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ABSTRACT 

We report the results of the nonrelativistic application of the quark- 

confining string model to the study of + spectroscopy. This string model 

is defined by a relativistic invariant, gauge invariant and reparametriza- 

tion invariant action describing quarks interacting with color SU(3) gauge 

fields. The model has no gluonic degrees of freedom, but has instead 

string degrees of freedom. Quark masses and the quark-gluon coupling 

constant are the only parameters of the model. In the Schrcedinger 

limit and in the absence of light quarks, the longitudinal modes of the 

quark-antiquark pair and the rotational modes of the string for a meson 

reduce to the charmonium model with a linear potential. String vibra- 

tions, which are absent in the charmonium model, provide additional 

levels. They start coming in at around 4.0 GeV; the density of states 

increases as an exponential function of the mass. The two lowest 

vibrational levels in the e+e- channel have energies at 4.0 and 4.4 GeV. 

Relativistic corrections are estimated to be small for the low lying states 

so that the Schrcedinger approximation is justified. We consider this 

/ application to $ spectroscopy as a test of the model. 
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I. INTRODUCTION 

TKe discovery’ of the ZJ family of particles marks an important turning point 

.- 

in the development of particle physics. Recent development2 strongly suggests 

the existence of the charm quark proposed by Glashow and collaborators, 3 and 

the zj particles are charm-anticharm quark bound states. The states of the $ 

spectroscopy are very narrow; their masses are accurately measured and a lot 

of their properties are known. Their spectroscopy therefore provides an ideal 

testing ground for any comprehensive model of hadron dynamics. 

The II) states appear to be most naturally described as nonrelativistic bound 

states of a charm quark and its antiquark, as first suggested by Appelquist and 

Politzer . 4 It is clear in this treatment that the dominant nonrelativistic potential 

between the quarks is linear. In the nonrelativistic approximation, the bound 

system may be described by the Schrcedinger equation5: 

I 2 
2&I-+$- 

ar2 
+ kr +y 

I 
[r+(r)] = E [r+(r)] (1.1) 

where E is the mass of the state, M is the charm quark mass, k is the strength 

of the linear potential and Q, is the radial part of the wave function for a state of 

orbital angular momentum 1. This we refer to as the charmonium model. 

Equation (1.1) describes a set of radial and orbital excitations of ZJ states 

with no spin-orbit or hyperfine splittings. Such splittings presumably arise as 

relativistic corrections in some relativistic theory to which Eq. (1.1) is an 

approximation. This simple picture does not seem to account for the rich spec- 

trum of states observed between 3.9 and 4.5 GeV in the e+e- channel; it predicts 

only one state (-4.15 GeV) in this region. 

There are many other terms one may add to the above equation (e. g., addi- 

tive constant, Coulomb, square well, etc. ). However, their introduction requires 
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the introduction of new parameters, in addition to the two, namely k and M, 

-already present in Eq. (1.1). Furthermore, the contribution of any additional 

terms is probably of the same order of magnitude as the relativistic correction 

terms (e. g. , the spin-orbit splitting). Hence the only way to decide if the above 

linear potential term needs modifications or not is to evaluate the relativistic 

corrections, among which are the fine and the hyperfine structures. 

In the charmonium model, per se, we are unable to deduce relativistic 

corrections unambiguously, or to understand the origin of the linear potential. 

The only reliable way to investigate this problem is to write down a relativistic 

invariant model which in the nonrelativistic limit gives Eq. (1.1) for a quark- 

antiquark bound state. One can then pick up all the relativistic corrections and 

evaluate them perturbatively. 

A more fundamental issue is the origin of the linear potential. To describe 

the potential in relativistic language, fields must be introduced. It is well known 

that gauge fields in one-space one-time dimensions have linearly rising Coulomb 

potential. However we live in four dimensional Minkowski space. 

It has been suggested that the local field theory of quarks interacting with 

color Yang-Mills gauge fields, namely, quantum chromodynamics (&CD), may 

give string-like solutions, with a linear potential in the nonrelativistic approxi- 

mation. Mesons with heavy quarks then obey Eq. (1.1) in the leading approxi- 

mation. Unfortunately, to demonstrate string-like hadrons as solutions of QCD 

is extremely difficult. 6 Equally difficult is to calculate hadron properties from 

QCD in a reliable way. An easier task will be to start from a precisely defined, 

relativistic invariant field theoretic .model where quark confinement is explicit, 

and where the linear potential arises straightforwardly. To such a model we 

address ourselves. 
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In this paper, we consider the dynamics of nonrelativistic heavy quark 

bound&ates in the “quark-confining string” model (QCS) recently proposed by 

one of us (SHT) . 7 This is a classically Lorentz-invariant, gauge-invariant and 

reparametrizatiori invariant model. of quarks and color SU(3) gauge fields inter- 

acting in a two dimensional world sheet (i.e., string). The color dynamics of 

this model is analogous to that of two dimensional QCD; in particular, all 

physical states are color singlets; there are no independent gauge field degrees 

of freedom, and a linear potential arises naturally from the color Coulomb 

force. There are additional string degrees of freedom describing the embedding 

of the string in Minkowski space. The quarks are Dirac fields in Minkowski 

space. 

-. 

In this work we investigate only the application of QCS to the $ spectroscopy 

in the nonrelativistic limit. 8 We ignore all the light quarks and consider only 

the charm quark. This we refer to as the charm string. We shall assume the 

charm quark to be heavy and the quark-gluon coupling e small enough so that a 

Schrcedinger approximation is valid for the charm-anticharm quark bound system. 

The relativistic effects are to be introduced as corrections. We discover that 

even in this nonrelativistic limit, there are new features of the string model 

that are absent in the charmonium model. 

Pictorially, the $ meson is composed of a quark and an antiquark linked by 

the appropriate color electric flux line (see Fig. 1). This electric flux defines 

the string. When the string is straight (note that straightness is meaningful 

only in the nonrelativistic limit), the electric field is essentially a constant. 

The string and the quarks can rotate as a unit. Ignoring its vibrational motion, 

we obtain from QCS the Schrcedinger equation (1.1) where k= 2e2/3. However, 

the string can also vibrate. These vibrational modes provide new states beyond 
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the charmonium picture. In the e’e- channel, the two lowest vibrational levels 

lie at 4.0 and 4.4 GeV. 

As QCS is a relativistic model, all relativistic corrections are, in principle, 

determined. For the lowest P state, the A (EJZa - EJZo) splitting is of the order 

of 0.14 GeV. This indicates that the Schrcedinger treatment of the Z$ spectros- 

copy is a valid approximation. However, a complete evaluation of the spin-orbit 

coupling, hyperfine splittings and other relativistic effects is nontrivial and is 

beyond the scope of this paper. Throughout we emphasize the physics of the 

string picture instead of mathematical rigor. This work is organized as follows. 

QCS is reviewed in Section II. We also discuss our choice of gauge and param- 

eters. In Section III and Section IV we consider the charm string in the absence 

of vibrational modes. In the nonrelativistic limit, we show how the quantization 

of angular momentum emerges from the rotation of the string. Then the char- 

monium equation (1.1) results. It is amusing to note that quantum mechanically, 

the ground state of the charm string has a spherically symmetric wave function. 

In Section V we study the lowest vibrational modes. We calculate the vibra- 

tional energy as a function of the distance between the quark and the antiquark. 

This is then treated as an effective potential V,(r) inserted into the bound state 

equation. Besides a summary, Section VI also includes a discussion of the 

validity of the Schrcedinger approximation, and some of the properties of QCS 

beyond those studied in this work. 
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11. THE QUARK CONFINING STRING 

A. Review and Notations 799 

The string we consider is a l+l dimensional world sheet, of infinite extent, 

embedded in 3+1 dimensional Minkowski space. It may be described by coor- 

dinate function R’(u”) : where p is a Minkowski index (0, 1,2,3) and u”, u1 i I 

gives an arbitrary coordinatization of the world sheet. The flat geometry of 

Minkowski space induces a Riemannian geometry in the internal coordinate 

space u \ 
a, a=O, 1 . Let ?o be the tangent vector to the sheet in the u@ direction: 

Then we define: 

8’ 
g ap = TcY’Tp 

g = det g 
QP 

(2-l) 

gw 
is the induced metric in the internal coordinate space, and it will be used 

along with its inverse, g QP , to transform between covariant and contravariant 

tensors. 

At each point on the sheet, we introduce two unit (spacelike) normal vectors 

nf (Q=l, 2), n .n =n ‘7 1 2 B a=O. Wehave (nt=-I 
> 

where n is the Minkowski metric (1, -1, -1, -1). Also 
PV 

(2.3) 

(2.4a) 

(2.4b) 
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is the usual Christoffel symbol, 

and hQ, o$l 
is a symmetric tensor for each Q, whose principal values are the 

inverse radii of curvature of the sheet in the n Q direction. The torsion 

%! =+n210! 1 .n and E~~=-E~~ = 1. We shall use ” I” to represent ordinary 

derivatives, ” II” to represent covariant derivatives: 

We also have a covariant derivative for Dirac spinors 
10 

(2.5) 

. - QCS is a model of interacting color quarks and gauge fields defined on the 

string. The system is defined by the action: 

‘B acwpFa lF @ 

1 
(2.6) 

q.(u), for each flavor j, is a four-component Dirac field which is also in the 
J 

fundamental representation of the color gauge group SU(3); fo = ~~7~~. d2u fi 

is the invariant volume element on the sheet. T”, a=l, . . . ,8 are the matrix 

generators of SU(3) color: 

[1 1 Ta,Tb =if C 
abc T . 

lB,,(u), (o!=O, 1) are color gauge fields in the internal coordinate space. 

F 
a@ 

=B -B 
apla aalp + efabc% aBCp 

(2.7) 

(2.8) 
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and may be written as F 
aa6 

=E e a ap’ where e 
QP 

is the unit antisymmetric 

tensor-in two dimensions (eel = cg) and Ea is the color electric flux (a scalar). 

The action (2.6) is invariant under color gauge transformations: 

-. 

TaBa& -+ U(u$TaBao(u~ U-‘(u)+: U,~(u)U1(u) (2.9a) 

where U(u) is any element of SU(3). The action (2.6) is also invariant under 

general coordinate transformations of the two dimensional {u”) spaces 

a! U - P(u) 

N-9 - Hv 
(2.9b) 

RF w --) R’(v) 

‘VP B Baa@0 - - &p “P 
(V) . 

Coordinate invariance is manifest once we note the identity 

+y* = p 7 a-~a+(y=+a!“a-“,$ . 

The equations of motion of the theory follow directly from the variation of 

the action (2.6) with respect to z,6, B, and R’: 

e%@TaBao-Mj 1 qj = 0 

FQP 
a Ila + ef abcBbcuFr=e c$.%‘T $. Eejt 

jJ a3 

o=P”$o . 

where P a/J - 1s the covariant energy momentum tensor 

(2.10) 

(2.11) 

(2.12) 

(2.13a) 
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with 

Vr = c 5, fiQ (8-s* - eBrTa/)Gj 
j 

(2.13b) 

(2. 13c) 

Equations (2.10) and (2.11) are the natural generalizations of the corre- 

sponding flat space field equations to a curved two dimensional sheet. The 

differential operator: 

%o (Do+ieBacuTa) = %oti, + i %o,,o +ieBaa! f”T” 

is the covariant spinor derivative with respect to both the general coordinate 

group and SU(3) color. The Dirac matrices %‘, f1 replaces the y”, y1 which 

would be present in flat two dimensional Minkowski space. The term T w 
lb! is 

the mean curvature vector of the sheet. Its presence in Eq. (2.10) reflects the 

sensitivity of the spin of the quark field to the curvature of the string. A spinor 

forced to move along the curved string will precess. 

The equation of motion of the gauge field (2.11) can be rewritten as 

E + e fabc 
.P 

ala 
Bba! EC = -eelyp.la . 

This determines Baa! up to gauge transformations, in terms of the quark color 

charge density; as we expect, the l+l dimensional gauge field has no independent 

dynamical degrees of freedom. 

The string equation of motion is simply the local conservation of energy 

momentum. We note that the tangential-components in Minkowski space of the 

equation Pop ,, Q! = 0 follow from the field equations (2.10) and (2.11). This is a 

trivial consequence of coordinate invariance, since variations of R’(u*) along 

the sheet are equivalent to coordinate transformations. The nontrivial string 
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equations of motion are the two normal components of Pcy/lll Q! = 0: 

4\ 
hQCk!,T ap+vcI! (2! 

Q Ila! - CQm vavm = 0 (2.14) 

The left-hand side is the net force density on the sheet arising from the field 

stresses on it, and must vanish if the sheet is freely moving. 

We remark, as discussed in Ref. 7, that the color electric field energy 

plays precisely the same role in the stress tensor T @ as does the string con- 

stant 1/27ro’ in the conventional string. The term ; Efgcyp provides a constant 

energy per unit length along the string. 

We expect that this dynamical generation of the string constant will have 

profound effects on the spectrum of states in the theory. In a completely clas- 

sical picture, with quarks in localized wave packets, we expect that noncolor 

singlet states will have infinite energy, since ;EE will be nonzero along the 

entire infinite string, while color singlet states will have nonzero string constant 

only between quark and antiquark (Fig. 1). The string can carry energy- 

momentum only in the region between qc, and thus the quarks appear to be at 

the ends of the (physical) string. 

For a baryon, each of the two ends of the physical string must also end with 

a quark. 

B. Coordinate and Gauge Choices 

The gauge invariances (2.9a) and (2.9b) of the theory reflect the presence 

of nonphysical, “gauge” degrees of freedom in the action (2.6). Indeed, all 

components of B,,, and the tangential components of the string motion are 

nonphysical. One may approach the quantization of the theory either by quantizing 

‘vcovariantly” and showing that nonphysical degrees of freedom decouple, or by 

eliminating the redundant degrees of freedom from the outset at the expense of 
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manifest gauge, coordinate, and Lorentz invariance. We shall take the latter 

approa+ch. 

We will not discuss a fully quantized theory here. Our strategy will be to 

remove all nonphysical degrees of freedom through gauge choices, with the 

focus of maximally simplifying the Dirac structure in the rest frame of a heavy 

qS system. 

Our notation is such that a, b, c, d, . . . refer to the group index, /J, v, A, p = 

0, 1,2,3 refer to the Minkowski space index, and cr,p, y, 6 = 0,l refer to the 

string parameters. The ~‘0 and o=O components are timelike. The flavor 

index j shall be suppressed for convenience. 

We shall choose coordinates (U’=T, ul=o) by requiring: 

R,tua) = tt, &A 9) 

go1 = To-T1 = ..j$. j+ = 0 

Hence the induced metric g 

( 
r2 

= 

0 

and 

g QP= 

-h2 

(2.15) 

(2.16) 

(2.17) 

(2.18) 

In this coordinate system, the coordinate 9.ime1’ u” has been chosen to agree 

with the time, R”, in Minkowski space (in a particular Lorentz frame). (T has 

been chosen so that the instantaneous spatial velocity of the string at a point of 

fixed (T is normal to the string. The coordinate system is still not uniquely 
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fixed as we still have invariance under u - f(o); (7 will be specified more pre- 

cisel@n the next section. The choice of coordinates we have made manifestly 

breaks Lorentz invariance. 

We now turn to the specification of an SU(3)gauge in the coordinate system 

o! 
{ 1 U we have chosen. Let us choose the axial gauge 

is,=0 . (2.19) 

The gluon equation (2.11) becomes (y = $ foT$~) 

&wq, a 

-CO 
=(&i31rSo)t = e= j (2.20) 

(aj?Oy = efij+l- eTToXylofi (2.21) 

where we introduce the notation f= 9,f = atf, ft = alf = a$ and ‘8xf;=fabcBbhc. 

Recall ao( Gf”!) = fi f”,, o. Equation (2.20) can be immediately integrated 

to give 

-4 B = e dct ,/fj FG(c,@) / 

where the Green’s function G(c,o’) obeys 

(2.22) 

aa [ $*) 8G(q at) = 6(0--u’) 1 
(2.23) 

Using Eq. (2.20) and (2.21), we obtain the vector current that is conserved: 

i3a-Ta=0 

Y= cgp (2.24) 

(2.25) 
C 

where the symmetrization =jp xB-15xT01 is introduced in antici- 

pation of the requirement that is Hermitian in the quantized theory. 
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C. Transformation of the Dirac Field -. 
In principle, the quantization of QCS can be realized using the Dirac con- 

straint method. 11 This problem has not been solved. In our discussion we will 

focus on the quantum mechanics of the Dirac fields. Canonically, the momentum 

conjugate to the Dirac field is 

which would (formally) lead to the anticommutation relation 

{w, t), d=ii 5 %O(cr’, t)}t = 6(u-at) 

(2.26) 

(2.27) 

The factor 6 j” involving the string degrees of freedom immensely compli- 

cates the analysis of the model in terms of $. Its origin is easy to understand: 

Gt$ transforms as the zeroth component of a four vector in Minkowski space, 

but as a scalar in the internal (a, t) space. rg$+‘$, like ~(a+), transforms 

as the zeroth component of a vector density in the internal space. This suggests 

the introduction of a new Dirac field x, related to IC) by a local transformation 

w, t) 

such that 

zcltu, t) = SP, t) XP, t) (2.28) 

{xP,t),xftc~)t = wJ-@t) 

In our coordinate system we can write 

(2.29) 

TW 
= it&l, vrh) 

71c1 =R; = (o,d) 

IlrEL 
= rJ(v, li) 

ng = (O,lAm) 

(2.30a) 

(2.30b) 

(2.3Oc) 

(2.3Od) 
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where G and m are unit tangent and spatial normal vectors respectively, 

gLr$ -1, m.;=o, 2 -l/2 l?=(l-v ) . We introduce the transformation 

z/Q, t)=U(c, t)x(a, t), U=SW where S is a local boost transformation and W a 

local rotation transformation such that 

u-l if”u = y”r (2.31a) 

u-l flu = ; y/l (2.3lb) 

u-lpl,u = -y2 (2.31~) 

u-l yl,u = -y3 (2.31d) 

We find it convenient to rotate to the string frame (via W). It is straightforward 

(although rather lengthy) to show that the Lagrangian of QCS can be written in 

terms of x as 

+r T ul($. lhfn) + 
75 A A 
2h (r-mAmt) 

I 
x + $Bf (2.32) 

The effective Lagrangian in this form is convenient for the nonrelativistic approx- 

imation. We note that the derivation of the form (2.32) does not require the 

explicit construction of U. We need only 

it rwt . 
2&=- lh + a2r2++ ~3rv(kbq -$ 

io rv 3 
b v 

--- h ial17(G. m;-ni) + + (i?. mAmt) 

and 

, 2Vlut = qxi+ a2r2vf+ ci3rv($.Gi~mt) -g 

(2.33) 

- iull?(F.iGAmt) + ia2($-6i+-rt) + ia31G.mt (2.34) 
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which follow from Eq. (2.31). The string equation (2.9) in this new frame is 

summarized in Appendix A. In this notation the Dirac and gluon equations (2.10) 

and (2.11) become: 

iaI 
iZl -t--- t rh%+ 

>(&~-~-eB~ 

+r z ul(?. iii-lil) + 
y5 * h 
5 (r.mAm’) x = 0 

+ extTax = 0 

(2.35) 

(2.36) 

The Dirac field x obeys the anticommutation relation (2.29). 

Physically, the transformation U(o, t) brings us from the space frame to the 

string frame. To derive the string equation from the effective Lagrangian den- 

sity (2.32), a Lagrange multiplier term must be introduced for the constraint 

3xt=0. We shall use the string equation (2.9) given in Appendix A. This Lagrange 

multiplier term has no effect on the derivation of the Hamiltonian, and the Dirac 

and gluon equations, as is obvious. 
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III. THE NONRELATMSTIC LIMIT 

A. The Nonrelativistic Hamiltonian 

We consider the case where the quark mass M is large compared to the 

coupling constant a, which has the dimension of -mass. In the bound state problem, 

it is the condition (for color SU(N), N=3) 

e2 N2-1 1 2e2 ----$=---&<<l 2 2N (3.1) 

that allows us to treat the system in the Schrcedinger approximation. In this 

limit the relative quark motion is nonrelativistic. Throughout this work we 

consider only quarks with nonrelativistic velocities in the Lorentz frame we 

have chosen. This restricts our study to the low energy states. 

The motion of the string away from regions where the quark wave function 

is large may be relativistic or nonrelativistic. We can see this qualitatively 

from the structure of the energy-momentum tensor on the string. Too , the 

tlmasslf density of the string, is of order MX t px where x is large and goes to 

E2/2 go0 -O(e2) where x is small. The “tension” of the string 

(T1$ E2/2 g”+$~‘c!I~~x is always of order e2. When x is small, the 

velocity of sound (T /T ) l1 O” 1/2 is O(1) . Therefore, the string can rapidly adjust 

to changes in the position of the quarks and, we expect, will be straight in the 

lowest energy states. String excitations (“vibrations”) will, however, involve 

relativistic motion of the string in regions (between quarks) where x t x is small. 

In this section, we consider completely nonrelativistic motion: 

v= $I<< 1 

In the nonrelativistic approximation we may choose c so that 

h2 =jft2 -1 

(3.2) 

(3.3) 



- 17- 

and 

1 V2 4 Fc! 1-T (3.4) 

so that both h and I’ can be replaced by unity except when multiplied to the mass 

term. The effective Lagrangian density (2.32) becomes 

Equation (2.23) becomes, to leading order 

i3; G(u, IT’) = -6(u-at) 

or 

G(u, CT’) = - $ Iu-u’I (3.6) 

(3.5) 

so that Eq. (2.22) also simplifies to (Ja=Jao) 

$=e J dc’ G(a, a’)~&) Tax@‘) 

(3.7) 
=e J dc’ G(o, at) Ja(ct) 

Now we can derive the nonrelativistic Hamiltonian for QCS 

H=/do 

= x 

Since Bi is given by Eq. (3.7), 

/ 
at2 

BO do = e2 J- d~tdo”Ja(c’) G(cr’, a”) J”(o”, 

(3.8) 

+e 2 / do’dc’Va(ot) Ja(c’, ‘!I@ G(c, o’) G(o, ‘9’) 1 
o- 

(3.9) 
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the Hamiltonian becomes 

H= 

2 
.+p J dada ’ J”(c) G(o, o’) J’(o’) (3.10) 

where we have dropped the surface term in Eq. (3.10). Dropping this term is 

valid 2 if the net color charge vanishes. The surface term is: 

= lim 
n-m 

4 A /do’ Ja(c’) /du” Ja(#) 

= lim 
A-- 

+ QaQa 

If Q”#O for any a, this term contributes an infinite energy piece to the Hamiltonian 

(3.8). Hence only color singlet states can have finite energies: 

Qalcolor singlet> = &“I$ = 0 (3.11) 

Using the commutator of x , Eq. (2.29)) we obtain 

[Qa, Jb(u,] = ifabc J’(o) (3.12) 

Equations (3.11) and (3.12) together give another amusing statement 

<SIIJc(u, t)lS2> = 0 . . 

To argue that there is quark-confinement, we must show that the quarks 

and/or the antiquarks in a color singlet state can be pulled apart only at a cost 

of infinite energy. This is provided by the Coulomb (last) term of Hamiltonian 

(3.10). As we shall see, the Coulomb potential between a quark and another 

quark or antiquark is proportional to the distance between them. This linear 
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potential completes the quark-confinement. Of course, as we pull a quark 

away+rom a color singlet state, new quark-antiquark pairs can be created as 

-. 

the potential energy grows. 

The Hamiltoman (3.10) is composed of three (the quark, the string, and 

the Coulomb) terms 

= J t dax (MP-iaI8I)x+ / dcr xt& ‘d 2 

2 
+ % J dodc’x’(a) Tax(c) G(c, a’) xt(ct) Tax(c’) (3.13) 

The quark equation of motion follows from the Hamiltonian. This can be checked 

by taking the nonrelativistic limit of the quark equation of motion (2.10) and the 

gluon equation of motion (2.11). The nonrelativistic Hamiltonian has a clear 

physical interpretation. The first term describes the motion of a quark field 

along the siring. The second term is the kinetic energy of the nonrelativistic 

string, which involves only the mass densities of the quarks. This immediately 

implies that the string is straight because, where x T px is zero, the string 

energy has no kinetic term. The last term is the remnant of quark-gluon inter- 

action. The segment of the string between x(g) and x(@) (i. e. , between quarks) 

has a nonzero color electric flux line. This contributes to the Hamiltonian an 

energy piece proportional to e2. 

In the Schraedinger approximation, the spin structures of the quarks play 

no role. Since it is important for us to retain the quark-antiquark structure, 

we must extract this from the first term of the Hamiltonian. 

Let k and s be the momentum and spin labels where 

. 
X&J-, t) = c W, s) b(k, s) -lEt +iEt e + V(k, s) dt(k, s) e 

k, s 
(3.14) 
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Choose U and V to be the nonrelativistic solutions of the wave equation 

-c, (-ia!180+pM) W = EW (3.15) 

where 

U. for E > 0 
W= 

V for E < 0 

Solving the equation, we obtain 

u= U& s) 
k2 E=M+ZM 

v= vtb s) 

where ol is the first Pauli matrix. For a free quark field moving along a string, 

we have 

= (3.16) 

Using this solution for x(o, t) we obtain (tr = transpose) 

x ‘& = b’(o) b(a) + d’(g) d(c) (3.17) 

,Ja = xtTax = bt(@Tab(a) - dt(o)TFrd(a) (3.18) 

where normal ordering has been introduced; following from the anticommutator 

of x, we have 
I 

bf), b;(@)}t = tiij s(a-o’) (3.19) 
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-All o&er anticommutators among the quarks and antiquarks vanish. The index 

i, j refers to the color (i, j = 1,2,3). The quark gluon interaction term is approxi- 

mated as an instantaneous Coulomb potential term. 

Performing the Foldy-Wouthuysen transformation on Eq. (3.10) to remove 

the oI matrix, we obtain the final nonrelativistic Hamiltonian 

=I- 1 
2 

hi(o)+ d;(c) di(“) F 

e2 +- 2 jdodg’ Ja(o) G&r, (T’) J”(o’) (3.21) 

where Ja( ) ’ g (T is iven by Eq. (3.18). The color index is summed in the Hamiltonian. 

d(o) and b(o) annihilate antiquarks and quarks, and d?(o) and b.t(c) create them 

respectively. Explicitly 

(3.22) 

It is straightforward to extend to more than one flavor, each with mass M.. J 
The Hamiltonian (3.21) is valid provided 2e2/3Mf << 1 for each flavor j. In the 

presence of flavor 

(3.23) 

This implies that a string with mixed flavors can also be an eigenstate of the 

Hamiltonian. 
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The Hamiltonian (3.21) describes both mesons and baryons. For a meson 

stateurith energy EM 

IM> = /dc da’ $(a, a’) b;(u) d:(8) IO> 

H In/r> = EMIM> 

For a baryon state with energy EB 

(3.24) 

(3.25) 
H lB> = EBIB> 

Proper color symmetrization must be incorporated. 

Let us turn our attention to the string motion. Physically the string can 

translate, rotate and vibrate. Since segments of the string may move at rela- 

tivistic velocities during vibrations, we can discuss only rotations and 

(Galilean) translations in the nonrelativistic limit. The string. equation given 

in Appendix A is simplified considerably in the nonrelativistic limit where all 

spin effects drop out. In the leading order approximation, 

Tooh I , o. = (Mxtx) hl o. = 0 , 
(3.26) 

hl, 00 
=rfT?.l-(r=() (3.27a) 

h2 (3.27b) 
, 
o. N% (km) = 0 

A constant translational motion is clearly a solution. For rotation we consider 

ii@, t) = ai+) -Go (3.28) 

then the string equation (3.27) becomes (G2=1) 
. . h 

i rrrn = 0 

:. (;A&) = 0 

where a constant rotation is a solution. 
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IV. THE CHARMONIUM PICTURE 

In- this paper we limit ourselves to investigate the meson state (3.24). 

Physically it is clear that the string can translate, rotate and vibrate with the 

quark and the antiquark at the two ends. In this section we shall study the 

string in the absence of vibrational modes; in this case, the string is essentially 

straight. To show that the charmonium equation (1.1) emerges from the string 

picture, we proceed via three steps: first, we quantize the rotational modes; 

this gives simply the standard discrete angular momentum; then we obtain the 

Schrcedinger equation for the probability amplitude along the string. Finally 

we derive the relation between the bound state wave function in Minkowski space 

and this amplitude along the string. 

A. The String Modes 

To separate the translation and the rotation, let 

@u, t) = u G(t) + z(t) (4-l) 

where g(t) is a unit vector G2=1. This is the form of the solution from the string 

equation. The derivatives are 

it(u, t) = u i-(t) + 2(t) 

alp, t) = G(t) 

The constraint (2.20) becomes 

(4.2a) 

(4.2b) 

Now, the string term in the Hamiltonian can be written as 

(4.3) 

(4.4) 



where 

- nb(o) = bfbi(c) 

n,(a) = d!di(u) 

. 
Since r(t) and T(t) both are independent of (T, Eq. (4.4) can be rewritten as 
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. 
H =&r2+Zi; + s 2 (4.5) 

where 

I = /dcr Ma2 n(c) 

Z = JdoMo n(a) 

/A = JduMn(u) 

(4.6) 

(4.7) 

(4.8) 

where 

ntu) = nb(o) + nd(u) (4.9) 

I, Z and ,u are the moment of inertia, the first moment, and the mass operators, 

respectively. The Hamiltonian (3.25) now becomes, in the absence of vibrational 

modes, 

2 
++- j-dcdr’ q(u) la-d I nad(al) 

. 
+;112+ zr;;++2 

where only the relevant (for meson) Coulomb term is kept, and 

II@‘) = b?(c) Tab(o) 

nad(o) = d?(c) TFd(o) 

(4.10) 

(4. II) 

(4.12) 
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In the effective Lagrangian (3.5), we write the v2 term in terms of Eqs. 
-. 

(4.6)-J4.8). We derive the canonical momenta: 

Equation (4.5) can now be written in terms of the momenta, 

(4.14) 

(4.15) 

=+ (-z,jg w-l Ti 
0 F 

Where W -1 is the inverse of the matrix operator W. 

B. Quantization of the Angular Momentum 

Following Eqs . (4.3)) (4.13) and (4.14)) we have the following constraints 

;.p 0 (4.16a) 

XT= 0 (4.16b) 

As a consequence, the canonical commutation relations of 1 and;with their 

respective momenta -3;‘anda are nontrivial. The commutators must be intro- 

duced in such a way that the constraints (4.16) remain valid. 

Physically the momentum 3 generates translation normal to .r and the 

momentum F generates rotation. To satisfy Eq. (4.16a) it is convenient to 

introduce a new operator ‘f: such that 

/ $c= -&X (4.17) 
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The commutator of 2 and3 is modified to satisfy Eq. (4.16b): 

II 1 x.,Il. = i(6.. 
1 J 

-G) 
1J 1.l 

(4.18) 

The operator 2 obeys the commutators of angular momentum 

c Li,G. . 1 = l ‘ijk 
1 

J k 

c 1 Li,Lj = ie.. ilk Lk 

(4.19) 

(4.20) 

To shorten the discussion, let us write down a differential operator representa- 

tion for 3 and ‘fi:, 

a Li = -ie.. i. - 
1Jk I a;, 

Hi = -i (6.. -1.1.) -G- 
13 1 J ax. 

J 

(4.21) 

(4.22) 

Commutators (4.18), (4.19) and (4.20) are satisfied, where T is the standard 

orbital angular momentum operator. All other commutators among 2, 7, Tf 

and 2 vanish except 

[ 1 Li,ilj # 0 

The constraint (4.16b) remains valid, since 

II 1 Li’I.X = 0 

and 

c I Hs,;.a = 0 

where HS can now be written in terms of x62 =x2), 

HS= 1 
wP-Z2) 

pT2+ ITr2 + 2zX. (G x3) (4.23) 

’ Since we are only interested in the bound state problem, we can choose the frame 

where the translational momentum 3 vanishes (see Appendix B for an alternative 
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approach). The Hamiltonian for the meson bound state then becomes 

-c, HM= J H da bf M-A a;]bi + d!(M-&i$]di 

e2 
.+2 J dude’ nE(c)lo-o’In!d(o) 

; ,uQ(Q+l) 

2(Ip-Z2) 
(4.24) 

where Q=O, 1,2, . . . is the angular momentum eigenvalue. We have restricted 

ourselves to consider the case where the quark and the antiquark both are of the 

charm flavor. We are now ready to derive the charmonium equation (1.1). 

C. The Schrcedinger Equation 

The equation of motion for the bound state wave function $(a,~‘) where 

HMIM> = HM /dc’do’$(a,c’)b$) d!(cr’)lO> 

= EIM5 

can now be evaluated using the anticommutators for bi and di 

(3.24) 

= / -dp dada’ $(o,o’)b$) [M-k??--} bi@)bj(a) djt(“t’)lO> 

= dodo’ b;(g) J 1 
M - &&} $(u,o-‘) d;(c’)lO> 

= Jdmw{(rvr- & 8:) $(a, u’)} b;(c) dj(o’) IO> 

and similarly for the antiquark term. 

$ J dp$” Ip-p’ I “(p) “(p’)lM> “b nd 

la- a’1 Cp(c, u’) b;(o) d;(o’) IO> 

where N=3 for color SU(3). 

(4.26) 

(4.25) 
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To calculate the angular momentum term, we use Eqs. (4.6)) (4.7) and (4.8) -. 

-h [ 1 I b?(u) = Mp2bt(cT) , 

[ 1 Z ,b$a) = Mob ‘t (c) 

[ 1 p, b?(o) = Mb$o) 

and similarly for d(o). Therefore 

IM> 

= &do’ J 2M 
M2(oar’)2 

$(g, u’) b;(g) d;(cr’) lo> (4.27) 

where 

tw -Z2NM> = jdcdct $(~J,(T’) (~(c’~+u’~) - (cHcJ’)~) M2bf(g) d$f),o> 

. 
= J dodo’ +(a, o’) 

is used. Combining Eqs. (3.24)) 

ElM> 

M2(d)2 b?(a) d’(c’) IO> i i 

(4.25)) (4.26) and (4.27) then gives 

(J.-g 1 +mo 
M(u-G’)~ ) 1 Cp(~, a’) t t bi (~)di (a’) IO> 

(4.28) 

Introducing the center of mass coordinate z =y and r =0-o’ we finally obtain 

the Schrcedinger equation for the meson bound state wave function $(a, c’)= $(o- cr) 

E$tr) = 2M- e(r) (4.29) 

Earlier we have set z=O. From Eq. (4.16), it is clear that the longitudinal 

component of the quark translational momentum is still not fixed. We obtain 
, ( a’, 
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zero total momentum by choosing @(r, z) = 4(r), or 

’ 32$(r,z) -0 -4M az2 (4.30) 

so that $ becomes a function of r only. Equation (4.30) completes our choice of 

the center -of -momentum frame. 

D. The Charmonium Equation 

To conclude that Eq. (4.29) is the charmonium Eq. (1. l), we need the 

identification 

$(r) = f(r) =r ‘P(r) (4.31) 

where, in both cases, r measures the distance between the quark and the anti- 

quark. In Eq. (1. l), ‘20. In Eq. (4.29)) r=c-N and - co<r<m. Hence, it 

appears that Eq. (4.29) allows solutions where 

W)Ir=o + 0 (4.32) 

in addition to the solutions of Eq. (1.1)) where 

f(OIr=O = 0 (4.33) 

(Equation (4.33) is required since the probability amplitude +(r) =f(r)/r must 

remain finite at r=O. ) Actually the identification is correct, and therefore the 

additional solutions (4.32) are not allowed. 

First, we interpret Cp(r) to be the probability amplitude along the string. 

To see this, we calculate the following correlation function of In/r> along the 

string 

<M Inb(a) n,(@) 1M> = +2(~-o’) 

where IM> is normalized, 

<MIM> = J dr $2(r) = 1 
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Next we want to calculate the probability distribution in the real physical space. 

,Since,$he string is embedded in Minkowski space, it also can be calculated from 

IM>. For Q#O solutions in Eq. (4.29), $(r=O) must vanish. Hence we can con- 

sider only the S (Q=O) wave case. The correlation function in Minkowski space 

is given by 

E = <IWy.,(~ nd(?r)lM> 

where 

nb, da = Js3mm) “b @) do , 
It is straightforward to obtain 

. - 

and $~(r) must vanish at r=O so that the correlation function 5 (r) remains finite 

at r=O. This completes our derivation of Eq. (1.1) from the quark-confining 

string, where k=2e2/3. The eigenfunctions for the angular momentum are the 

standard spherical harmonics Y Q , ,(k @)’ 
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V. VIBRATIONAL MODES 

7 Inthis. sectisn, we calculate the vibrational states of the string. The 

coupled string and the quark equations are very nonlinear so that there is no 

hope of solving them completely. We content ourselves with the following approx- 

imation scheme. First, we solve the string equation (via the Bohr-Sommerfeld 

method) to obtain the vibrational mode energies as functions of r, the distance 

between quark-antiquark. These are then inserted into the meson equation as 

an effective potential V,(r) between the quark and the antiquark: 

f(r) (5.1) 

where n is the vibrational mode quantum number. For n=O, VoQ(r) is simply 

the orbital angular momentum term plus the linear potential term in Eq. (4.29). 

This approximation is valid if the vibrational energies are bigger than the quark 

longitudinal mode energies. In the presence of both vibrational and rotational 

modes, V,(r) is, in general, rather complicated. We shall assume 

V,(r) = VnW + Y (5.2) 

and keep in mind that due to the negligence of the vibration-rotation coupling, 

states with n#O and Q#O in general have errors bigger than that of the other states. 

In subsection V.A, we provide a naive guess of V,(r). In subsection V.B we 

estimate via Bohr-Sommerfeld quantization the form of V,(r) for the case of 

infinite quark mass. Since for r>2M/k, the siring is heavier than the quark 

masses, the above approximation is obviously inadequate. The finite mass cor- 

rection is introduced in subsection V. C. V,(r) for n=O, 1 are plotted in Fig. 2. 

The two lowest (Q=O) vibrational energies from various estimates are given in 
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Table 1 for comparison. Their wave functions at the origin are also given in the 

form @ (0) 12/E2 normalized to that of the ground state. 

It is clear that the energy levels differ a lot less than the wave functions at the 

.- 

origin for different estimates, as is expected. 

A. The String Motion 

For massive quarks, the quark and the antiquark essentially sit at the two 

ends of the string. In the nonrelativistic limit (i. e., 2e2/3M2 << l), we can 

simplify the string equation (2.14) (Appendix A) by the following approximation: 

Too 
F4B12 0 N - + MXQX 
2h2 

(5 * 3) 

T1l 
F2Bt2 0 N 

2h4 
(5.4) 

Physically, the ends of the QCS are dominated by the quark mass terms while 

the string itself is dominated by the color electric flux line where I’ and h are 

not necessarily close to unity. The quark effects along the string are neglected. 

Using Eqs. (3.6) and (3.7)) we obtain 

Too N kg 00 
+ MXQX 

so that the string equation is given by 

(,,& Took)’ + (Kg T%) N 0 (5.6) 

Away from the ends of the string, we have 
i 

a&& T”> = aa (A gLyp a$) = 0 

(5.5) 

(5 ’ 7) 
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First let us make a very crude estimate of the vibrational mode energies as a 

function of the distance r between the quark and the antiquark. This function is 

then inserted into the bound state equation as an effective potential. This illus- 

trates our approach and also indicates the areas where better estimates are 

required. Since the quark mass is heavy enough so that the ends of the string 

are moving at nonrelativistic speed, we assume they are essentially fixed. 

Next, we assume (wrongly! ) the string speed is also very slow and the amplitude 

of the vibration is small so that Eq. (5.7) reduces to 

&p=o (5.8) 

Then the vibrational energy is given by 

V:(r) - kr = y (5 - 9) 

-. 

where n=O, 1,2, . . . . The superscript c is to remind us that this is a very crude 

estimate. Adding this term to the meson equation (4.29) gives (k=2e2/3) 

(E-2M) f(r) = (5.10) 

where the vibrational energy acts like a repulsive (three-space dimensional) 

Coulomb potential. The two lowest eigenvalues E(N, n, Q=O) are given in Table 1, 

so are their wave functions at the origin. This is clearly an overestimate since 

V:(r) blows up as re 0. Physically V,(r) is expected to remain finite and smooth 

as r-0. The approximation (5.8) breaks down as r-0 since 2 and xf are no 

longer small. 

In the remainder of this section, we treat Eq. (5.6) semiclassically for the 

vibrational modes. First we assume quark masses to be infinitely heavy so that 

,the ends of the string are fixed. Next we improve this approximation by intro- 

ducing the finite quark mass effect. A numerical treatment of Eq. (5.6) gives 

essentially the same results. 
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B. Bohr-Sommerfeld Method 
-- 

Le,t us assume the quark mass to be very heavy so that the ends of the string 

are fixed: 

y;(t) = (t’O’O,.f) (5. lla) 

The equation of motion (5.7) 

R;(t) = (t, 0,0, -$) (5. llb) 

has the general solution (parameters u”, u 3 

Rp(uo, u’) = #(u”) +&‘(I?) 

in the light-cone coordinates 

go0 = s 2 = (aus)2 = 0 

gll = q2 = (aUQ)2 = 0 

Let us choose S”=uo and Q”=ul so that 

(5. 12) 

(5. 13) 

(5.14) 

Rp = (u”+ul, x+-Q> (5. 15) 

Equations (5.13) and (5.14) become 

z2 =z2=1 (5. 16) 

and t=u”+ul . Let o=(u’-u1)/2 and a,(t) be the ends of the string. Equation (5.11) 

becomes (I- 1,2) 

sl(; + “-VI) + Ql(f- u*(t)) = o 

S3(i + o--t)) -I- Q, (;- o-,(t)) = *; 

(5. 17) 

(5.18) 
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From Eqs. (5.17), (5.18) and their time derivatives, it is clear that 9 are 

constants. From reflection symmetry, we can write 

@+ 
=-(T ,a 

- 2 (5.19) 

where the constant a is to be determined. -5 anda have the following periodicity 

properties 

SI(u+2a) = SL(u) = -Q,(u-a) (5.20) 

S3 (u+2a) - S3(u) = r (5.21) 

Q,(u) = f - S3(u+a) (5.22) 

Introducing a new function FL(B) with period 2n, FL = z S,(u) we have, using 

Eq. (5.16) 

S3(u) = fj j6m’ad0 [1-F;(0)2]1’2 (5.23) 

where the prime denotes derivative. Combining Eq. (5.21) and (5.23) gives 

(5.24) 

The energy can be computed in terms of a easily: 

42 42 
u= / dpcgkT;=k/ dpFg 

-a/2 -a/2 I 
gooTo o+golTl o 

, , I 

= 2ka 

where 

Rp = (t ,q$-(7) +q+)) 

(5.25) 

and 
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From Eqs. (5.16)) (5.20), (5.22) and (5.23)) we can write Q3 as 

4\ r a 

Q3@) = z - Ir 0 / 
.+’ dOw (5.26) 

We also note that the largest period T of RI (hence lowest frequency) is 4a. 

We now have all solutions to the classical equations of motion (5.7) subject 

to the boundary conditions (5.11) parametrized in terms of the arbitrary func- 

tion FL(B). Unfortunately this does not extend naturally to a parametrization of 

all of phase-space so that we cannot quantize the system simply in terms of 

these modes. We content ourselves with a Bohr-Sommerfeld estimate of the 

energy levels of one of the simplest possible modes-that is, we choose a form 

for FL(B) that depends on z parameter and then quantize the values of that 

parameter via the Bohr-Sommerfeld method. 

Now we are ready to introduce Bohr-Sommerfeld quantization 

2n7r = (H+L) dt = UT + S 

a/2 
= 2ak(4a) - k $ dt /a,2 dP J=z (5.27) 

where the last term is the action. Defining 

e1 = n-t/2a 

e2 = rp/a 

jf’t = (F;,q) 

Equation (5.27) becomes 

2nn = 4a2k 1 
I 

Fye,+ e2pFt(r+ e1 - e2) 
I 

(5.28) 
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Consider the simplest example for FL (see Fig. 4a) 

For this oversimplified case, Eq. ‘(5.24) can be-solved immediately, 

(5.29) 

(5.30) 

and Eq. (5.28) gives 

2n7r = k(2a)2c2 (5.31) 

From Eqs. (5.30) and (5.31) we finally obtain the vibrational plus potential energy 

Vn for very large quark mass, 

V,(r) = 2ka, 

(5.32) 

For large r, we have 

Vn(r) -+ kr + z r r-+00 

which is precisely the effective potential given in Eq. (5.9). For small r, we 

have (for n#O) 

Vn(r) --) JYZZZ 
r-0 

which is finite, as one might expect. Using the potential (5.32) for Eqs . (5.1). 

and (5.2) we calculate the lowest two vibrational levels and their wave functions 

at the origin. These are shown in Table 1. 

C. Finite Mass Correction 

Since the quark mass is finite, the above approximation breaks down when 

k;c becomes comparable to M. As we shall see, the charm string has 

M/k-5 GeV 
-1 . Hence the finite mass effect cannot be neglected. To include 
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this, we simply extend the above approximation with a linear trial function used 

in Se&on V. B. Let us consider the QCS in the center of mass frame. With the 

same trial function, we have (see Fig. 4b) 

+ 2ti(-dc) = o 

This can be solved for d 

1kr2Jz , d(r,c) =z 
2M+kr&+c2 

(5.33) 

(5.34) 

In the Bohr-Sommerfeld quantization formula (5.27), 2n7r= UT+S, T remains 4a 

while 

U=/ 

;+b 

do (2k) = 2k(a+2b) 
-- ;-b 

and 
;+b 

S = -k 1;; dt /: da@-??@) b 
--- 

(5.35) 

(5.36) 

where b is the correction to a due to the finite mass effect. To the leading order, 

we simply extend the relation (5.30) to (where r is replaced by W) 

2(a+2b) l-c = w+2d= r J- (5.37a) 

or 

2b J- l-c =d (5.37b) 

It is then a simple matter to obtain the following quantization formula 

2nn = 4k c2 { a(a+2b) - 2b(a-2b)} (5.38) 
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Eliminating a, b using Eq. (5.37), we obtain, using Eqs. (5.34) and (5.38) 

V,(r) = U = kril-c2t 
-l/2 

2n7r 

1 

l/2 

kr(r-2d)2 + 4d21 

where d is given by Eq. (5.34) and c2 by 

c2 = 2nn 
2n7r+k[(r-2d)2+4d21 

(5.39) 

(5.40) 

The coupled set of equations (5.34) and (5.40) determine c and d in terms of r 

so that d=d(r). 

Since c2 -0 as r---m and c 2 - 1 as r-0, d is relatively insensitive of c2 and 

hence it is easy to estimate d(r). We note that 

V (r) 2nn -+ kr+- n r r+* 

Putting together Eqs. (5. l), (5.2), (5.34), (5.39) and (5.40), we obtain the non- 

relativistic charm string equation: 

I a2 2M- M -2+ V,(r) + n(m+l) f(r) = Ef(r) 
ar Mr2 

where 

2nn m 
V,(r) = kr 1+ 

kk2-4rd+ 8d21 

and 

d(M,r ,k,n) = 
kr2 an 

4(2M+krcr,) 

(5.41a) 

(5.4lb) 

(5.41c) 
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where n is the vibrational quantum number. For n=O, (~i=l and Vn reduces to 

the linear potential in the charmonium model (1.1). d is introduced as a cor- 

rection due to the finite quark mass. d --0 as M --cm. The effective potential 

Vn(r) is plotted in Fig. 2 for n=O, 1. The two lowest vibrational levels and their 

wave functions at the origin are given in Table 1. The spectroscopy of Eq. (5.41) 

is shown in Fig. 3. 

After the series of approximations we have adopted to derive Eq. (5.41) from 

QCS, the resulting picture resembles closely that of a string with a quark and 

an antiquark at its two ends. 12 

The two parameters of the charm string are the charm quark mass M and 

the color coupling in the form k. They are taken to be 

M = 1.154 GeV 

k = 0.21 GeV2 

. We observe that the wave functions at the origin for the vibrational levels are in 

general smaller than that of the radial excitation levels. Unfortunately, our 

method is too crude for the determination of the wave functions (the energies of 

the levels are more reliable). Since physically, the vibrational mode of the 

string between the quark and the antiquark tends to push them apart, we expect 

the quark-antiquark annihilation probability to be smaller for the vibrational 

levels. 
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VI. DISCUSSIONS AND REMARKS -- 

In,order to compare quantitatively the spectroscopy of the charm string 

with experiments, we must include the leading order relativistic effects, pos- 

sible S-D mixing,- threshold effects (of charmed-mesons and.baryons in the 

e+e- channel) and vibration-rotation couplings. These investigations are beyond 

the scope of this paper. Instead we would restrict ourselves to a simpler task: 

to check the validity of the nonrelativistic approximation employed in this work. 

To be specific, let us consider some typical contributions to the spin-orbit 

splitting. Using the same string variable (4. l), we pick up from the Lagrangian 

terms that contribute to the Hamiltonian in the form E.3 

(6. 1) 

where we have rotated back to the space axis. The first term involves the string 
2% 

acceleration R and is identified as a quark precession term. It is straightforward 

to evaluate their contributions (in leading order approximation) to the bound state 

Hamiltonian in Eq. (1.1) 

H - 
r I (6.2) 

For the lowest P state which has a mass E=3.45 GeV, the total splitting due to 

Eq. (6.2) can be evaluated straightforwardly 

E J=2 - EJ,O - 0.14 GeV (6.3) 

This is small in comparison to the binding energy of the state E-2M- 1.1 GeV. 

Hence our Schrcedinger approximation for the low lying levels are justified 
I 

a posteriori. Of course, the complete fine structure involves other terms as 
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well (e.g., tensor splitting). The splitting (6.3) should be taken as an indica- 

tior+of the size of the relativistic corrections we expect from the charm string. 

Spin-spin splittings do not arise directly as a result of transverse vector 

exchange in this model. Quark spin interactions arises only from quark- 

antiquark annihilation terms in the Dirac Hamiltonian and from virtual exchange 

of transverse string vibrations. Though such terms have not yet been evaluated, 

it is expected that they will be small corrections to the nonrelativistic limit. 

We remark that our estimate of the n=2 level may not be as good as that of the 

n=l levels. Hence it is possible that the 4.46 GeV level in the e+e- channel is 

degenerate with the 4.41 GeV level. 

-. 

Since the vibrational levels are above the charm (i.e., DE) threshold, they 

are expected to decay predominantly into charmed mesons. 

We note that the presence of vibrational levels in the Zc, spectroscopy is 

actually more general than the quark-confining string model. To obtain a linear 

potential from field theory, the color electric flux must be confined, dynamically 

or by hand, to a tube (or a vortex). The resulting tube can in general move and 

vibrate in space. Such motion gives the extra vibrational states in quantum 

mechanics. The rigidity of such a tube is determined by the dynamics of any 

particular picture. Hence it is the energies (not the presence) of the vibrational 

levels that is characteristic of QCS. 

To summarize, we have shown that the charmonium model with a linearly 

rising potential can be derived from a relativistic, gauge and reparametrization 

invariant field theoretic (albeit unconventional) model. Furthermore, in QCS, 

relativistic invariance requires the introduction of string dynamics, which pro- 

vides additional vibrational modes that are absent in the charmonium model. 

This already occurs in the Schrcedinger limit. With the inclusion of all the 



relativistic corrections, we expect many additional terms contributing to ~- 

Eqs. 71.1) and (5.41). Their effects on the mass shifts of the low lying energy 

levels are roughly an order of magnitude smaller than the binding energies. 

However, their effects on the wave function may be more drastic. It is also 

very important to evaluate the effects due to S-D mixing, opening of thresholds, 

and various decay channels. Keeping this in mind, the charm string spectrum 

seems to agree with experimental data’ quite well. 

Though we have discussed only the z,&spectrum as a test of QCS, it is clear 

that the model can be considered successful only if it can be applied to the rest 

of the hadronic spectrum and interactions. As a model of hadrons, QCS appears 

to have the unique property of color quark confinement without the presence of 

massless color gluons or of pure glue states. Further, we expect that physical 

states with light quarks will lie on essentially straight Regge trajectories with 

1 slope cyt- - - -2 13 
27rk .8GeV . 
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APPENDIX A 

TFGe string equation (2.9) 

in the coordinates defined by Eq. (2.31) looks rather complicated. Using Eqs. 

(2.30), (2.31) and (2.33), we obtain 

lh’ 2eB0 + I’(~.~-ti)-02(;.&+) +hu3 

Tol, 

T1’- r2 
2h2 

x7 icxl? - 2eB0@l 
t 

- r2k3 + rv~2(~.bh) + r&ktijy5 

0 r2 
vl, =-2h icu2T - 2eB00!2 rd - -p3 - r+ r;lAmpl - r,(;. &+) 

1 1 t 
vl, =2x I 

icr2rv + rhc 3 - 13ml(;‘.I;lAmt) - y,(G.&Art) x 
‘I 

0 r2 
v2, =-2h xt icu3?$ - 2eBoa3 + y 

1 
2. rv 

a2+J7 V5f-77Y5 

v2, 1 1 t =2x ia37$ - 

hl, o. = ri 

hl, ol = w 
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hl 
, 

11 = rh &.r( = -r&/v 

h2, 00 = v(G. &ril) 

h2, 01 = v(r^- GiArnl) 

hi l1 = h(r”..&Ar’) 
, 

vO = +r (i!. ik.h) 

v1 = +I?(;. GiAmt) 

Notice that T 00 has a term (the time derivative) of order M; all other TapI VJQ, 

h 
4 w 

and v are of lower order in M. o! Note that this string equation must be 

derived from the original Lagrangian (2.6). To derive this equation from the 

Lagrangian (2.32)) a Lagrangian multiplier term for &at= 0 must be taken into 

account in Eq. (2.32). 
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APPENDLX B 
.- 

We note that with fl= 0, the quantization of angular momentum can be easily 

obtained via Dirac’s method. 11 Starting from the canonical Poisson bracket 

under second class constraints 

cpl = ;.g N 0 

we obtain the Dirac brackets 

Pi,PjlD = p.G. - p.?. 
I 1J Jl 

+ 
I 1 
ri,pj D= 6 ij-?il?j 

0 

Introducing xs xc, we obtain 

Quantization follows from replacing the left-hand side by a commutator. 
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TABLE 1 
-c, 
Table of various estimates of the first two vibrational levels (n=l,J!=O) 

and their wave functions at the origin. The latter are expressed as 

I@(O) 12/E2 V where Ev is the mass of the level. For comparison, we 

include $(3.1) and qt(3. 7) as well and the above expression is normalized 

to that of Z/(3.1). 

VJ’) E IS(O) 12/E2 

the effective potential mass in GeV normalized to that of e(3.1) 

kr 
3.10 1 

(n=O) 
3.68 0.71 

kr + : 
4.15 <or 01 

(n= 1) 
4.55 <o. 01 

3.82 0.23 
(n= 1) 

4.26 0.23 

3.96 0.35 
Eqs. (5.41b, c) (n=l) 

4.41 0.32 
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FIGURE CAPTIONS 

1. The physical picture of a meson charm string. 

2. The effective potential V,(r) for n=O, 1. 

3. The nonrelativistic spectroscopy of the charm string. $(3.10) and #(3.68) 

are fitted to obtain M = 1.154 GeV and k = 0.21 GeV2. The dotted lines are 

the vibrational levels absent in the charmonium model. Levels with 

E > 4.5 GeV or B> 2 are not shown. 

4. The trial shape of the vibrating string for n=l. In 4a the ends of the string 

are fixed. In 4b, the ends of the string (where the quark masses are) move 

in such a way that the string’s center-of-mass is fixed. 
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