental values of $\Delta_{N \pi^{\prime}}$. In fact, the value of $g_{A \text {, exp }}$ has
increased with time and the $N N \pi$ coupling constant $G_{N \pi}$ has tended to decrease with time. The estimated values for g_{A} with variant $\mathrm{G}_{\mathrm{N} \pi}$'s in the one- and twocomponent theories are summarized in Table I.

The author would like to thank Professor S. D. Drell for his hospitality at SLAC and Professor C. W. Kim, Dr. M. Hirayama, and Dr. M. Weinstein for discussions. He is much indebted to Dr. C. Tze for reading this manuscript. He also wishes to express his appreciation to the Center of Theoretical Physics and Chemistry, Seoul, where this work was initiated.

REFERENCES

1. M. L. Goldberger and S. B. Treiman, Phys. Rev. 111, 354 (1958).
2. R. Dashen, Phys. Rev. 183, 1245 (1969) ; R. Dashen and M. Weinstein, Phys. Rev. 183, 1261 (1969).
3. H. Pagels, Phys. Rep. 16, 219 (1975).
4. Particle Data Group, "Review of Particle Properties," Rev. Mod. Phys. 48, No. 2, Part II, S1 (1976). $\mathrm{g}_{\mathrm{A}}=-(1.25 \pm 0.009)$.
5. H. Pilkuhn et al., Nucl. Phys. B 65, 460 (1972). $\mathrm{G}_{\mathrm{N} \pi}^{2} / 4 \pi=14.64_{-0.72}^{+0.54}$, where $G_{n p \pi^{+}}=-\sqrt{2} G_{N \pi}$.
6. H. Pagels and A. Zepeda, Phys. Rev. D 5, 3262 (1972). $\sqrt{2} f_{\pi}=(0.93251$ $\pm 0.00144) \mu_{\pi^{+}}$, calculated with the values of G_{V} given by R. H. Blin-Stoyle and J. M. Freeman, Nucl. Phys. A 150, 369 (1970).
7. H. Pagels, Phys. Rev. 179, 1337 (1969); H. Pagels and A. Zepeda, Phys. Rev. D 5, 3262 (1972).
8. T. P. Cheng and R. Dashen, Phys. Rev. Lett. 26, 594 (1971); A. G.

Höhnler, H. P. Jakob, and R. Strauss, Phys. Lett. 35B, 445 (1971) ; H. F. Jones and M. D. Scadron, Phys. Rev. D 11, 174 (1975).
9. C. Michael, Phys. Rev. 182, 1913 (1969) ; R. A. Coleman and J. W. Moffat, Phys. Rev. 186, 1635 (1969).
10. S. D. Dreli, Phys. Rev. D 7, 2190 (1973); J. M. Newmeyer and S.D. Drell, Phys. Rev. D 8, 4070 (1973).
11. C. A. Domingues, to be published in Phys. Rev. D.
12. M. Weinstein, Phys. Rev. D 7, 1854 (1973).
13. B. de Wit, Phys. Rev. D 9, 3399 (1974); B. de Wit, R. Maciejko, and J. Smith, Preprint ITP-SB 76-53.
14. R. Dashen, "Lectures on Chiral Symmetry Breaking," in Proc. Int. Sch. of Physics "Enrico Fermi" (Academic Press, New York, 1972), p. 204.
15. S. Weinberg, Phys. Rev. 166, 1568 (1968).
16. M. Gell-Mann and M. Lévy, Nuovo Cimento 16, 705 (1960) ; B. W. Lee, Chiral Dynamics (Gordon and Breach Science Publishers Inc., New York, 1972).
17. S. Adler and R. Dashen, Current Algebras and Applications to Particle Physics (W. A. Benjamin, Inc., New York, 1967).
18. S. Treiman, R. Jackiw, and D. Gross, Lectures on Current Algebra and its Applications (Princeton University Press, Princeton, N. J., 1972).
19. Since $\gamma^{2} \mathrm{f}_{\pi} \mathrm{G}_{\mathrm{N} \pi}-\mathrm{b} \simeq \mathrm{f}_{\pi} \mathrm{G}_{\mathrm{N} \pi} / \beta^{2}$ with experimental numbers, we have a simple relation for g_{A} :

$$
\mathrm{g}_{\mathrm{A}} \simeq \beta^{2} \gamma^{2}=1.2518 \ldots,
$$

or

$$
\mathrm{g}_{\mathrm{A}} \simeq \gamma^{2}=1.2337 \ldots
$$

where

$$
\beta^{2}=\frac{\pi^{4}}{96}=\sum_{\mathbf{r}=1}^{\infty} \frac{1}{(2 \mathrm{r}-1)^{4}} .
$$

20. In fact, we have

$$
2 m_{N}^{\prime}(0) g_{A}(0)=\lim _{q^{2} \rightarrow 0} 2 \sum_{\mathrm{n}} \frac{\mathrm{f}_{\mathrm{n}} \mu_{\mathrm{n}}^{2} \mathrm{G}_{\mathrm{N} \pi}}{q^{2}+\mu_{\mathrm{n}}^{2}} ;
$$

hence

$$
\mathrm{g}_{\mathrm{A}}(0)=\frac{\gamma^{2} \mathrm{f}_{\pi} \mathrm{G}_{\mathrm{N} \pi}(0)}{\gamma^{2} \mathrm{f}_{\pi} \mathrm{G}_{\mathrm{N} \pi}(0)-\mathrm{b}(0)}
$$

TABLE I
Estimated numbers of g_{A} in the one- and two-component theories $\left(\gamma^{2}=\frac{\pi^{2}}{8}\right)$

$\mathrm{G}_{\mathrm{N} \pi}^{2} / 4 \pi$	$-\mathrm{G}_{\mathrm{N} \pi}$	$-\mathrm{g}_{\mathrm{A}, \mathrm{GT}}=\mathrm{g}_{\mathrm{A}, 1}$	$-\mathrm{g}_{\mathrm{A}, 2}=\mathrm{g}_{\mathrm{A}}$	$\Delta_{\mathrm{N} \pi}$	$-\mathrm{g}_{\mathrm{A}, \exp }$
13.90	13.22	1.296	1.228	0.052	
14.00	13.26	1.300	1.230	0.054	
14.30	13.41	1.315	1.241	0.056	
14.64 [Ref.5]	13.56	1.330	1.252	0.059	1.25 ± 0.009 [Ref. $_{4]}^{4}$
15.00	13.73	1.346	1.264	0.061	
15.20	13.82	1.355	1.270	0.063	

$\mathrm{m}_{\mathrm{N}}=\frac{1}{2}\left(\mathrm{~m}_{\mathrm{p}}+\mathrm{m}_{\mathrm{n}}\right)=6.72 \mu_{\pi^{+}}, \sqrt{2} \mathrm{f}_{\pi}=0.932 \mu_{\pi^{+}}[$Ref. 6$], \mu_{\pi^{+}}=139.7 \mathrm{MeV}$.

[^0]: *Work supported by the Energy Research and Development Administration and SNU-AID Graduate Basic Sciences Project.

