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ERRATUM 

The total contribution from diagram (b) in Fig. 4 should read 

memp 

(me+mJ 
2 log a-’ EF 

As a consequence the a2 log CY EF contributions are 

AE=2a2 memc, 
2 1% o! 

-1 EF(pe) = 0.0112 MHz for muonium 
@,+m,) 

AE = - $ cY2 log o! -1 EF(ee) = -0.0038 GHz for positronium . 

and the total theoretical predictions for ground state splittings are: 

AE = 4463.304 (10) MHz for muonium 

AE = 203.3774 (100) MHz for positronium . 
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ABSTRACT 

We advocate the use in atomic physics of a new relativistic two- 

body formalism equal in rigor to the Bethe-Salpeter formalism and 

clearly superior to it in several respects. Outstanding among these 

is the existence of a Coulomb-like kernel for which the exact analytic 

solutions of the bound state equations are known. These solutions are 

derived and applied in a calculation of the 6((u6m log o-l) contribu- 
i 

tions to hfs in muonium and positronium. Three previously unknown 

contributions are found. Theory and experiment are compared. 
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1. INTRODUCTION 

In this paper we treat the bound states of spinor QED using a new two-body 

bound state formalism. The general framework is based upon a bound state 

equation for the Bethe-Salpeter (BS) amplitude with one particle on mass shell 

which originated with Gross’ and has subsequently been discussed by several 
2-5 authors 0 Though similar in spirit to quasi-potential methods, 6 this treat- 

ment is equal in rigor to that of Bethe and Salpeter, Furthermore, it is clearly 

superior to the BS formalism in several respects: 

a. The bound state equation in the Coulomb ladder approximation reduces to 

the Dirac-Coulomb equation when the mass of the particle held on mass 

shell is taken to infinity. This is very important as the Dirac equation is 

the exact bound state equation in this limit. As is well known, the BS equa- 

tion reduces to the Dirac equation in the limit of infinite mass only when all 

cross ladders of all orders are included in the kernel. 

b. The bound state equation is essentially a single particle equation, the dy- 

namics of the second particle being greatly simplified by keeping it effec- 

tively on mass-shell. 

c. In this paper we show that the bound state equation can be rewritten as a 

Dirac equation for a single effective particle not only in the infinite mass 

limit but for arbitrary constituent masses, One of the most important ad- 

vantages of this approach is that there exists a Coulomb-like kernel for 

which an exact analytic solution is known. Clearly it is most desirable that 
th an exactly soluble 0 order problem exists when computing corrections to en- 

ergy levels or decay rates in high orders of perturbation theory. No similar 

solution exists for the BS equation, and in the past the unperturbed BS wave 

function has been found by iterating the equation. This latter procedure 
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is fraught with peril as will be well illustrated below [see also Ref. 91 o 

The method of solution used here was suggested by the work of Grotch and 

Yennie on an approximate version of this equation. 

d. Given the equivalence of this equation in the Coulomb ladder approximation 

to the single particle Dirac-Coulomb problem, the scattering amplitudes 

generated in this formalism (in the ladder approximation) eikonalize, re- 

producing the results of Ref. 7. This suggests that this approach might 

have some applications in the analysis of high energy diffractive scattering 

in field theory. These applications will not be pursued in the present paper,, 

This equation is most conveniently applied when one of the two constituents 

in a bound state stays very near mass shell - i.e., either when one mass is 

much greater than the other or when the binding is weak. However, we empha- 

size again that the formalism involves no approximation and so may be em- 

ployed wherever the BS formalism is applicable. 

To illustrate the use of this equation we compute the a6rn log a! -1 contribu - 

tions to the hyperfine splitting (hfs) in muonium @+e-) and positronium (e+e-). 

This work is the first practical application of such a single-particle formalism 

in QED. Most of the results of Refs, 8-10 are reproduced. In addition we find 

three contributions not previously known. The asymmetric treatment of the con- 

stituents posed no problem in extending the results to positronium. Indeed the 

requirement of symmetry under exchange of constituent masses of the energy 

levels served as a useful check on the results. 

In Section II we briefly derive the equation and orthonormality relations for 

the wave functions. The derivation given there is equivalent to that of Refs. 1, 

3-4 but is more convenient for our purposes. In Section III we derive perturba- 

tion theory. These first two sections serve primarily to establish notation. In 
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Section IV we transform the bound state equation into a simple single-particle 

Dirac equation and obtain an analytic solution for particles of arbitrary mass 

interacting via a Coulomb-like potential. Finally in Section V we apply the for- 

-1 malism in computing the a6 log a! hfs contributions in muonium and positro- 

nium. 
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II. THE BOUND STATE EQUATION 

To arrive at a new formulation of the two-body bound state problem, we 

consider a Dyson equation for the two-particle Green’s function with one par- 

ticle (ml) on mass shell (Fig. 1): 

@a--P) = I 2Ek(27r)363(k= T) + 
/ 

d3q 

(?-K-m,)(2) (2~)~2E~ 
i.R(m)c(qrP) (1) 

(It+m,P 
ZE (O’+m,)(l) 1 

(??-ti-m2)(2) 
2Ek( 27r) 36 3(&- T) + c,(mP) 

(P-JY-m2)(2)j 

where GT is the Green’s function without external fermion legs. We define E 

such that > - 

ET(rrP) = lim iG(kQP) 
k”-Ek 

(2) 

P” ---El 

where G(keP), the usual two-particle Green’s function, satisfies the BS equation: 

G(kQP) = K(k,CP) f 

Kernel K(MP) is the two-particle irreducible BS kernel, Taking K = 

KI 
k”=Ek, 10=Ep 

is incorrect, but rather new terms must be added to account for 

the various poles and cuts in K(MP) (Fig. 2): 
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K(rQ+P) = K(kQP) 
I k”=Ek, Q’=EQ 

2a6(q”-E ) 
’ 2E 

i 
K(qQP) 1 + 

k”=Ek, Q”=EQ l ’ l * 

Formally this result is derived by solving the equation (which follows directly 

from (1)) 3 

ET(i?Q+P) = @k Q P) + 
- / 

d3q 

(2~)~2E~ 
@kTP) 

p, 

for E where GT is related to kernel K by Eqs. (2) and (3). In cases where the 

binding is weak or where ml - >> m2 the approximation if = K I o 
k =EKQo=Es ls 

quite good and the remaining terms in (4) can be incorporated per rbati ely. 

When the binding is not weak, the full BS kernel K itself exceeds ‘(4) in com- 

plexity and so nothing is lost in using this formalism. 
- 

Like G(kQP), @k Q P) has poles at the mlm2 bound state energies 

@k+Q-P) + 
*(EPn) ‘E( TPn, 

PO-Pi 
(5) 

as PO - Pon=&%?, Mnb eing the mass of the bound state. Substituting (5) 

into (1) and evaluating as P” - Pz, we obtain finally the covariant bound state 

equations (Fig. 3) : 

(P -K-m2)(2)*(lTP ) = (Lf+m )(l) d3Q+ n n 1 
/ 

3 iR(lX-Pn)P(pLP,) _ W 
2EQtW 

(If-ml)(l)*(iTP ) = 0 n WW 
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Eq. (Sa) is an eigenvalue equation for the total energy P” of the bound state and 

for the sixteen component wave function Jr. Eq. (6b) follows from (6a) and im- 

plies that 

where $(rP) is an eight component wave function having four spinor indices for 

m2 and two spin indices for m 1. In the limit ml - 00, k” becomes ml and Eq. 

(6a) becomes the Dirac equation for particle m2 moving in an external field, as 

required (and for QED, one obtains the Dirac-Coulomb equation). 

Eq. (5) fixes the normalization of the wave functions. This normalization 

condition is most simply obtained by rewriting Eq. (1) as follows: 

G(*P)(P-K-m2)(2) k = 2E (2n)363$-<)(g+m )(l)+ d3Q 1 / 2Egt2n) 

If this equation when multiplied on the right by @?P,) is subtracted from Eq. 

(6a) multiplied by G(rrP) on the left, and the result integrated over all F 

phase space, the following result emerges: 

I d3k 3 
d Q G($FP)W(kTPPn)@(TPn) = 

w~p,) 

2Ek(27r)3 2EQ(2~)3 PO-Pi 

P = (P”,F) 

where 

(2) 
yO ?W(kTPP,) = 2m (2EQ(27r)363(r-@ - 

iK(iTP) - iK(kTPn) 

1 PO-PI 

(8) 

(9) 
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In the limit P” - PI, G is specified by (5) and, equating the residues of the 

poles on each side of (8), we obtain the normalization condition: 

/ 
d3k d3Q 

(2) 

4EkEpt2?r) 
6 ‘trpn) YO &- 

.I 
2EQ(27r)3S3(~-fl - -J- i.@TP) 

8P0 1 PO=PE 
*(n”Pn) = 1 o 

We obtain an orthogonality relation by 

responding to a different eigenstate of 

(10) 
taking the limit P” -Pzfor m#ncor- 

(6a) : 

/ 
d 

3 3 
k d ’ 6 G(licPm)9fi(FT~m~n)9(TPn) = 0 , m#n. 

4EkEQt2T) 
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III. PERTURBATION THEORY 

The stationary perturbation theory usually applied to the Schrcedinger 

equation is easily adapted to this problem. The derivation will be sketched only 

briefly here; the reader is referred to Ref, 11 for further detail. For simplic- 

ity we work in the rest frame of the bound state (i?= 0). Furthermore all inte- 

grations over constituent momenta will be implicit; only the total energy (E) 

carried by a given function will be exhibited. Assume that $) are the eigen- 

functions with total energy ET of Eq. (6a) with kernel EO(E), and let a,(E) be 

the corresponding two-particle Green’s function. Again for simplicity, we as- 

sume that the levels Es are nondegenerate. If c(E) is the Green’s function for 

the kernel g(E) = KO(E) + &(E), then 

G(E) = co(E) + aO(E)&(E)G(E) = 2 (Go(E)iSK(E))“Go(E) (~11) 
n=O 

and G(E) has poles at the perturbed bound state energies E.: 
3 

asE-E. D 
3 

We define an integration contour Fj in E space encircling E j, ET and no other 

poles of E, Go, or lXT. Cauchy’s theorem implies : 

The contour integrations can be expressed in terms of known quantities by using 

Eq. (11) to remove c(E) in favor of 6R(E) and ao(E)0 The result is a 
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perturbative expansion for Ej in powers of SR (using Eq, (8)): 

E. 0 J 

The contour integrations in each term of the expansion can be performed as the 

only poles implicit in the integrand occur in GO(E) at E=EP and have well- 

defined residues (using (5)). Carrying out these integrations we obtain the 

familiar perturbation series: 

Similar arguments give the perturbed wave functions: 

+qsZ2) 0 (13) 

The perturbed wave functions are used primarily in computing decay rates, 

scattering amplitudes, and the like. They will not be needed in this paper, 
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IV. EFFECTIVE DIRAC EQUATION AND AN EXACT SOLUTION 

Eq, (Sa) is greatly complicated in coordinate space by the term on the left - 

hand side containing k” = JiFqo Grotch and Yennie, 2 in their treatment of 

a related quasi-potential equation., expanded k” to first order in k”“/m: but this 

procedure is approximate and leads to divergences in high order terms that can 

be ignored only when ml >> rn2” 

To remove k” from the left-hand side, we first rewrite (6a) as an equation 

for $(i?P) , the eight component spinor: 

(P-lt-m,)rlitrP) = I d3Q i@i?~P)@P) , 
(2~)~2E~ 

where I? is defined such that 

(14) 

xh being a two component spin wave function for particle 1. We note in passing 

that all of the formalism described in the previous two sections could easily 

have been developed in terms of $, fi, and E (defined analogously to I?) rather 

than @, I?, and E, Working in the center of momentum frame (jiif= 0), we mul- 

tiply both sides of (14) by y’(P+g-m2)/4PoEk to obtain: 

This is an effective Dirac equation for a particle of mass m2, momentum -E 

and “energy” 

E= 
Pi + rni - rni ml E2 

2p0 
=m 2 -E-f po 2po - m2 - 6 as y--h 

where E is the binding energy (PO = ml+m2-E) D We emphasize that Eq. (16) is 

exact, 
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When seeking analytic solutions describing bound states in QED (muonium, 

positronium, etc.), the physics requires that (16) reduce to the Schrcedinger 

equation with reduced mass in the nonrelativistic regime, 

Coulomb equation when ml - 00. This is accomplished if 

perturbed kernel 

ieo(rrP) = 4mlEk -Ze2 
zwqgg 

and to the Dirac- 

we take as our un- 

(17) 

because then Eq. (16) becomes 

-0 l@P) WY + gr’-m2) 2Ek 

The solutions of this equation are the familiar Dirac-Coulomb wave function 

en, j( -F) (N is a normalization constant) : 

(18) 

r..> Q(lFP) = - 2EkN q(2) (-~)utl)(~q 
42iq n’j 

but with an effective fine structure constant: 

0 
m +m + @ tza) m 

1 2 ( ) 1 

The scale of nonrelativistic momenta in the wave functions is set by y, which 

correctly incorporates the reduced mass of the system. The total energy of the 

bound states is obtained by solving the following equation for PO: 
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z= 
I$ + rni - m2, 

2P. = 
m2 n’=O, 1,2, D. D 

[l+p&+nj31’ j=& b (lg) 

*PO =m+m - 1 2 
!&2 “lrn2 - (&)4 
2n2 ml+m2 

n = n’i-j+& 

In the Appendix we show how, following Grotch and Yennie, this treatment can 

be modified when ml >> m2 to incorporate part of the instantaneous transverse 

photon interaction (Breit interaction) into I?,, thereby obtaining the complete 

fine structure tob((Za)4 mi/ml). 

We will require the 1s wave function in the next section. In momentum 

space, the wave function for particle 2 is: 

87r 
y3(l+k2/,y2)2-“2 

k= lk’1 

where x is the spin wave function for particle 2. It is convenient to expand C$ (2) 

in powers of 5 as only the lowest and first order terms are required in the-next 

set tion : 



As Eo(EPP) is not symmetric under exchange of ‘;’ anda (i. e. , nonhermitean), 

the adjoint wave function,. $@P), is not simply etyo. Rather it is easily shown 

that 

$ir;-‘> = $tt’p) 
#+k-m 

2 2,3 
k 

= $?ir;P) y” 1+ [ p-:i;2 YgJ 

Note that the correction to #‘y” is of relative order 02m2/ml when k-@(y). 

The normalization of this wave function is fixed by Eq. (10) with 

4Ekml 

Setting Ek = m1+r2/2ml, the normalization is determined to d(cr2) by: 

1 = N2 

1 
1 

-2m1 
4t ) 

/’ 
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The last two terms are equal to @‘(cv2) by Eq. (14) and thus 

N= 2+ r(2-0 Ax+,L 
rt3-6) 2mlm2 

+ @(o!4) 

=1+(+%2) 2 2mlm2 (1-+cr4) . Es!2 +,.y2 
1 

I 

. 
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V. HYPERFINE SPLITTING IN MUONIUM AND POSITRONIUM 

We now use this formalism to compute the hyperfine splitting of the 1s 

level in muonium where it is natural to set ml = mEL and m2 = me0 l2 Each 

term to be computed below is also a part of the positronium hfs and its contri- 

bution there is found simply by setting rnp = me0 In addition there are annihi- 

lation kernels contributing to positronium hfs only but these will not be evalu- 

ated in this paper. 10 

The dominant contribution to muonium hfs is the Fermi splitting: 

EF = 

All terms of CT(a!EF), 5(a2EF), and most radiative corrections of j‘(a3EF) 

have also been computed apd are discussed in the literature, 13 At present 

many terms of @(a2me/m E 
P F 

) remain uncalculated. In this paper we compute 

the Q! 2me/mpQn a! -1 EF terms coming from single, double, and triple photon 

ladder kernels. The diagrams considered and their contributions are pre- 

sented in Fig. 4. Contributions from diagrams (e), (g), and (a) were computed 

in Refs. 8 and 9 and agree with those computed by the author using the techniques 

described above. Diagram (f) has been computed for positronium only in 

Ref. 10. The calculation for constituents of arbitrary mass 

is described below. Diagrams (b), (c), and (d) were also considered .((b) 

explicitly, (c) and (d) implicitly) in Ref. 8, but the contributions listed in Figure 

4 can only be found with BS techniques if the BS equation is iterated twice to 
14 

produce a wave function (not just once as was done in Ref .8). Such omissions 

cannot occur in our treatment as the unperturbed problem has been solved 
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exactly. The calculations for these diagrams will also be exhibited below. 

Note that although contributions from individual kernels may not be symmetric 

under the interchange of masses m e e mP, the sum of all terms is symmetric 

as it must be. 

For all of these diagrams it is found that log a! -1 terms come only from the 

region of nonrelativistic momentum in all integrations as only there are the 

propagators in the kernel sufficiently singular for the binding energy to be of 

important e 0 Therefore the general procedure to be adopted is to expand all 

propagators and energies in powers of F2/rn2 and then to isolate the logarith- 

mically divergent terms as these are the source of log 01 -1 contributions. 15 

The coefficient of log ac -1 is easily computed using Table I. Of course the di- 

vergences are ultimately cut off by the propagators when the momenta become 

relativistic 0 ‘The one and two loop graphs contribute to 6(o!EF) and ~~(cL!~E,) 
. 

A 

respectively, this coming when the wave function momentum is nonrelativistic. 

As S@ -C(a2+,) (2) in this regime and is of @(a$,) elsewhere,, $,, may be re- 

placed by $f) for all calculations of d(aEF) and @(oz2EF) modulo log or-’ con- 

tributions from these graphs. In addition $ =+‘y” can be assumed in computing 

these contributions. 

To verify the analytic results presented in this paper, all graphs (except for 

(f),which has been evaluated elsewhere) have been computed numerically without 

approximation. Furthermore the new contributions (b)-(d) have also been com- 

puted using a doubly iterated wave function in the Bethe-Salpeter formalism. 

Finally we note that all calculations are performed in the Coulomb gauge, 

As in the BS formalism, the wave functions and kernels here are not gauge in- 

variant, though physically measurable quantities such as energy levels and de- 

cay rates must be. The Coulomb gauge seems to be optimal for atomic physics 
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insofar as it incorporates the most physics in the simplest graphsB Note that, 

because ml propagates on mass shell, this formalism is invariant under the 

general class of gauge transformations 

performed on all photons interacting with ml (index U) and, in particular, on . 

all photons in simple ladder and cross ladder kernels. 16 Unfortunately this 

class of gauges does not include the Coulomb gauge, though any gauge dependent 

terms originating with these photon lines must vanish as ml-+= (the Dirac limit). 

A. Single Transverse Photon Exchange 

The kernel describing single transverse photon exchange is (Fig. 4b) :17 

iKT(W) = 

k” = Ek 

Lo = Ea 

where 

The second term in 6’ ij ’ though very important for fine structure, is easily 

shown to contribute only to @(a4EF) in hfs and so will be neglected here. 

Noting that 

the contributions of gT to hfs from $6 and S$ respectively are 

6ET = 6E6 + 6E1 



e2N2 GE0 = -2m 
&+&+ 

As 6E1 is of order cu2EF, we have approximated Ek and EQ by mP, and have 

retained only the logarithmically divergent term. To check for such terms in 

6E0 (which also contains EF), we expand all factors in powers of Tf2/mE or 

=EF!3Yf 
/ 

d3k d3Q 

7r4 (k2+y2)2(Q2+y2)2 

e2N2 
6E1=-= 

d3k d3Q &Ek+m )lEQ+m ) 

P (k-Q) 2 

J?+&m . 
‘JE k e h,(-') + @$') 

2 
’ E y log a! -1 N -- 
2 Fmm 

e 1-1 

2 Nrn 

6E0 rEFN2+EF$ 
I 

d3k d3Q 

7r (k2+r2)2(Q2~2)2 I XL+ 
4m2 

E2(m-T2) +I?+? - 2i?Y2 

I-1 
4memPlKX12 8rni IKEI” 
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The r2, 4 k and? terms in the integrand result in linear divergences and 

correspond to an @(a! me/m E ) contribution from the relativistic region of 
/J F 

phase space. The remaining terms are logarithmically divergent and, using 

Table I, contribute 

2 
EF h log 8 

e P 

The total contribution to the hfs from single transverse photon exchange is 

found to be 

6ET = EF 
m 3 2 m 

( > 

2 
l+o!’ --$+p! - l-t--$ g&y-log Q! 

-1 +@(y2me . 
P /J e P ( I mP 

The @(a! me/mp EF) term is completely cancelled by terms from the Coulomb- 

transverse ladder kernels. The 3 2 T 01 E, is the usual Breit-Dirac wave function 
L u 

correction. 

B. Coulomb-Transverse Photon Ladders 

The perturbation due to ladder graphs containing one Coulomb and one 

transverse photon is (Fig. 4c, 5) : l8 

I 

&+m )Y > 0 Q-4 <4(ti+P’-pi+m j 0.4 )Y > 

q2 -mF 
4 

(k+Q-q)2 - rnt I 
(21) 

where (keeping only terms relevant to hfs): 
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with similar expressions for <yl(,P-d+me)y 0 W > a-d j O-0 <r”(lr+P’-pl+m,)r > o For 

reasons to be discussed below, terms proportional to both k and 1 cannot con- 

tribute to @(a2Qn a! -1 EF) hfs and so have been omitted. Furthermore only the 

6ij part of 6& contributes to this order. Thus the relevant terms in the numer- 

ator from each graph (ladder and cross ladder) are: 

o(e) ’ <yi(P-d+m,)r > 
6 ‘o-> 

4Pl+m,)r > o-4= e3P 23- 

I 

(PO-q”+m ) 
m “gig 

e 

cl?-m (q’+m )(P”-q”+m ) 
- -----4&q+ (s+;p)me 

(PO-q”-m ) 

Ek+m$! 
e .,r2 + 

m 
e cr 

e 

ho--m P"-qo-me)_ 1 
t EQ+m$me Q2 (224 

0 te) &@-pl’+m,)r > 
(PO-q”+me) 

- m E-0 r 
e 

r”+E k (r”+E )(P”-q”+m ) 
2G c’ (Ek+Lp)me 

(PO-q”-me) 

Ek+mp 
el-F2+ m r-0 iy 

e 

@k-q’) 
+ E +m 2T.3 if+ 

(E,-q”)(Po-so-me) ’ 
F2 \ 

Q P tJ$+mp)me 
Wb) 

with r=k+Q-q. 

The ladder graph contains the iteration of the single transverse photon in- 

teraction with fi,, which must be removed to avoid double counting of its 
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. 

contribution 

6EIT - Y;a2 / d3k d3Q 
7rm 

&$+mp) tEp+mC1) / & 
p Or2+r2) 2 tQ2ty212 q 

1 

lEi12(k-s)2W-~2-m~~ 

. 
I 
cv”tP-9i+~eN%d+me)~e’ 4EqPo ’ 

+ 
cv’tP-d+me)tPt!+m,)>(e) 2EQ(Po+me+EQ) 

2P0 (P+q) 2-mt P”-tme+EQ (P+Q)2-mE 1 

(23) 

This is actually not essential as we have already computed the contribution 

to hfs from exchange of a single transverse photon (6EIT = 26ET). However this 

procedure does provide an excellent check on the algebra and is well suited to 

numerical evaluation. The two electron traces compensate for the asymmetry of 

i(O(qfP) under interchange of c--a (i. e., the iterated diagram and its conjugate 

are not the same). Recalling that (P-d+me)(P+&me) = 2P”(“Eyo+~~+me) y”, we 

have 

- Es”“CL m 1 
i 

Ek+mp p 
X(CC)cyi(~yo+~~+m e ) yap) 

e k P 

E+rn E +m 
e-.!YiAr2+ 

E-m 
+- m e Ek+mp 

-&-a.< 
e 
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P”+EQ+me 

PO-E +m E +m 
q “IT-~- &$2-G< m e k 1-1 

T2 PO-E -m 
+ 

2me(Po+EQ+me) 
q eTz m (24) 
e 

We perform the q” integration in (21) by closing the q” contour at infinity 

in the lower half plane encircling the poles: 

m +m 
(p) q” = Eq - ic: + (p-q)2 - rnz --- *(T2+r2) 

(ladder only) P 

(k-q) 2 I--- - lEq12 

(y) q” = Ek + Ii&cl - ie* (p-q)2-m2e - -2m,lkql 

fork, q-y 

q”-$ - / 2mplk-ql 1 - liqT2 
mp Ik-ql #for k,Q,q -y 

(k+Q-q)2-mi - -2mp lG<I 

(25) 

(e) q” = PO +Ki -ie 3 q2-mi - 4P”me 

(k+Q-q)2-m; - 42 for k,Q,q -y 

(k-q)2 - 42 

@L) q" = Ek+EQ+Eq-k-Q -ie * (p-q)2-mz - 4$ 

(cross ladder only) 

(k-q)2 - 4mi 

for k,Q, q -y 

All poles contribute to @(a! me/mL EF) when q is relativistic and k,Q N y (Ref. 2) O 

However only the @) and (y) poles are singular enough to contribute to 
-1 

O(02me/mp EF) when q, k,Q - y, which is where log Q terms have their origin. 
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We examine first the p-pole contributions (ladder graph only), Following 

our general procedure, we expand all propagators and energies in the non- 

relativistic limit. By counting the number of powers of momenta (- y), including 

phase space,in the numerator and denominator of the integral, we find that 

terms quadratic in momentum in (22a) contribute at order EFO Comparison 

with (24) indicates that these are all cancelled when dEIT is subtracted. Terms 

quartic in momentum contribute to @(w2me/mp EF) modulo log Q! -1 O They also 

appear to diverge logarithmically for k, q,Q nonrelativistic, but only when one 

or the other wave function integrations factors out - that is, when either k or Q 

can be set to zero in the kernel. These are the a2 log Q! -%F terms O Terms 

proportional to both k and Q do not diverge in this region and thus need not be 

considered here, L 

@(a2me/mp EF) o 

though power counting indicates that they do contribute to 

Subtracting the iteration, 6EIT, from the p-pole contribution, 

we are left with: 

6ECTtp) - “E~~I -l= ‘Fs I 
d”k d”Q 

6 
(11 log 01 77 fi2-ry2? tQ2+r2j2 I 

d3q 

1 . 
(q2+y2) lk>i2 lrq12 

(s_lt)2T2 +q2q 

- 4memp 2rni 

The final result follows immediately from Table I: 

6ECT(p) - 6EIT = 1 -’ Foga - 

We now examine the y-pole contributions from (21). Power counting indi- 

cates that only terms quadratic and cubic in momentum in (22a), (22b) need be 
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considered to @(a2EF) when k, q,Q N y0 It is easily seen that when corrections 

from the muon propagators (25) are included, such terms in the ladder dia- 

gram are exactly cancelled by terms in the cross ladder diagram. Therefore 

the y-poles generate no further contributions of order o2 log CY -1 
me/m E I-1 F’ 

C, Double Coulomb - Single Transverse Photon Ladder Kernel 

The most singular parts of this kernel (Figs. 4d, 6) contribute only to 

B(w2me/mplog @-lE,) once the iteration of the Coulomb-transverse ladder has 

been subtracted. Thus we need consider only p-pole contributions to both the 

q” and r” integrals (when the contours are closed below the axes), and then 

only for z < nonrelativistic 0 Also log Q! -’ terms are found only when both 

wave function integrations factor out (i.e, , E= r= 0 in the kernel). Thus the 

perturbation is : 

6ECCT - 6EICT or6pnol-l = 

1 Nm d3q mp 
c 

1 

r2(r2+y2) J 2mp niLfrne q2(q2+y2) IFl \’ 

< . . . ;(e) C! -I- ix? (sXa,)x (Y2/2) 

qj(d+m 
CL 

) y”>O”) N ix? (gx0 e )x 
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and thus the hfs from this kernel is: 

6E CCT - 6EICT $ log;1 = 3&p i”‘. d3r 
d3 

r2(r2+r2) 
jm,z,g2;2) $ 

2 -1 =--&EFlogol . 
e cL 

D. Single Coulomb - Double Transverse Photon Ladder 

The same approximations used in evaluating the previous graph may be ap- 

plied to this graph (Fig. 7): 

= y3a3 1. -m 

6ETCTIct6Qna-1 47r4 
c 

.d3r Nm d3q 1 

(m +m )2 
P e 

r2(r2+Y2) J q2(q2+Y2) Lj-F12 

where for r, q N Y 

Eij f <Yi(P-r’+me)Yo(P~+me)Yj>(e) = Mij with Us - ae 0 

Therefore 

EijS’!$~)S~Q(~)Mke = <oeo Us> (2(; g2 + G I rxq I 2 - $ F2r2 1 

and the final contribution is 

6E TCT 6 
=sL logo? EF . 

-1 4mm 
o! logo e I-1 ._ 

Taking m = 
P 

me we obtain the result presented in Ref, 10 for positronium. 
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F. Other Diagrams 

The diagrams in Fig, 8 appear to contribute to order oz210ga! -1 EF (note 

that there is no factor me/mP as above). In fact, it. is trivially shown that 

these terms exactly cancel to this order in pairs as indicated in Fig. 8. Note 

that the diagrams involve retardation corrections to single and double trans- 

verse photon exchange. 
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VI. CONCLUSIONS 

In this paper we argue that it is essential in atomic physics to have the 

exact analytic solution for some Oth order interaction which contains the 

basic physics D We have obtained just such a solution using an effective single- 

particle formalism equal in rigor to the Bethe-Salpeter formalism., This solu- 

tion incorporates both reduced mass corrections of the sort encountered in 

Schrcedinger theory as well as the correct Dirac fine structure in the limit of 

large mass for one of the constituents. The corrections to the basic interac- 

tion are specified unambiguously by perturbation theory (once a gauge has been 

chosen) D 

Applying these results, we have computed the first new results in QED ob- 

tained from an effective one-particle formalism. Theory and experiment are 

compared for muonium hfs in Table II and for positronium hfs in Table III. The 
6 cl! Qnck! -1 contributions to each are 

AE =2a2 memp 210gc?EF(pe) = 0.0112 MHz for muonium 
(m,+mJ 

-1 2 AE =~a! loga! -lEF(ee) = -0.0038 GHz for positronium 

where corrections from the annihilation graphs have been included for posi- 

tronium, No diagram other than those considered above seems sufficiently 

singular to contribute to B((r2Qnnor -1 EF) hfs in either atom. 

Little can be said about agreement with muonium experiments until all 

contributions of the form Q! 2 %kn 3 EF (-0.01 MHz) have been computed. 
i ) 

19 

mp me 
Theory and experiment are consistent within errors for positronium. However 

the situation will be satisfactory for neither atom until all contributions of or- 

2 me der 02EF for positronium and a! - EF, 
mP 

cz3 EF for muonium have been com- 

puted D 
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APPENDIX 

Here we show how fi, may be modified to include the entire Breit interac- 

tion (Coulomb and transverse instantaneous photon exchange), thereby obtaining 

the complete fine structure up to and including @((Zol)4(m2/ml) m2) for ml >> 

“2” The treatment given here is very similar to that of Grotch and Yennie2 

and so will be only briefly sketched. The main advantage of this approach over 

theirs is that k” = k +ml need not be expanded in powers of r2/rnt. pz.7 

We work in coordinate space and only to first order in (m,/m,) D Eq, (14) 

can be rewritten 

(PO-Ek-V + zi?- pm,)+ = 0 

where z = ‘~7, /3 = yoO Multiplying by (P’+E,-V+Gk= pm,), we obtain 

[ 
??+~0k+-pm2 -V+ -2 - iv, $$-I +p, VI + [v, $1) = 0 

2P0 
(26) 

ml l 2 where E” = m2 - E - + - (Eq. (16)). Ignoring hfs terms, the interaction due 
PO 2P0 

to exchange of a single instantaneous photon can be written (in Coulomb gauge) : 

Vly =uc - luc, 51 - -&[Gx [r;-2,wl] + @((z@4m2(~)2)o 

where TJ, = -a/r and W = -acr. Recall that the momentum of m2 is -E Putting 

V = Vly, EqO (26) becomes 

c i2 + Zorr”- pm, - 
PO-pm . 

2uC PO . 1 $b=o .- (27) 

where we have used the following results of first order perturbation theory 
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% J+aqF2,w]] &A - - 
4P0 2P0 

and have dropped all terms that contribute only to O(a4m2(m2/m1)2) or higher,, 

Eq. (27) can now be solved exactly by mixing the components of $ so that the 

Coulomb term is proportional to the identity matrix in spinor space: 

where (expanding to first power in m2/ml) 

E’ = 
( 1+A2)E-2m,A 

l-A2 

ml+m2+ e2 

PO PO 2P0 

m’ = 
m2( 1+h2) -2h% “lrn2 

l-A2 
cI!- 

PO 

Za” = fl++;;;qza r za! D 

Thus the binding energies E (where P” = ml + m2 - E) are found by solving: 

-E = z:“,” [WA j> - 11 - 
1 2 

2(:fm 
1 2 ) 

n’=O 1’ 
j 

12 $ ,000 
=z) z,ooo 

“lrn2 1 

I 
-3, l - mlm2 

ml+m2 2n3(j+$) 8n4 8n4 (ml+m2)2 

n=n’+j+Q 

where mf(n’, j) are the usual Dirac-Coulomb energies (Eq. (19)). This equation 

contains the complete fine structure up to and including~((Z~)4m2(m2/ml)), as 

desired. The wave functions are again directly related to the Dirac-Coulomb 

wave functions. 
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All calculations in this paper can be performed using this solution of the 

bound state equation, However it is generally simpler to use the solution de- 

scribed in Section IV, except possibly when working to low order in m2/m1<<1. 
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TABLE I 

Table of integrals required for ana- 
lytic evaluations. 8 

ftk 9 cl) K 

‘k4, q4 0 

k2q2 4 

k2k 0 q2k q, 0 q 2 

(k 0 qJ2 2 
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TABLE II 

Comparison of theory and experiment for muonium hfs. Uncertainties 
shown in theory due to uncertainties in p,/pp (Ref. 20) ., Terms of 

@ a2 %og 
( “u 

N 0.01 MHz have yet to be computed and are not 

included D 

Theory 

2cY2 me m EF log&-’ 
IJ 

4463.293 (6) MHz 

0 011 

Total Theory 

Experiment 

Ref, 20 

4463.304 (6) MHz 

4463.30235 (52)MHz 
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TABLE III 

Comparison of theory and experpnt for 
positronium hfs. Terms of @(a! m,/2) N 
0.01 GHz are not yet computed., 

Theory 

20303812 GHz 

& a6me log a! -1 
- 00038 

Total Theory 203.3774 GHz 

Experiment 

Ref. 21 

Ref. 22 

20303849 (12) GHz 

203.3870(16) GHz 



- 38 - 

: 

FIGURE CAPTIONS 

1. A Dyson equation for the two-particle Green’s function with one particle on 

mass shell. Fermion lines marked with an X are on mass shell, 

2. Definition of the new kernel K in terms of the usual BS kernel K. 

3, The bound state equation. 

4. Diagrams contributing to @(a2me/mcl log a! 
-1 EF) hfs in muonium. The 

contribution to positronium hfs is found by setting m = me0 The double 
IJ 

iteration of I?, has been omitted from (g) as it (like go) contains no spin- 

spin interaction. 

5. Coulomb-transverse photon ladder kernels. 

6. Double Coulomb-single transverse photon ladder kernel. 

7. Single Coulomb-double transverse photon ladder kernel. 

8. Diagrams cancelling in pairs to @(a2 log o1 -’ EF)” 
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