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ABSTRACT 

Rigorous bounds are described for form factors for scalar and 

spinor particles using sidewise dispersion relations. Bounds on the 

large q2 behavior and the Drell-Yan-West relation are discussed and 

related to the propagator weight function for possible interpolating 

fields for the particle involved. 
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I. INTRODUCTION 

The possibility of a relationship between electromagnetic form factors ; 

large momentum transfer and deep inelastic electron scattering structure fur. 

tions near the elastic threshold was first pointed out by Drell and Yan [l] and 

shortly thereafter by West [2]. This so-called Drell-Yan-West (DYW) relation 

was derived within the framework of a modified field theory model with a trans- 

verse momentum cutoff and has also been discussed in parton models [ 3]. 

Although the relation is plausible and various model dependent rather hand- 

waving arguments have been given [4], no really convincing derivation has been 

made. 

We shall discuss the problem from the standpoint of a sidewise dispersion 

relation for the form factor in which, by the use of the Schwarz inequality, the 

imaginary part of the form factor is related to the structure functions. We will 

show that under certain circumstances, the DYW relation emerges as an 

The critical issue is the high energy behavior of the weight function inequality. 

of the propagator associated with the interpolating field used to describe a 

physical particle. 

Although we were unaware of it at the time we began this work, a similar 

dispersion-Schwarz inequality approach had been taken some time ago by Cooper 

and Pagels and by West [5]. These authors, however, did not have our purpose 

in mind. For the sake of making this paper reasonably self-contained we shall 

repeat much of their formal analysis. Our use of the Schwarz inequality is 

rather different and somewhat more refined. One remarkable feature of the 

inequality is that it connects a quantity defined only in terms of an (arbitrary) 

interpolating field to purely S-matrix quantities. The full consequences of such 

relations is not clear to us, but the free&m of choice of interpolating fields wili 

be important to our results. 
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In Section II we discuss the electromagnetic form factor of a scalar particle 

(a pion, for example) and its relation to the structure functions and the propa- 

gator weight function. Then in Section III the large momentum transfer limit is 

treated under various assumptions. In Section IV, a model theory involving a 

transverse momentum cutoff is described. This discussion is repeated for the 

nucleon in Sections V and VI. A brief summary is given in Section VII. In the 

appendix some results on propagators and interpolating fields within the frame- 

work of a soluble model are given. 

II. SCALAR PARTICLES 

In this section we shall discuss the relation between the form factor of a 

scalar particle and the corresponding deep-inelastic structure functions analo- 

gous to that given in the next section for a spin one-half particle. It will be 

shown that the asymptotic behavior of the form factor can be related to the threshold 

behavior of the structure functions only if the relevant propagator weight function 

falls off sufficiently rapidly. We also show later how a model field theory with 

a transverse momentum cutoff in fact leads to the weight function decreasing 

more rapidly than the same theory without the cutoff. 

The form factor of a scalar particle is defined in terms of the matrix 

element between one particle states (corresponding 

of the electromagnetic current operator j 
P’ 

namely 

to mass m, p2 = pf2 = -m2) 

by writing 

M&P’, P) = x*@‘) TJP’, P) x@) = (4pbpO) 1’2 Oljp( )Ip> , 

or in terms of the conventional form factor F(q2), with q=p-pr , 

MC(@‘,P) = @‘+P),F(q2) * 

In these expressions we regard Tp(p’, p) as the irreducible vertex function 

formed from the current jcl and two scalar field operators and is the analogue of 
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q2a, ts2)rp’, P) in the spin one-half case. The x(p) are “wave functions” 
C 

whose only role is to indicate the on-shell projection operation and are the 

analogues of the spinors u for spin one-half. It will be necessary for us to deal 

with the half off-shell quantity RF@‘, p) given by 

R$*,P) = x*@‘) Tc(@‘,p) + cP2) Q2+m2) , 
C 

where AI+ (p2) is the fully dressed propagator of the scalar particle and, of 
c: 

course, p2 # -m2. 

The structure of Rp@‘,p) is more complicated than that of McI@‘,p) since 

p is off-shell. We have, in general, 

R&P’, P) = x*@‘) 
[ 
(P’+p), F(q2, -p2) + @‘-P), G(q2, -p2) 1 

where we know that on-shell, p2= -m2, G must vanish. This is a consequence 

of the generalized Ward identity [6] which takes the form 

@‘-P),TJP’,P) =e 

or in terms of Ru@‘,p), using x*@‘) $‘(p’)=O, 
C 

(P’-P)~R&P’,P) = -ex*@Y b2+m2) 

from which we find 

2 2 
G(q2, -p2) = 9 

q 

We write then finally 
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where we have dropped the wave function x*@‘) for ease of writing and have 

introduced qp E (P-P’)~. 

Remembering that pf2 = -m2 we see that the coefficient of F(q2, -p2) is 

orthogonal to qp so that we may easily project F from RC1 essentially by multi- 

plying by 

(P2-P’2)q 

7J = @‘+p)P - q2 

Thus 

where 

F(q2, -p2) = V-R/V2 

v2 = 4 p p’ 
[ 2 2-1p.P’)g * 

We note in passing that V2 may be expressed in terms of the variables q2 and 

v (=-p’*q/m) as 

V2 = -4m2 (v2+q2)/q2 . 

The next step is to write a representation for Rcl in terms of field operators. 

It is then elementary, following Bincer [73, to derive a dispersion relation for 

Fts2 , -p2) in the variable s E -p2, for fixed positive q2. By standard methods 

we have 

R,$P’.P) = i(2p;) m 
J 

d4x ,@’ x @I EJO), J’(x;l lo> e(-x0) 

Here J(x) is the “source’f of the spin zero field which we may imagine to be given 

in terms of suitable interpolating field $(x) by (m2- 0) C@(X)= J(x). We ignore 

equal-time commutators. The absorptive part of RC1 from which the imaginary 
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part of F(q2 , -p2) is to be computed is 

ImRP@‘, p) = i (2pb)li2/d4x eip’ x <p’ I[jp(0), J’(,;llo, 

= ; (Xp$ v2 c (2~)~ 6@-p,) <PI IjPln>alJtlO> 
n 

Because J is a scalar operator, all of the states In> have total angular momen- 

tum zero. Using the relation between F (q2, -p2) and RP we find 

Im F (q2, -p2) = ; (2pb) 1’2 1 v2 5 (2~)~ 6&1-p,) <p’ IV. jln><n I JtlO> 

We use this form to bound Im F by using the Schwarz inequality: 

bW2 2 ---& C (2~)~ 6@-p,)(2pb) I+ IV. jb I2 
n 

X c W-J4 6&w?,) la I J’lO> I2 
n 

The first factor can be expressed in terms of structure functions which we define 

as follows: 

C (2703 6@-pn)(2pb) I+ IV* j10>12 = e2m VPWPvV1, 
n 

and e2=47ro. Note that W,, W, are not the true full structure functions because 

of the restriction of zero angular momentum on the states In>. 

The second factor in the inequality for IImF I2 is related to the weight 

function in the KXlle’n-Lehmann [8] representation for the propagator for a spin- 

zero field. We write 
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and remark that this is related to the usual weight function that appears as 

mdK2p(K2) 
/c2+p2 -2 

with 

t 
p(-p2) = C (2@36@n-p) <O l@l maI+ I07 . 

n 

The relation between F and p is simply 

P(-P2) = tm2+p2j2p t-p2) 

since J= (m2 -D)#. Note that while p(-p2) contains a single particle contribu- 

tion 6(p2+m2), this is absent from F(-p2). 

Putting all the pieces together and writing p2 = -s, we find 

IImF(q2, s) I2 5 
7r2e2m --&y(s) v.it.v . 
(v) 

Note that 

v.w.v = (-V2) 
1 

y2,q2% 
q2 

2-c1 9 
1 

and therefore 

1 p”(s) IhnF(q2, s) I2 ( 
r2e2q2m 2 2 

4(v2+q2)m2 
qw2 - IT1 

q 

In terms of the longitudinal structure function EL defined by 

2 2 
GL=Jq-tv2-%$ , 

q 

the inequality may be expressed as 

IImF(q2, s) I2 5 
r2e2q2m 

4m2(v2+q2) 
iir,m ’ 
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Finally, one may introduce the usual structure functions 3 and the variable 

w = 2mv/q2 and write 

22 
lImF(q2,s)12~ ll 

w q +4m2 
ZL(W s2) ;w 

We assume that F(q2, s) satisfies an unsubtracted dispersion relation: 

F(q2, s) = $’ LIZ ds’ ;y;$’ ‘2 . 

The physical form factor corresponds to setting s=m2 and we write this as 

simply F (q2) : 

IF(q2)l c ‘Im ds IImF(q2, s)l 
- ’ 9m2 s-m2 

CQ 

- / 
ds gL 

-l/2 ;m@) 

-c e 
9m2 s - m2 (w2q2+4m 2 l/2 ) 

Recall that 

s = -p2 = -(p’+qj2 = m2-q2+2mv = m2+q2(u-1) 

This inequality relates two quantities defined as S-matrix elements and hence 

measurable, to the field theoretic quantity p”(s) which is defined in terms of an 

arbitrary interpolating field. We shall try to use this arbitrariness in the 

weight function p” to achieve the most restrictive inequality possible. As an aside, 

note that since we cannot restrict the sum over intermediate states to spinor 

states only, it is not possible to discuss the extra power of (u-1) found in models 

in which the pion is a bound state of spinor quarks compared to scalar quarks [9] . 
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III. LARGE MOMENTUM TRANSFER 

In order to discuss the behavior of 1F(q2) 1 for large q2 we must make some 

assumptions about gL and about F. We note first that in the scaling limit (q2dmI 

w fixed) the so-called Callen-Gross relation [lo] w g2 = 2 @!I is expected to 

hold, at least for the true structure functions which involve contributions from 

states of all angular momentum. The deviations from this relation can be 

expected to be of order l/q2 and thus of the same order as the term 2mg2/v 

that appears in .ZT . We shall first take this, in fact, as representative of gL 

We 
.u 

in the large q2 limit in order to have something concrete to work with. 

have then for large q2 and with the above assumptions 
- 

IF(q2)lL & me/” dsq2 
9m2 s-m2 c 

1’2 .Z2(o);(s) 

I[ 
s-m2+q2) + 4m2q2 s-m2+q2 

. 1 m 

where we assume that g2 indeed scales and is a function of w only; we have also 

expressed the integrand in terms of s. We assume that 

iF2(w) - (W-qP w-l . 

Dropping the 4m2q2 term in the first bracket in the limit of large q2 we have 

Since g2(~)/(w-l)’ is finite at w=l we conclude 

E+1 
IF (q2) I 5 const/(q2J2 

provided 

J 

co g-1 
2 ds (s-m2)2 [F(s)]~‘~ < ~0 

9m 
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If ps -’ for large s, the integral will converge for r >p. For the pion, it is 

believed that p=l so that this limit contradicts the usually accepted quark counting 

lore on form factors which predicts F -(q2)-l whereas we have the bound 
2 -3/2 

F<(q) * 

Alternatively, it is easy to verify that if for some reason gL(w, q2) - G(w), 

rather than mg2(w)/v as q2--Eo, and if G(w) -(w-l)’ near ~=l, the limit would 

be IF(q2)l <(q ) 2 -cP+w in agreement with the DYW relation. We shall see 

shortly that in a model field theory with a transverse cutoff that one can expect 

a p”(s) that goes like l/s or better so that our optimistic estimates may be valid. 

If however the integral over p does not converge we must proceed in a 

slightly different fashion. We go back to our first case, gL-rng2/v and write 

IF(q2)l < $2 me 
q2 

3/2 
Lq’2(&(s)]1’2 

and scale the s-variable according to s-m2=xq2, w-l=x so mat we may write 

and if we again say 

?d’2(1+x) - 2’2 x--o 

as xq2--m 

so that if r <p we may set the lower limit to zero and obtain 

L+1 
IF(q2)1 5 cnnst,‘(q2)2 
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which is a fine limit but has nothing to do with the structure function threshold 

behavior. Note also that we recover our previous result by imagining that r >p 

in which case the lower limit cannot be set equal to zero and one must integrate 

by parts a sufficient number of times before passing to the limit. 

IV. A TRANSVERSE CUTOFF MODEL 

It is interesting to look at the propagator spectral weight function, p (m2), 

in a theory which resembles some of the softened field theoretical models fre- 

quently discussed in connection with parton models [3]. In particular we want 

to study modifications in p (m2) for large m2 induced by the introduction of a 

transverse momentum cutoff. 

As an example we consider a trilinear scalar coupling and the following 

familiar approximation to the Dyson equation for the unrenormalized propagator 

Af(p2) for a field with bare mass MO interacting with another of bare mass ~1: 

[ 1 Afb2) -’ =p2+M; - wP2) 

g: Il(p2)=iJ- d4k Al[(p-k)? 

(27r)4 k2+p2-ie * 

Our approximation consists of neglecting vertex corrections and propagator 

corrections for the field of mass ~1. We have then only the wave function renor- 

malization, Z , of the mass MO field and a mass renormalization. 

Renormalized quantities are introduced in the standard way: 

A(p2) = “2’ Af(p2) , 

- nm 2 ’ Y 
0’ Ip2L_*v, 

g ?=z2gi , 
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M2 = M; - Il(-M2) . 

It is further useful to introduce @p2) ‘Zll(p2) which then involves only the renor- 

malized quantities g2 and A. In terms of these we have 

A-+p2)= p2+M2 - ?;(p2) - ii(-M2) - (p2+M2) % (-M2) 

z2=1+A 
dp2 I = 1 + $(-M2) . 

p2=,M2 

It has been shown by Saegner [ll] that A(p2) has a KEllen-Lehmann representa- 

tion 181 

A(p2)=&m2p(m2) , 
0 p2+m2-ie 

p (m2) = 6(M2-m2) + p ,(m2) 8(m-M-p) . 

Writing p2 = -s, we can deduce a very complicated nonlinear integral equation 

for oc(s) using on the one hand the above representation for A(p2) and on the 

other hand the relation between 
-1 A and ii. Thus we have 

Im A-‘(-s) = - 

from which it follows that 

p c(s) = J+i$ Im I”i<-s) . 

To proceed, we shall express c(-s) in such a way that we may easily insert 

a transverse momentum cutoff. We introduce an arbitrary quantity P which 

serves to define the longitudinal direction of the four vector p and write for p 

and the integration variable k the following (p2=-s): 
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, 

d4k = d2kL dk2 & . 

We note also 

k2 
@&)2 = + _ s(l-x) _ + . 

The limits on k2 and x are --Q) to +oo. We find then for 0(-s) 

1 -1 
k2(2)+m2-ie . 

Evidently, if x > 1 or x < 0 both poles in the k2-plane lie in the upper half-plane 

and the k2 integral is zero. This restricts x to the interval 0 to +l and the k2 

integral may be done by closing the contour in the upper half-plane, say, picking 

up the pole at k2=-p2+ie. We find 

5(-S) = -& /dm2 p (m2) /d2kl 4’ g 
m3 

-k2 2 l-x ++p - 
X 

-s(l-x)+m2 
I 

-ie 

Without a cutoff, i^i is, of course, logarithmically divergent. However, the 

imaginary part is finite and that is the quantity of interest: 

Im@-s) =-?& /dm2p(m2)/d2$/0 
m3 
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where we use the &function to do the x integration (both roots lie in the interval 

0 to 1 and the upper limit on the ky integration is a reflection of the physically 

obvious fact that s > [[(m2+kf)1/2+ fp2+kf)1/212 ). Here p, is the relative momen- 

tum given by 

4sp,2 = [s - (m+p)2] [s - (m-p)? 

The fact that we must have pt > 0 implies the upper limit (& - p)2 for the m2 

integration. 

We are particularly interested in the behavior of Im x(-s) for large s with 

and without a transverse momentum cutoff. Let us study then the k 
1 

integral 

and introduce a cutoff function f The quantity of interest is 

F(t)=fdr~ , 0 - 
where we have written t=pz, r=k2 

I’ 
With this notation, 

In-l ii = -2- / 6 -/-02 
b2 P (m2) F (P:) . 

16a& 0 

If there is no cutoff, f(T)=l, the T integral is trivial, 

F1=jtdT 1 = 2 Jt 
0 JG 

and 

Im q-s) = -2- / 
t& -/Q2 

8n& 0 
b2 P (m2) P, 

-&pm2 p (m2) 
0 

independent of s provided the integral over u ,exists. 
2 2 If p (m ) -l/m for large 

2 
m, Im 2(-s) would increase logarithmically in (-s). If we assume p goes to 
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zero more rapidly so that ImEl approaches a constant, we can use our rela- 

tion between p, and ImE to discuss the asymptotic behavior of p,. With this 

assumption we conclude 

2 
u cl = * Im F.i!.i!(-s) -L const/s2 

since A(-s) - l/s for large s. The constant of proportionality can be expressed 

in terms of the wave function renormalization Z using 

Z-l = J dm2 c(m2) , 

as 

CT --AC.1 
cl 167r2Z3 s2 * 

Next we consider what happens if there is a transverse momentum cutoff. 

It is obvious that if f(r) is positive and goes to zero rapidly for large T we will 

have 

This leads to 

and finally, for the asymptotic form of PC to 

2 J 
dT f(T) 

PC@) - &T O s3 * 

We see that the transverse n?omentum cutoff has gained us a full power of 8 in 

the rate of decrease of p,(s). 
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If we lift the restriction on the positivity of the cutoff function f(T) we can, 

of course, cause the integral F(t) to fall off much more rapidly than the l/Jt 

we found above. We have studied some examples just to illustrate that one can 

obtain almost any desired behavior for F(t). 

Given F(t), f(t) can be immediately found by quadratures: 

f(t) =& dTFO 
0 G 

--& LmdT F(T), t-03 

The formula for F(t) is called Abel’s equation for f(t); the inversion is easily 

carried out by Laplace transform methods. The limiting form for large t holds 

for any positive F(t). such that the integral exists. We give two examples: 

(1) 
-Xi? 

F(t) = e 1 
AJi ’ 

f(t) = 6(t) +j;dt d e-At/2 Io (F) 

(2) 
a4 e-a2/4t -a2/4t 

F(t) = 2J ’ Jr 32 
f(t) = * , 

There are many more examples that can be constructed using tables of Laplace 

transform but the general pattern of the cutoff functions, f(t), is clear: They are 

positive for small argument, go through zero and then approach zero for large 

agreement like -t -3/2 or faster. Although these cutoffs are admittedly some- 

what weird, since one does not understand the mechanism of transverse momen- 

tum limitation they should not be necessarily discarded out of hand, and one 

should be prepared for the possibility that the spectral weight function of the 

propagator corresponding to some choice of interpolating field might decrease 

rapidly. Note that an oscillating cutoff function does not force the weight function 

in the JJr()i;agator 1,~) gr3 :iegati-v-e. h our eA~;;~~,l~s i;iieg are 31;\~ays positi~u~c ~0 
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that the theory is perfectly consistent at this level. This is to be contrasted 

with the regulation procedure of Pauli and Villars [12]. 

V. NUCLEON ELECTROMAGNETIC FORM FACTOR 

The sidewise dispersion relation for a nucleon were given long ago by 

Bincer [6] and we shall lean heavily on his results and reproduce many of them 

for ease of reference. The fundamental quantity of physical interest is the 

matrix element of the electromagnetic current density operator jcl(x) between 

physical nucleon states of four-momenta p’, p and spin s’, s: 

<p’, stlj,(0)lp, s> 

which is generally written in terms of form factors FI, F2 as 

F ,(q2) + icpLvqy F2(q2) u(p s) 1 , 

where q=p-pt and u, ii are spinors describing the initial and final nucleon states 

[13]. The Pauli form factors are related to the more popular form factors GE 

and GM defined by Sachs [14] by 

2 
GE=F LF l-2M 2 

GM =F1+2MF2 . 

We shall be interested in writing a dispersion relation in what is essentially 

the mass of the nucleon which entails taking it off its mass shell. To this end 

it is useful to introduce the proper vertex function Fp(p’,p) which describes the 

interaction of off-shell nucleons and photons and define a new quantity Rcl in 

terms of it: 

RC((Prs’;p) = $p’s’) iFcl(pl, p) SF (p)(iy.p+M) , 
C 
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- 

where % 
is the renormalized nucleon propagator. The precise relation be- 

C 
tween Mp and RC1 is 

M&.P’s’, P s) = q2 + 
C 

tq2) R&p’s’;p) Us) 

= iq2 + (s2) ~@‘s’)rp@‘. P) NW , 
C 

where AP (q2) is th e renormalized photon propagator. We will drop the product 

q2AP 
C 

(q2) since it is unity to lowest order of electromagnetic interactions. The 

vertei function Pcl@‘, p) satisfies the Ward-Takahashi identity [61 

i(PWF( rc(w, P) = e $ W) - s1 (P) 
[ 

, 
C C 1 

where e is the nucleon charge, which leads to 

qgRC1@‘s’;p) = e ii(p’s’) (i-y. p+M) . 

This condition enables us to write the structure of the spinor Rc( as 

Rcc@‘s’;p) - e ii@‘s’) qC1(M+ ir.p)/q2 = 

where 

Ah = (W-A iy*p)/2W , p2,,W2 , P’~=-M~ , 

and 

F; E Fitq2, M, *:w) * 

The form factors F: evidently coincide with the physical Pauli quantities F1(q2), 

F2(q2) if we go onto the mass shell W=+M. 

The next step in our analysis is to write a representation for Rp in terms of 

field operators from which, as Bincer [7] h3s .shonln, dispersion relztinns for 
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the Ff as functions of W may be derived, holding q2 fixed and positive (space- 

like). Standard reduction formalism leads us immediately to 

Pb 
112 

RP@r~‘,p) = i M J d4xeip’xcprs’l[i,(0),~(x;] IO> 0(-x,) , 

where we have dropped possible equal-time commutator terms andT(x) is related 

to the interpolating field for the nucleon, #, by 

The absorptive part of RP from which the imaginary parts of the Ff are to be 

computed is 

C (27r)4 S&3,) qrsrljpln> <nIT(O) . 
n 

It is important to note that the states In> are all of total angular momentum l/2. 

We must now project out the imaginary parts of the Ff (it is at this point 

our work begins to deviate from that of Ref. [ 51). To do this we multiply by a 

“polarization vector” l P and form 

c eP ImRP A,u@‘s’) = 
S’ 

. 

In order to be able to solve for ImFI and Im F2 separately we must find another 

combination: there 31-e no nther rectors in the problem so we bring oae in from 
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the outside, call it t. We then form 

c l P ImRPAXiY.ty5u(p’s’) 
S’ 

= Tr[ M2cp’ b. (e-q~)ImF~+iePcpyqVImF~]~ Py-tr5] 

A 
= - MW ~pvw (M+AW) ImFi 1 , 

and find 

ImFf= c eP ImR A 
C 
A?+Bfir.tr5 

PA 3 1 UtP’S’) , 
S’ 

where 

AA = x MWW+hW) 
1 (M+hw)2+ q2 

9 

k. (p’-qyjJ1 

B;=-A 

A; = -A ““z 
(M+AW) +q2 

E. (P’-clyj-l 

Bx= 
-1 

2 - A MWw+hWr II (M+hw) 2 + q2 Epvho p;pv yu 1 . 

We may choose the vectors E 
P 

and tcL at our convenience though neither of them 

may be parallel to q . 
P 

We will make a definite choice later. 

We now use our expression for ImRP in terms of the sum over states and 

find 

z (2~)46@-pn)cp’srle. jln>cnl~10~Ah[A~~~~t~5]u@rsr) . 
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This expression will be bounded by using the Schwarz inequality on the double 

sum on the right: 

IImF;12( ; Icp’s’lc. jln> I2 

. 
x c ml4 b(pn-P) IalT IO> 

s’n 4 
A?fiy.tYs 1 u(p’s’)12 . 

The first factor can be expressed immediately in terms of deep inelastic elec- 

tron structure functions defined by 

f C 
s’n 

(27d3 6&3,-p) ($9 Icp’s’ le. jln>12 = e2$Epvev 

with 

and e2=4a o-47~/137. We should note that in view of the original restriction on 

the states In> to be of total angular momentum l/2, %I and G2 are not the 

customary structure functions which include states of all angular momenta. We 

can of course weaken our inequality by allowing the sum to include all states and 

make the replacement WI --WI and W 2 ---W2 where WI, W2 are the familiar 

quantities. We will return to this point later on. 

The second factor in IImFX12 is related to the weight functions in the Kalle’n- 

Lehmann [lo] representation of the propagator of a spin-one half field. We define 

9; E c $p’s’) 
s’n 

5 B ;* 1 A,(2793 6 (P,-P) 

x <OIf]nxn iflO> + [Af+iy.ty5Bf] u@‘s’) , 

and 
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To see the precise relation of the p’s to the conventionally defined propagator 

weight functions, we recall that 

SF (p) = (iy.p+M)-’ Jm dWr2 [I 6ir- P-W p ,Wf2) - P,(W’~) 1 
C W+P) 2 v2 -W2-ic) 

where 

and 

c (ad3 6&&-P) <Ol$ I 
n 

n> al? IO> = (-iy.p+w) P,(W2) -P2W2) 

We find 

P, = 2WP1-P2 

P, = P2 

and so when we use the relation between $ and f, namely (~p3/8x~+M)$ = f, we 

see immediately that 

ph = w-hMj2ph . 

Finally we recall [lo] that 

P2 I. 0 

Thus 

and in particular 

;+ 5 (w-M)2 2wp 1 . 
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The latter relation is used in Ref. [5] together with the definition of the wave 

function renormalization constant 

z1 
‘L I+/-* 

(M+N2 
dW2 p ,W2) 

= 1 +JW 
W-94 2 

dq-Ip,+ P-1 * 

The sum over the spin s in the definition of 9; is trivial and we find 

+ 4B;*B;p’.tt.p 1 . 
The vector t enters only in the denominator of the Bfrs and explicitly in 9’;. 

It is not difficult to show by going to the rest frame of pr that 9; is minimized 

by choosing p’- t=p: t=O. In addition the choice t- E= 0 maximizes the B) 

denominator. 

We have then 

+ Bh*BA t* t 1 j j , 

and in terms of 9) and the tensor @ we have 
PV 

lImF~12 5 2n2e2 E*.%- ~9’; . 

We shall now choose the vector E in such a way as to minimize the product 
h E*.W*EtF.. 
J 

To this end work in the rest frame of p’, and note first that we may 

as well choose E- q= 0 because any component of E parallel to q annihilates % 
PV’ 

The following kinematic relations obtain: 

p’ = (3, iM) 

q = ( 01, qzt QO-W > 

p = (Oi, q, , i(W2+qz)l’2) 
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v E -p’.q/M = q. =pO-M 

W2 = M2-q2+2Mv = M2+q2(w-1) 

w = 2Mv/q2 , l<w<c+J . - - 

In our chosen frame, tO=O, l O=qZ ez/v, E. t=t*p=O and we may choose E 
1 

parallel to the x axis, tL parallel to y. 

Then we have 

N 
E.W.E =wl “( 

2 El- e; q2/v2 > + G2(l+q2/v2) e; 

and writing l Z = cos 6, E = sine, our job is to choose the angle 6 to minimize 
1 

IIm Ftl. The result of this elementary calculation is most conveniently expressed 

in terms of what might be called the longitudinal structure function GL defined by 

2 2 
fqLE N v+q 

q2 
w2 -Qo . 

The positivity of WL follows from the fact that E. W. E > 0 for any vector E and in 

particular for the angle 8 = 0 in our frame. We find 
0 

L JL J 
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It is interesting to compare these bounds to the ones given by Cooper and 

Pagels [ 51. That our bounds are an improvement can be seen by fixing @, and 

choosing EI to maximize the right-hand side of the above inequalities. The 

two maxima are achieved at different values of the ratio (%,fi2), and these 

weakened inequalities are 

. 

Since these bounds are achieved (in the scaling limit) only if @,E2) is 1/2(~-1) 

for the former and l/2 for the latter, they are probably considerably poorer than 

our previous bound. Finally these can be further weakened to the Cooper-Pagels 

bounds by using the fact that 

We may also write our expressions in terms of the analogues of the usual 

deep inelastic structure functions which we write as 9 I and Z2 to avoid confu- 

sion with the Pauli form factors already introduced. Thus 

g,=Mi$ 
1 

?F 2 = vi?, 

&FL = M@, =++2M/v)~2-231 

Another useful set of relations is obtained by introducing the so-called longitu- 

dinal and transverse cross sections: 

El = (v - q2/231) FTQr2Q 
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%, = (v - q2/2M) z2 2 
b +q 1 

(i-r* +9/4rr2ol 

GL = (u - q2/2M) gL,‘47r20 

and in terms of E=FLfiT we have 

ug2/2 s1 = (1+& v2/(v2+q2) 

g2+gl=f Ii - (l+s2/u2).@, . 
(l+Ri) 

Note that if these “cross sections” gT, z for space-like photons behaved L 

like conventional partial wave cross sections for fixed q2 as W2 -00, namely 

Z - 1/W2, recalling VW w2 , we would find gl - constant and 3 2 - l/W2 as 

W2-% Finally we remark that it is part of the folklore that for the experi- 

mental quantities, i.e., involving summing over states of all angular momenta) 

R is either zero or very small q as q2 -Q) , w fixed and that q2 Q, -0 in the 

same limit and also for 

our expressions for the 

lImFA12 1 
*2,2 5 

IIm Fh12 2 
T2e2 5 

fixed q2 as W2 - 00 151. In terms of fi and gl, say, 

Im Ftls become 

In the next section we shall use these expressions for the imaginary parts 

of the form factors in the appropriate dispersion relations and discuss the large 

q2 behavior. 
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VI. LARGE-q2 BEHAVIOR OF THE NUCLEON FORM FACTORS 

Bincer [‘?I has shown that the Pauli form factors FF=Fj(q2, M, AW’) satisfy 

dispersion relations in W, and as we have noted, the Fi(q’, M, M) are precisely 

the usual physical form factors Fj(qz). We shall make the fundamental assump- 

tion that the combinations 

g Fj(q2,M,w) + Fjtq2,M,-W) , [ 1 
~ Fj(q2, M, w) - Fj(q2, M, -w) [ 1 

satisfy unsubtracted dispersion relations of the form 

F(W2) =; /m 
W+N2 

dW12 Im F (Wf2) 

from which it follows that 

F;(W)= Fj(q2,M,W) =;Jm dW’ f 
W+P) 

F;(W)= Fj(q2,M,-W) =; O” 
s 

dW’ 
w+/J1 

We are ultimately interested only in F;(W4-M) and it then follows that 

The assumption of an unsubtracted dispersion relation for F2(q2, M, W) probably 

scares few people but this assumption for F ,(q2, M, W) is more unusual. One 

usually tries to build in the boundary condition that F ,(q2=0, M, M) = e and it was 

assumed by Bincer and by Cooper and Pagels that the more general relation 

F1(q2=0,M,W)=e holds. It is our feeling that this is not absolutely necessary 

and that the unsubtmctcd rclnti_on is tenable (esycia, . 11~ ii: comoosite +AeOries!, I 
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Dealing as we do with absolute values and inequalities it is sufficient to study 

the form factors in the abbreviated form 

lFj(q2)l 5 ; Ia 
P+/4 

dW lJmFfW)I(W-M)-l , 

since the two terms in the dispersion relation appear to be of the same order of 

magnitude. 

The large q2 limit of this inequality will now be considered. Since 

W2 = M2 + q2(u-l), the variable w will be forced to 1 for large q2 if the W integral 

is sufficiently convergent. Thus the large q2 behavior of the form factor will 

depend upon the threshold behavior of the structure functions gi. In the thres- 

hold limit, it is also reasonable to expect that the higher angular momentum 

states present in the full structure function, the Ps, should become less impor- 

tant. Hence the u near 1 behavior of gi and gi is expected to be the same. 

It is useful to denote the following limiting behaviors: 

p+W2) - w2rr * 
If E does not grow faster than q2 in the threshold limit, scaling arguments such as 

used in Section III on the dispersion integral lead to 

IF ,(s2) 15 (s2)-N 

where 

if rip+; 

N=$p+l) if r>p+$ ; 

Thus if r is greater than p+1/2, that is, if p+ is sufficiently convergent, then the 

D1-V; relation s;~tc.!~~;~.te~ th.C ine~iali?~ %?<I Y z 1 i:? (p* 1). 
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A similar analysis can be carried out for F2 and one finds (assuming that 

q2E < W2): 

IF2(q2)l 5 (q2)-N-1 

where 

if 3 r <p+y 

N=&p+l) if r>p+z . 

As before, if r is sufficiently 

netic form factor. The extra 

L ‘6 

large, the DYW relation is satisfied for the mag- 

power of (q 2 -’ in IF21 relative to IF,1 actually ) 
9 

insures that GE and GM have the same asymptotic behavior in q” as required. 

V. CONCLUSIONS 

The alert reader will have discerned by now that the inequality used here, 

while it is quite strong from an abstract point of view, is quite weak when 

compared to the predictions from simple composite models. The resulting 

rigorous bounds on the asymptotic behavior of the form factors are not useful 

unless one can find an interpolating field whose weight functions in the K?ille’n- 

Lehmann representation fall very rapidly in W2. Since the inequalities assume 

nothing about the composite nature of the particle involved, one might hope that 

if this information is used, it would be possible to find an interpolating field with 

the required convergence. Unfortunately, the weight functions for a composite 

field are a priori expected to behave worse for large W2 than for an elementary 

field (e.g., so that Z2 can vanish). This situation is discussed and clarified in 

the Appendix for an exactly solvable model. While the above expectations are 

found to be usually true, interpolating fields with arbitrarily good convergence 

properties were found. However, we feel that in the realistic situation, it may 
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not be possible to find a local interpolating field with improved convergence 

properties. This remains a very interesting open question. 

The physical origin of our basic inequality (and perhaps the reason why it 

is not always very stringent when compared to an explicit composite model) is 

the following. In any bound state picture, the space-like momentum of the 

photon is absorbed by a constituent which must then propagate far off shell 

(-W2). The intermediate configuration is one off-shell particle with the remain- 

der of the constituents on shell. The constituents must then interact, thereby 

sharing the photon momentum, and finally binding into the final bound state as 

prescribed by the dispersion relations. The inequality arises by replacing the 

intermediate configuration by all possible momentum partitions that are present - 

in the propagator weight functions at fixed W2. This can grossly ovorcount the 

number of intermediate states. 

There are two features of our generalapproach that deserve comment. The 

first feature involves the purely formal question of the full impact of the many 

relations between S-matrix quantities and purely field theoretic quantities as 

exemplified by our basic inequality. The second feature is purely phenomeno- 

logical: what are the full implications on the basic theory if the DYW relation 

is found to hold experimentally for strongly interacting particles? These ques- 

tions deserve further study. In any event, one sees that the Drell-Yan-West 

relation is certainly compatible with the general inequality. The general theo- 

retical problem in tightening this inequality is to find the particular interpolating 

field that has the most convergent propagator weight functions in any given theory. 
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APPENDM: SOLVABLE MODELS 

The purpose of this appendix is to discuss in a simple model the asymptotic 

behavior of the KZllen-Lehmann [8] weight function for a propagator, on its 

dependence on the particular interpolating field chosen, and all of this on the 

composite nature of the particle involved. Surely one of the most studied soluble 

models is that due to T. D. Lee [15] , and it will prove very instructive for our 

purposes. The Hamiltonian for the coupled V-N system is written as 

where 

cd2 = p2+h2, and Q is the quantization volume. 

The solution in the V or NB sector is easily obtained. The solution in the VB 

and NB8 sector has been given by Amado [16]. One finds that 

z = 1 - g2 ,cp,(AM) 

2 
6M = -s 9$&M) 

where AM = MV - MN and 

LF(Z) E ch (z-w)-” . 
2ws2 

The explicit solutions for the physical V particle and NB scattering states are 

straightforward to determine but we shall not bother to write them down. How- 

ever, the behavior of the solutions in the limit Z=O is worth commenting upon. 
n 

In this limit, with gZ and Mv fixed, the bare V-particle mass becomes negatively 

infinite, and the V-field disappears from the Hamiltonian. The effective inter- 

action term achieves *C:e form of a four field interaction, namely $&,;~+A, 

with h-1 = Yl( AM). 
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The quantity of major interest here is the spectral function for the V-particle 

defined by 

u(E) = c 6(E-MN-a) l<Ol,vlN0~)>12 
k 

or 

u(MN+cd) = -.+209) I<ol*vlNep>12 
m2 

where %Pv is the chosen interpolating field with the quantum numbers of the V- 

particle. The wave function renormalization constant “Z”, defined by the spec- 

tral representation, is given by 

(wz”)-l= 1 + Irn dE (w, 
MN+P 

and its value clearly depends upon the choice of the interpolating field. This 

choice is by no means unique. We hasten to point out that while the propagator 

is not unique, neither are the vertex functions. All physical on-shell quantities 

are, of course, independent of the choice of $v. A discussion of this situation 

using dispersion methods has been given by C. Albright [17] for this model. 

The simplest choice is $ v = I,$, but an equally reasonable one is Qv = z/J~, 

or even some linear combination of these two. We shall shortly consider a more 

general combination of $N and ak as an interpolating field but let us first consider 

the particular combination 

qv = a&, + beNA , 

where a and b must satisfy the normalization constraint 

<Ol*vIV> = 1 = a+bgPl(AM) . 

A simple calculation leads to the result 

“Z” = z [aw,Yoz]-l . 
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In the limit b=O, one finds the expected result “Z”=Z, while in the opposite limit 

of a=O, “Z” = (I-z),~~/,~~~~ 5 (1-Z). By choosing the value of a and b that 

maximizes “Z”, one finds that 

11z11 < 11z11 = 
max z + wk4/970~2 * 

Therefore it is possible to choose an interpolating field so that the wave function 

renormalization constant “Z1’ does not vanish even if the basic Z of the theory 

does vanish (thereby indicating a composite V-particle). 

The behavior of the weight function a(E) for large E depends upon the choice 

of the interpolating field. For example, the above interpolating field yields the 

limiting result 

o(MNt~) N !Lz!d [ag(zw+g2~l(W)-1 + b] 

2 

ew2 
. 

If Z=O, both terms in the square bracket produce a constant behavior, and its 

value is independent of the values of a and b. In the case of an elementary V- 

particle, Z#O, and the square bracket again is constant if b#O, that is if there 

is an N-8 component to the interpolating field. If b=O and Z#O, the square 
-1 bracket falls as w . Thus we see that with this type of interpolating field, the 

spectral function is less convergent in the case of a direct product interpolating 

field, i.e., b#O, and also in the case of a composite V-particle, Z=O. 

However, this is not the case for more general interpolating X fields. For 

example, the choice 

where 
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leads to the weight function 

c(M~+~) = A ’ 
w2 g2w;Pw 

/ w(w) + g2 W,(w) x 

x Z(w-AM) + g2 
[ (qAw - qd)]-1~2 l 

Whether or not Z=O, it is possible to choose an oscillating weight function W(W) 

so that the absolute square term above falls with any given power of W. One 

must choose W(W) so that W(W) and W,(W) falls sufficiently fast. In fact, for 

the case Z=O, if W(W) = (AM-o) -1 , then o is identically zero for all W! This is 

due to the fact that this choice of W(W) produces the exact V-particle state when 

q: is applied to the vacuum, and thus is orthogonal to the scattering N8 state. 

We realize that the arbitrariness in W(W) that has been utilized here will yield 

an uncomfortably nonlocal (even in the Lee model sense) interpolating field, but. 

it can be utilized to produce a o that falls arbitrarily fast in W. 
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