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ABSTRACT 

We study the system of a particle bearing the isospin- 

degrees of freedom interacting with an SU(2) ‘t Hooft-‘Polyakov 

monopole. We show that its equation of motion can be cast 

into the form of Nambu’s generalized mechanics. 

(Submitted to Phys. Rev. ) 
Comments and Addenda 

*Work supported in part by the Energy Research and Development Administration. 
tPermanent address. 



-2- 

Some time ago, Nambu suggested some possible generalizations of classical 

Hamilunian mechanics. ’ As the simplest extension, he proposed the replace- 

ment of the conventional canonical doublet @,, in) by a set of three variables 

(P,, Q,, Rn). The usual Poisson bracket was generalized to the Nambu bracket 

[A, B, C] containing three quantities: 

[.y,B,C] = c ,;Ay;y”d ) . 
n n’ n’ n 

(1) 
The time evolution of a dynamical quantity f(P, Q, R) was assumed to be deter- 

mined by 

$= [f,F,G] , (2) 
where F(P, Q, R) and H(P, Q, R) are alternatives of the Hamiltonian function in the 

conventional scheme. 

The appearance of the third variable R makes it difficult to conceive systems 

which obey Nambu’s equations of motion. It was pointed out that the Euler equa- 

tion for a rigid rotator can be written in the form of (2). 1 Several authors have 

shown that some systems with constraints can be described by Nambu’s 

mechanics. 
2 In these examples, the variable R was constructed from the con- 

ventional position and momentum variables. In this note, we put forth another 

example of Nambu’s mechanics where the variable R cannot be expressed solely 

as a function of position and momentum variables. 

We consider the classical motion of a point particle with mass m and iso- 

spin Ti (i = 1,2,3) interacting with an SU(2) magnetic monopole. 3 According to 

Hasenfratz and ‘t Hooft, the equations of motion are5 

1 ki=m p. ( 1 - eAF(x) Ta > , 

b 
fi. =$ 1 eAy(x) Ta) 2 eTb - p , 

i i 

(3) 
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and 

* qa = - cabc $ (p. - eAf(x) Td) eAF TC 1 , 

where r= w ,, 1 x. and p{s are the Cartesian coordinates and linear 
_. 

momentum of the particle, respectively, e is the coupling constant, A:(x) is the 

potential due to the monopole, V(r) is some spherically symmetric potential 

which may provide the binding force. E abc is the Levi-Civita tensor and the 

summation over the repeated indices is assumed throughout. These equations 

can be derived from the following ones: 

w = [f, H] , 

[A,B]= g$-g$+ eabc $L$-T~ , 
i i i i a b 

and 

Hz1 
2 

2m eAy(x) Ta > + VW , 

(4) 

(5) 

(6) 

where all of the xi, pi and Tits are regarded as c-numbers. The gauge potential 

A:(x) is of the form 

A:(x) = eiae x1 W(r) , (7) 

where W(r) should be the solution of a complicated nonlinear differential equation 

with the boundary condition -er2 W(r) -cl (rem). 3 For simplicity and con- 

creteness, we consider the limiting case that 

(8) 

for any value of r. 
4 
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Our purpose is to case (3) or (4)-(6) into the form of (1) and (2) by suitably 
.- 

choosing Pi, Qi, Ri, F and G. It was observed in Ref. 5 that 

Ji = Ti i- E.. x.p ljk J k ’ (i= 1,2,3) (9) 

are conserved. We now define 8 and Cp by 

Jixi 
cos e = Jr , (10) 

and 
. 1 . 

r sin e $J = Jr sin e cjkxi Jjxk . 

We next define ul, u2 and u3 by 

1 u1 + J sin 0 = J eijkpiJjxk , 

1 
u2 = Jr sin 8 ‘i jk ‘i(ej& J1xm) xk ’ 

(11) 

w 

and6 

u3 = PiXi . 

The nine equations of motion for x i, pi and Ti (i= 1,2,3) are then equivalent to 

i=o , 

i2=o , 

(j+ , 
mr 

i3=o , (13) 

J cos e Cl = - 7 u2 , fi = J cos e 2 mr2 u1 and u3 = 2H - (2V+rV’) , 

where V’ =y . If we further define variables $), u, c and S by 

, 



and 
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(T = tan -1 u2 - - $ cos e 
u1 

/ 

r 
S=m r’dr’ 

f(r ’ 

where f(r) =u3 is given by 

if( = 2mr2{H -V(r)! - J2 sin2 8 , 

(14) 

(15) 

then it follows readily that Eqs. (13) are equivalent to 

and 

& ‘~‘&‘fi+jl=j2=j3’o (16) 

S=l . (17) 

. To make contact with Nambu’s mechanics, we proceed to identify the eight 

variables Q,, Q,, P1, P2, P3, R1, R2 and R3 with any indepepdent eight func- 

tions of +, u, U, H, 8, J1, 2 J and J3. Through identification of Q1 with S, F 

with Pl and G with R1, we find that any dynamical quantity f(P, Q, R) in this sys- 

tem satisfies (2). 

The above analysis was made for a very special dynamical system. It is, 

however, apparent that the system with 3N fundamental variables can be described 

by (1) and (2) if 3N-1 integrals are known. We have only to identify Q,, . . . , Q,, 

pl’ . . . , ‘N, R1, * - -, RN with 3N-1 independent functions of 3N-1 integrals, F with 

Pl, G with R1 and Q1 with a certain quantity S which is so constructed as to 

satisfy S=l. 7 Nevertheless, we offer this special example because it suggests 

the potential relevance of Nambu’s mechanics for systems with internal degrees 

of freedom nontrivially coupled to space-time ones. 
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