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Introduction 
.- At the 1975 mrticle Accelerator Conference it was re- 

ported that a class of resonances were ob 
that had not appeared before in SPEAR I. d 

erved in SPEAR II 
These reso- 

nances occur when the betatron oscillation wave numbers vx 
or vy and the synchrotron wave number us satisfy the 
tion (vx l&‘a- -mu,) = 5, with m an .integer denoting the m 

i&l. 
sat- 

ellite. ile the existence of sideband resonanc,es of the 
main betatron oscillation frequencies has been previously ob- 
served and analyzed, the resonances gbferved in SPEAR do 
not appear to be of the same variety. ’ 

The main difference between SPEAR II and SPEAR I is 
the value of us, which in SPEAR ll is u 0.04, an order of 
magnitude larger than in SPEAR I. An ad hoc meeting was 
held at the 1975 Particle Accelerator Conference, where de- 
tails of the SPEAR II results were presented and various 
possible mechanisms for producing these resonances were 
discussed. Later, experiments were performed at SPEAR to 
identify the mechanism we believe to be the most likely ex- 
planation. We have been aided immensely in arriving at our 
present interpretation by suggestions of Voss at the 1975 ad 
hoc meeting and by the theoretical work of Piwinski and 
Wurlich of DESY. The purpose of this paper is to present 
some of our current experimental knowledge and theoretical 
views on the source of these resonances. 

General Experimental Observations 
The size of the beam was observed to increase whenever 

( vx, y - mvs ) = 5 with m integral. A survey of this growth in 
beam size showed that the satellite of the vertical integer 
resonance gave measurable growth up to m as large as 10, 
and that for m 2 5 the vertical beam growth could fill the 
available aperture and cause beam loss; the satellites of the 
horizontal integral resonances are weaker than the vertical 
resonances; and the growth in betatron amplitude is inco- 
herent. 

Satellites of other resonances were also studied. We 
found that the satellites of the coupling resonance, ( Vx - vy) = 
0, and the half-integral resonance, v 

x*L2.5’ Faorre tz? two weak as compared to the integral reson 
cases, only the first two satellites have been observed. In 
all cases, the resonances are spaced by us and we see no in- 
dication of resonance lines spaced at &,. The strength of 
the vertical integral resonances decreases with energy, in- 
creases with beam current, is strongly dependent upon verti- 
cal orbit distortions present.in the ring, and is insensitive to 
changes in the chromaticity of the ring. 

In order to understand the mechanism that produces the 
resonance, a careful study of the ring parameters which af- 
fect the resonance blowup was undertaken. For this purpose 
we studied predominantly, although not exclusively, the par- 
ticular resonance (Vy - 5V,) = 5. 

FM Sidebands 

It has been known for some time that because the trans- 
verse betatron oscillation frequencies are frequency modu- 
lated by the energy oscillations it is possible to excite res- 
onances at frequencies which are sidebands of the main beta- 
tron-oscillation frequencies. 2* 3 These sideband resonances 
ar uniformly spaced at the synchrotron frequency; i.e., the 
mtf, sideband occurs at a wave number equal to (vxly * mvs), 
with m an integer. Since the transverse force on a particle 
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produced by the magnet elements in the lattice occurs at in- -- 
tegral multiples of the revolution frequency, we would expect 
that whenever the sideband resonance frequency equals sn in- 
tegral multiple of the revolution frequency, i.e., for (~x,~ f 
mu,) = n, we could have growth in the transverse motion. 

The strength of the mth sideband resonance is propor- 
tional to Jm(As, y/~s) ,. where Jm is the mt” order Bessel 
function and AU, .- is the nealc variation of the betatron tune 
and is equal to %ik average value of the chromaticity .function 
times the peak relative momentum variation; i.e., Avx, y = 
t 
“d 

(Ap/p). For these resonances, the strengths should de- 
pe d very strongly upon 5 and vanish when 6 approaches zero. 
However, all experiments have shown clearly that the 
strength of the resonances is independent of 5 over the range 
0 <t < 10. In addition, the resonance strength should de- 
crease with increasing values of vs. Since vs is higher in 
SPEAR II than in SPEAR I, these sideband resonances should 
be weaker in SPEAR II. It should also be easily possible to 
drive them by RF knockout techniques, which again was not 
the case. From all of these observations we have concluded 
that the resonances are not the usual FM sidebands. 

Half-Integral Resonances 
We have considered half-integral resonances driven by a 

periodic variation in the chromaticity function as a possible 
explanation of the sideband resonances. Since the 10th har- 
monic of the chromaticity function is rather insensitive to 
changes in the average chromaticity, and the strength of the 
half-integral resonances would be relatively independent of 
the value of us, the experiments described above did not ex- 
clude this as a possible explanation. The 10th harmonic of 
the chromaticity function should drive the resonances at 
wave numbers (2vx,.y - mu,) = 10, with m an integer which 
denotes the harmomc of the energy oscillation responsible 
for the resonance. The absence of resonances at odd values 
of m would tend to rule out the half-integral resonances as 
the mechanism, provided that the odd harmonics of the syn- 
chrotron oscillations are comparable to the even harmonics. 
An experiment was conducted in which the 10th harmonic of 
the chromaticity function was varied and indeed reduced to 
zero, independent of the average chromaticity, by powering 
several families of sextupoles. It was found that the strength 
of the resonances was not reduced as the 10th harmonic of 
the chromaticity function vanished, which led us to conclude 
that this was not an important contribution to the resonances 
found in SPEAR II. 

. 

Proposed Model 

During the earlier studies of the integral resonances, it 
was difficult to obtain reproducible results on the resonance 
strengths. In particular, we originally found the resonance 
strength to be sensitive to the value of- 
subseouentlv traced to the fact that the c orbit for fixed 
settings of the correcting elements was dependent upon the 
value of pmax. When the orbit errors were minimized sep- 
arately for each value of p 
the resonance strength witf?v’ 

much of the dependence of 
disappeared. This led to a 

systematic study of the effectn%bit errors on the reso- 
nance and to the current picture we have of the cause of these 
resonances. 

There are many elements in SPEAR that can change the 
energy of a particle. These include various vacuum chamber 
discontinuities as well as the main RF cavities which supply 
the energy radiated into synchrotron light. Consider the 
case where there is no dispersion at one of these cavities; 
then the equilibrium orbits, ye, for different energy parti- 
cles coincide at the cavity, as shown in Fig. 1. Consider a 
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Bx(x. Y. s) = a@) + g(s) Y + r(s) x + 2%~) xy (2) 
Cavity where x, y, and s are the horizontal, vertical, and longitudi- 

nal coordinates, and we define a(s) as the strength of the di- 
pole field errors and correcting fields, g(s) the quadrupole 
strength, r(s) the skew quadrupole strength, and-n(s) the -.-- 
sextupole strength. 

Fig. 1 
For the synchronous particle,. it is possible to define a 

closed orbit which we denote as [x6(s), ye(s)]. The function 
y&s) must be periodic and satisfy the following equation. 

particle with zero betatron amplitude but an energy deviation 
from the synchronous energy, ~1. The particle will be. trav- 
eling on the equilibrium orbit ye(s ) 

t 
before it enters the cav- 

ity and on the equilibrium orbit ye ~2) when it leaves the cav- 
ity with energy Ed. The betatron amplitude will be unchanged 
and remain zero. 

On the other hand, if there is a dispersion at the cavity 
the equilibrium orbits for different energy particles do not 
coincide in the cavity, as shown in Fig. 2. When a particle 

Fig. 2 

with au initially zero betatron amplitude and energy deviation 

ergy change at the cavity oscillates at multiples of the syn- 
chrotron frequency. 

el leaves the cavity with a different energy deviation e2 it 
discovers that it is not on the proper equilibrium orbit and 

This leads to the resonance condition 

will start to execute betatron motion about the proper equi- 

between the betatron wave numbers vx or vy and the synchro- 

librium orbit ye(e2). Because the energy deviation of a par- 
ticle oscillates about the synchronous energy at the synchro- 

tron wave number us 

s - tron frequency, the betatron motion of a particle will be 
driven at the synchrotron frequency plus sn integral value of 
the frequency of passage through the cavity, and a resonance 
will occur whenever this driving frequency is equal to the 
betatron frequency. Another important ingredient necessary 

(V 

to explain all of the observed resonances in SPEAR is the 

- mvs) = p 

assumption that synchrotron motion is nonlinear so that en- 

(1) X#Y 

y;;y = 

or 

( 1 

(3) 

% - 
1 ' g-Jo [g(s) + w~)xolY(J = j&q ( 1 o [a(s) + rWxol s 

where (BP)~ is the magnetic rigidity of a synchronous parti- 
cle. The vertical motion of an off-energy particle is differ- 
ent from that for the synchronous particle because both the 
magnetic rigidity and the horizontal magnetic field experi- 
enced by the particle depend upon the particle energy. The 
difference between the vertical position of a particle y and 
the on-energy equilibrium orbit y6 through first order in the 
energy deviation E satisfies: 

(Y-Y,)” - j$ 
( 1 

0[g(S)-(g(s)-2a(s)rlx)cl (Y-Y,) 

=- - 
( ) 
Blp [ W+gW, - W)7x-2~~)xgol c: , 

0 
(4) 

where we have assumed that the value of the horizontal dis- 
persion nx is much larger than the horizontal orbit distortion 
x0, and we are neglecting the transverse coupling of the beta- 
tron motion. The equilibrium orbit ye(e) for a particle with 
energy deviation E is related to the vertical dispersion func- 
tion ny to first order in e.by 

Ye(E) = Yo + tlye * 

The dispersion function ny is the periodic solution to the fol- 
lowing equation: 

1 q” - - g(s)q = - - 
YBP~ Y 

The chromaticity term on the left-hand side of Eq. (4) has 

( ) ( 1 

been ignored, since we are considering the motion through 

&, o[ a(s)~g(s)Yo-r(s)tlx-2~(s)~~ol . (6) 

first order in 6. We now can study the betatron motion for 
off-energy particles by denoting y (F) 
Eqs. (4)-(6) to yield P 

= y-y,(e) and combining 

/ . \ 
with m and p integral. 

One of the interesting observations of these resonances 
is that the vertical resonances are much stronger than the 
horizontal resonances. We note that the horizontal disper- 
sion 7 is generally much larger than the vertical dispersion 
vy, an% in fact ny is zero in a perfectly aligned ring. How- 
ever, for the perfect ring the horizontal dispersion in SPEAR 
has only even harmonics and the cavities which produce the 
nonlinear energy changes are rather uniformly distributed 
around the ring. Thus, only even values of p in Eq. (1) can 
produce a resonance and, for a perfect ring with vx z 5, we 
would not expect to observe strong horizontal resonances. 
The satellites of the v x = 4 resonances have been observed to 
be noticeably stronger than those of vx M 5. 

Effects of Imperfections 

In this section we will describe in detail how the reso- 
nances are excited by a variation of the closed orbit with mo- 
mentum, i.e., the dispersion 7. We will consider here the 
vertical resonance, noting that similar results apply for the 
horizontal resonances. The radial magnetic field seen by a 
particle can be written as 

where again we ignore the chromaticity terms. As was illus- 
trated in Figs. 1 and 2, a change in the energy of AE pro- 
duces a change in the betatron motion as given by 

where q and 11’ are evaluated at the point where the energy 
change &curre%. For the resonance (vy f mvs) = p to be ex- 
cited by n or n’ there must be frequency mvs in the particle 
energy gain. For a short bunch the RF field is nearly linear 
and the fields that produce nonlinear energy gains must come 
from parasitic modes in cavities, chamber discontinuities, 
etc. Since these elements are rather uniformly distributed 
around the ring we assume that the portion of the energy 
change that oscillates at mvs is smoothed out around the ring, 
and the resonance (vy - mu ) = p is driven by this portion of 
the energy oscillation, toge her with the pth harmonic of t) B 
and n’. In SPEAR vx and v are normally near 5 so the dom- 
inant harmonic of n and n’ B ccurs for p=5 and is entirely due 
to imperfections and misalignments. The effect of these im- 
perfegps is probably worse vertically than horizor&ally. 
The p harmonic of r) and 7’ is proportional to the p 
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harmonic of the function F(~#I) given by 

F(q) =83'2~$)1a(b)+g(~)~o(~)-~(b)~x(~)-9~(~)1)x(9)yo(~)l.(9) 

A convenient measure of the resonance effect upon the 
beam size is the blowup factor B defined by the ratio of the 
beam height on-resonance to the height off-resonance. Since 

- theportion of the beam height due to the resonance adds in 
quadrature to thznormal beam height, it follows that, if the 
longitudinal particle oscillations are random in phase, the 
blowup factor is given by 

B2 = 1+K!Fp12<s;> , (10) 

where K is a constant that depends upon’the size of the beam 
off-resonance, the damping mechan&m that restricts the 
resonance growth, etc. F is the p harmonic of F(#) de- 
fined by Eq. (9). and <ELVIS the squared value of the mug 
energy oscillation averaged over the particle distribution. 
While the exact value of F(#) due to imperfection is not 
known, it is possible to determine the changes in the closed 
orbit resulting from change in dipole settings, and hence 
changes in Fp can be calculated quite accurately. 

The calculations presented in the previous section allow 
predictions to be made on how the beam blowup factor should 
vary with machine parameters in SPEAR. An experiment on 
the dependence of B2 on y was performed. The orbit cor- 
rection program was use 8 to determine the dipole fields in 
the ring necessary to change the value of y. at the two inter- 
action regions in such a way as to produce only odd harmon- 
ics in F(e). For small changes the value of F5($) was pro- 
portional to the angle of the equilibrium orbit (y’)* at the iu- 
teraction region. The results shown in Fig. 3 3 emonstrate 
that B2 does vary$arabolically with (y’)*. 
the variation of B found experimental y with that expected P 

When we compare 

from Eq. (l), we find that the observed beam blowup can be 

t 
(Blow-Up Foclorl~ 

I I I I I II I I 1 1. 1 1 1 
-0.5 0 0.5 

Change in Orbit Angles 01 the Inleneclion Poini (mrad) i 

Fig. ‘3. B2 as a function of (y$*. 

explained by-a 5th Fourier component of the synchrotron os- 
cillation, which is about a factor of 500 smaller than the first 
Fourier component. We believe that this is a reasonable 
value to be expected from parasitic modes excited by the 
beam. 
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