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INTRODUCTION 

Quantum electrodynamics (QED), the theory of the interactions of 

electrons and muons via photons, has now been tested both to high precision 

- at the ppm level - and to short distances of order 10 -14 - 10-15 me 

The short distance tests, particularly the colliding beam measurements of 

e+e- + lJ+v-, yy, and e+e-, [A.l], are essentially tests of QED in the Born 

approximation. On the other hand, the precision anomalous magnetic moment 

and atomic physics measurements check the higher order loop corrections and 

predictions dependent on the renormalization procedure. Despite the 

extraordinary successes, it is still important to investigate the validity 

of QED in the strong field domain. In particular, high-Za atomic physics 

tests, especially the Lamb-shift in high-Z hydrogenic atoms, test the QED 

amplitude in the situation where the fermion propagator is far off the mass 

shell and cannot be handled in perturbation theory in Za, but where 

the renormalization program for perturbation theory in a must be used. 

High-Z heavy-ion collisions can be used to probe the Dirac spectrum in 

the non-perturbative domain of high Za, where spontaneous positron production 

can occur, and where two different vacuum states must be considered. 

Another reason to pursue the high-Za domain is that the spectrum of 

radiation emitted when two colliding heavy ions (temporarily) unite can lead 

to a better understanding of relativistic molecular physics. This physics 

is reviewed in the accompanying articles of this volume. Furthermore, the 

atomic spectra of the low-lying electron states and outgoing positron 

continua reflect the nature of the nuclear charge distribution, and could 

be a useful tool in unraveling the nuclear physics and dynamics of a close 
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heavy-ion collision. Somewhat complementary to these tests are the studies 

of Delbriick scattering (elastic scattering of photons by a strong Coulomb 

field) reviewed in Ref 1 A. 2. 

Gne of the intriguing aspects of high field strength quantum electro- 

dynamics is the possibility that it may provide a model for quark dynamics. 

Present theoretical ideas for the origin of the strong interactions have 

focused on renormalizable field theories, such as quantum chromodynamics 

(QCD), where the quarks are the analogues of the leptons, and the gluons - 

the generalizations of the photon - are themselves charged (non-abelian 

Yang-Mills theory). In contrast to QED where the vacuum polarization 

strengthens the charged particle interaction at short distances, in QCD 

the interactions weaken at short distances, and (presumably) become very 

strong at large separations. 

To see the radical possibilities in strong fields, suppose a is large 

in QED and the first bound state of positronium has binding energy E >m. 

The total mass of the atom% is then less than the mass of a free electron 

7Q= 2m-E <m. Consider then an experiment in which an e+e- pair is 

produced near threshold - e.g. via a weak current process. Since an 

additional virtual pair may be present, the produced pair can spontaneously 

decay to two positroniwn atoms in the ground state, each with finite kinetic 

energy. Thus bound states, and not free fermions, are produced! It is 

clearly an interesting question whether strong field strength in QED can 

provide a mechanism analogous to quark confinement in hadron dynamics. 

The work of K. WILSON [A.31 and J. MANDULA IA.41 is especially relevant 

here. The studies of spontaneous pair production in heavy-ion collisions 

(see Section A.3) provide a simple phenomenological framework where some 

of the effects of strong fields can be tested. 
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It should be noted that our review only touches a limited aspect of 

high-Za electrodynamics. We consider only the cases of a fixed or heavy 

source for a high-Zcx Coulomb potential. An important open question concerns 

the behavior of the Bethe-Salpeter equation for positronium in the large cx 

domain, and in particular, whether the binding energy can become comparable 

to the mass of the constituents so that l/L = 2m - f -t 0. 

The organization of this article is as follows: We review in detail 

the recent work on the atomic spectra of high-Z electronic (Section A.l) 

and muonic atoms (Section A.Z), including muonic helium, with emphasis on 

the Lamb shift and vacuum polarization corrections which test strong field 

quantum electrodynamics. The theor&ical framework of the QED calculations 

for strong fields is discussed in Section A.1.5. The constraints on non- 

perturbative vacuum polarization modifications and possible scalar particles 
*. 

are presented in Section A.2.8. A review of recent work on the quantum 

electrodynamics of heavy-ion collisions, particularly the dynamics of 

positron production, is presented in Section A.3. In addition to reviewing 

the phenomenology and calculational methods (Sections A.3.2 - A.3.4), we also 

discuss the parameters for possible experiments, with a brief review of 

vacancy formation [Section A. 3.6) and background effects (Section A. 3.7). 

In our review of heavy-ion collisions we will also touch on several new 

topics, including the coherent production of photons in heavy-ion collisions 

(Section A-3.9) and the self-neutralization of charged matter (Section A.3.10). 

We also point out some questions which are not completely resolved, including 

the relative importance of induced versus adiabatic pair production (Section 

A.3.5) and the nature of radiative corrections in Q to spontaneous pair 

production (Section A.3.8). 
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A.1 THE ELECTRODYNAMICS OF HIGH-Z ELECTRONIC ATOMS 

A.l.l Lamb Shift in Hydrogenlike Ions 
. 

At present the most precise and sensitive way to test quantum electro- 

dynamics at high field strength is to compare the theory and measurements 

of the classic Lamb shift interval, the 2S, - 2P,, separation in hydrogenlike 2 2 
ions. In recent work on the Lamb shift, measurements have been extended to 

hydrogenlike argon (Z=18) by an experiment at the Berkeley SuperHILAC [A.S]. 

As we shall see, such experiments provide an important test of QED in strong 

fields . The higher order binding terms in the theory which are small in 

hydrogen become relatively more important at high Z. For example, the terms 

of order ~(ZCY)~ which contribute 0.016% of the Lamb shift in hydrogen give 

12% of the Lamb shift in hydrogenlike argon. The theoretical contributions 

to the Lamb shift are by now well established [A.6,7]. Our purpose here 

will be to summarize these contributions as an aid to testing the validity 

of the theory. 

The dominant part of the Lamb shift is given by the self-energy and 

vacuum polarization of order ~1, corresponding to the Feynman diagrams in 

Fig. A.l(a) and (b). In the past, most of the theoretical work on the self- 

energy has been concerned with the evaluation of terms of successively 

higher order in Za. However, ERICKSON [A. 81 has given an analytic approx- 

imation which can be used as a guide for the Lamb shift for any Z. This is 

discussed in detail in Ref. A.9. 

More recently, MOHR [A.101 has made a comprehensive numerical evaluation 

of the 2S, and 2P1, self-energy to all orders in Za. The method of evaluation 
2 2 

is based on the expansion of the bound electron propagation function in terms 

of the known Coulomb radial Green’s functions [A.ll], and is described in 
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more detail in Section A.1.5. In order to display the results for the order 

(2) a self-energy contribution SsE to the Lamb shift S = Al:(&) - Al1(21;,), 2 
it is convenient to isolate the exactly known low-order terms by writing 

(2) 
'SE 

= a Gal4 m KOWN 
71 gn(Za)-2 +11+1 

6 +K0(2,1J 24 2 

+ 31T 1 + & - k Rn2 
( 

(Za) - f (Za)2Rn2(Za) -2 

Rn2 (Za)2 9.n (ZCY) -2 + (Zco2 G&Za) 
I 

(A. 1) 

We shall always distinguish radiative terms in a from terms in Za which F 
arise from the nuclear field strength. Values of the remainder GsE(Za) in 

(2) Eq. (A.l) corresponding to the calculated values of SsE for Z in the range 

10 - 50, appear in Fig.A.2.,-The error bars in that figure represent a conserv- 

ative estimate of the uncertainty associated with the numerical integration 

in the evaluation of self-energy and, at Z=l, the uncertainty resulting 

from extrapolation from Z =lO. 

Evaluation of the energy level shift associated with the vacuum 

polarization of order a is facilitated by considering the expansion of the 

vacuum polarization potential in powers of the external Coulomb potential 

(see WICHMANN and KROLL [A-12]). Only odd powers of the external potential 

contribute as a consequence of Furry's theorem [A.13]. The first term in 

the expansion gives rise to the Uehling potential [A.14,15]; the associated 

level shift is easily evaluated numerically. The second nonvanishing term 

in the expansion is third order in the external potential. The two lowest 

order contributions to the Lamb shift from this term are given by [A.12,16]. 

(A. 2) 



A substantial discrepancy between theory and experiment was eliminated 

when APPELQUIST and BRODSKY [A.171 corrected the fourth order Lamb shift 

terms by a numerical evaluation. Since then, the terms have been evaluated 

analytically. The total of the fourth order radiative corrections to the 

Lamb shift is given by 

2 
S(4) = 0 a (ZC,)~ 

K 
-- - 3767 - 

6 1728 
; 

C.(3) 1 (A. 3) 

Recent work on the evaluation of this term is summarized in Ref. A.7. Note 

that only the lowest order term in Za has been evaluated. 

The lowest order reduced mass and relativistic recoil contributions 

to the Lamb shift are given by (see Ref. A.7) 

a (Za)4 SREl=F6m iln(Za)-2 - Rn 
K0(2,0) +23 
KOWl 60 1 (A. 4) 

and 

KOW) 
$ Rn(Za)-2 - 2Rn K (2 l) +97 12 1 (A- 5) 

0 ’ 

where M is the nuclear mass. 

The finite nuclear size correction to the Lamb shift is given, for Z 

not too large, by the perturbation theory expression 

'NS = 1 + 1.70(Za)2 1 (A. 6) 

assuming a nuclear model in which the charge is distributed uniformly inside 

a sphere ; where s = JGiz and R is the r.m.s. charge radius of the 

nucleus. An estimate of the error due to neglected higher order terms in 

perturbation theory is given in Ref. A.16. 
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The sum of contributions listed above gives the total Lamb shift S. 

Values for the individual contributions are listed in Table I for hydrogen- 

like argon. Theoretical and experimental values for 223 are compared in 

Table II. The theoretical values for Z<30 are listed in Ref. A.16. 

TABLE I. Contributions to the Lamb shift at 2~18, R= 3.45(S) fm assumed. 

Source Order Value 

Self energy a(Za)4[Rn(Za)-2,1,Za,***] 40,544(15) GHz 
Vacuum polarization a(Za)4[l,Za,***] -2,598(3) 
Fourth order a2 (Za) 4 ll(14) 
Reduced mass a(Za)' m/M - -1 
Relativistic recoil (Za)5 m/M 12 (9) 
Nuclear size (Zc04 (WX>2 [l, (Zd2JhWQ ,**=I 283(12) 

38,250(25) GHz c 

TABLE II. Comparison between theory and measurement of the Lamb shift 
E(2SJ - E(2P,) for 223. 2 

Theory (la) Experiment (lo) Ref. 

sLi2+ 62,737.5(6.6) MHz 62,765(21) MHz 
62,790(70) MHz 

u31, 

63,031(327) MHz tt: ;9,; 
12c5+ 781.99(21) GHz 780.1(8-O) GHz [A.211 
16 7+ 0 2,196.21(92) GHz 2,215.6(7.5) GHz 

2,202.7(11.O)GHz [AA: ;:; 
19 a+ F 3,343.1(1.6) GHz 3,339(35) GHz [A.241a 
soAr17+ 38.250(25)THz 38.3(2.4) THz [A.51a 

aImproved experimental precision is expected. 
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Most of the experiments listed in Table II were done by the so-called 

static field quenching method [A.20]. This method is based on the large 

difference between the 2S4 and 2P+ lifetimes and the small separation of the . 
levels. The ratio of the lifetimes is roughly ~(2S+)/-r(2P+) - 108Zs2. Atoms 

in the metastable 2S, state are passed through an electric field which causes 2 
the lifetime of the 2S, state to decrease by mixing the S and P states. 2 
The change in the lifetime as a function of electric field strength leads 

to a value for the Lamb shift according to the Bethe-Lamb theory. The 

quenching experiments at higher Z (Z>6) depend on the electric field in 

the rest frame of a fast beam of ions passing through a magnetic field to 

produce the 2S-2P mixing. 

The experiments of LEVENTHAL [A.181 and DIETRICH et al [A.191 with 

lithium are based on the microwave resonance method. The experiment of KUGEL 

et al [A.241 with fluorine measures the frequency of the 2Sl,2 - 2P3,2 separa- 

tion which is in the infrared range. The Lamb shift is deduced with the 

aid of the theoretical 2P 
l/2 

- 2P3,2 splitting which is relatively weakly 

dependent on QED. In the experiment, one-electron ions of fluorine in the 

metastable 2Sl,2 state are produced by passing a 64 MeV beam through carbon 

foils. The metastable atoms are excited to the 2P3,2 state by a laser beam 

which crosses the atomic beam, and the x rays emitted in the transition 

“3/2 + “l/Z are observed. A novel feature of the experiment is that the 

resonance curve is swept out by varying the angle between the laser beam 

and the ion beam which Doppler-tunes the frequency seen by the atoms. 
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A.1.2 Lamb Shift in Heliumlike Ions 

It would be of considerable interest to extend accurate Lamb shift 

measurements to hydrogenic systems with very high Z in order to test strong 

field QED. However, it appears unlikely that the hydrogenlike Lamb shift 

can be measured by the quenching methods in ions with Z? 30 [A-25]. 

A different possibility for accurate checking of QED at very high Z is 

the study of two- and three-electron ions with high-Z nuclei. When Z is 

very large, the electron-nucleus interaction dominates over the electron- 

electron interaction. Therefore, a theoretical approach which considers 

noninteracting electrons bound to thenucleus according to the single particle 

Dirac equation, and treats interactions of the electrons and radiative correc- 

tions as perturbations, should be capable of making accurate theoretical 

c~ predictions [A. 261. 

As an example, consider the energy separation 23Po - 23Sl in heliumlike 

ions. In the high-Z jj-coupling limit, the energy separation is given by 

(151,22Pl,2) 0 - (ls1,22s1,2) 1, so that if the electron-electron interaction 

is neglected compared to the electron-nucleus interaction, the absolute 

energy separation is just the hydrogenic Lamb shift E(2Sl,2) - E(2Pl,2). 

The electron-electron interaction must still be taken into account. The 

largest term, corresponding to one-photon exchange between the bound electrons, 

is of the form a[a(Za) +b(Za)3+c(Za)5+ . ..]m. with the leading term coming 

from the nonrelativistic Coulomb interaction of the electrons. The dominant 

energy separation is given by the first two terms which grow more slowly 
4 with Z than the Lamb shift - a(Za) . Hence, the Lamb shift becomes an 

increasing fraction of the energy separation as Z increases. The ratio of 

the Lamb shift to the total energy separation is 0.002% for Z=2, 0.8% for 
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Z=18, and 9% for Z=54. At high Z, the main QED corrections in heliumlike 

ions correspond to Feynman diagrams such as those pictured in Figs.A.3(a) and 

@I. The energy shift associated with these diagrams is just the hydrogen- 

like ion Lamb shift. Diagrams with an exchanged photon such as the one in 

Fig. :\.3(c) are less important (of relative order Z-l), but need to be 

calculated for a precise comparison with experiment. 

From the experimental standpoint, the heliumlike Lamb shift has the 

advantage that both the 23Po and 23Sl states are long-lived compared to the 

hydrogenlike 2P states so that the natural width of the states is not the 

main limitation to the accuracy which may be achieved. In addition, in 

contrast to the hydrogenlike case, there is no strongly favored decay mode 

(for zero spin nuclei) to the ground state to depopulate the upper level, 

which makes direct observation of the decay photons feasible in a beam-foil 

experiment . 

Studies of the fine structure in heliumlike argon (Z=18) have been 

carried out by DAVIS and MARRUS [A.27], who measured the energy of photons 

emitted in the decays 23P2-+23Sl and 23Po +23Sl in a beam-foil experiment at 

the Berkeley SuperHIIAC. Their results are shown in Table III. In that 

table, the theoretical values for the QED corrections are the hydrogenlike 

corrections for Z=18, and are seen to be already tested to the 25% level. 

TABLE III 
Fine structure in heliumlike argon, from DAVIS and MARRUS jA.271, in eV. 

Transition Self energy and 
vacuum polarization AEth AE exp 

23P2 -+ 23s 1 -0.15 22.14(3) 22.13(4) 

23P 0 + 23s 1 -0.16 18.73(3) 18.77 (3) 
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COULD and MARRUS [A.281 have measured the transition rate for the 

radiative decay 23Po + 23Sl in heliumlike krypton (Z= 36) by observing the 

x rays emitted in the subsequent Ml decay 23Sl + llS 0' Interestingly, the 

QED corrections to the 23Po - 23Sl energy splitting produce an observable 

effect in the decay rate. The observed lifetime of the 2'Po state is 

r=1.66(6) nsec. Assuming that the decay rate is given by the relativistic 

dipole length formula [A.291 

A(Z3Po -t 23Sl) = $au3 1 ]c~~S~,M I;l+;2] 23Po,0>]2 (A.7) 
M 

the theoretical value for the lifetime is 'I =1.59(3) nsec (T =1.42(3) nsec) 
f 

with (without) the QED corrections included in the energy separation W. 

A.1.3 Quantum EleS_trodynamics in High-Z Neutral Atoms 

Binding energies of inner electrons in heavy atoms are measured to high 

accuracy by means of electron spectroscopy of photoelectrons or internal 

conversion electrons [A.30]. Because of the extraordinary precision of the 

measurements, surprisingly sensitive tests of QED as well as the many-electron 

calculations can be made. 

Precise calculations of the ground state energies have been given by 

DESIDERIO and JOHNSON [A.311 and MANN and JOHNSON [A.32]. DESIDERIO and 

JOHNSON [A.311 have calculated the self-energy level shift of the 1S state 

in a Dirac-Hartree-Fock potential for atoms with Z in the range 70 - 90 (see 

Section A.1.5). They estimated the vacuum polarization correction to the 

1S level by employing the Uehling potential contribution for a Coulomb potential 

reduced by 2% to account for electron screening. MANN and JOHNSON [A.321 

have done a calculation of the binding energy of a K electron for W, Hg, 
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Pb, and Rn which takes into account the Dirac-Hartree-Fock eigenvalue, the 

lowest order transverse electron-electron interaction, and an empirical 

estimate of the correlation energy. The binding energy is taken as the . 
difference between the energy of the atom and the energy of the ion with a 

1s vacancy. Their comparison of theory to the experimental values [A.301 

corrected for the photoelectric work function is shown in Table IV. The 

inclusion of the QED terms dramatically improves the agreement between 

theory and experiment. 

TABLE IV. K-electron energy levels (in Ry) from MANN and JOHNSON [A.32]. 
____-- -~-.- -~- 

Element Self-energy and 
vacuum polarizationa E th E 

wt 

74W 8.65 -5110.50 -5110.46? .02 

80Hg 11.28 -6108.52 -6108.39 k.06 

82Pb 12.27 -6468.79 -6468.67 +.05 

86Pn 14.43 -7233.01 -7233.08 2.90 

aCalculated by DESIDERIO and JOHNSON [A.31]. These numbers include 
an estimated correlation energy of -0.08 Ry. 

A similar comparison of theory and experiment has been made for Fm 

(Z =lOO). FREEMAN, PORTER, and MANN [A.331 and FRICKE, DESCLAUX, and 

WABER [A.341 have calculated the K-electron binding energy in fermium. 

The results of FREElMN, PORTER, and MANN are compared to the experimental 

value obtained by PORTER and FREEDMAN [A.351 in Table V. They used extrap- 

olations of the results for Z= 70-90 of MANN and JOHNSON for the rearrange- 

ment energy, and of DESIDERIO and JOHNSON for the QED corrections. If the 
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extrapolated value for the self-energy in that table is replaced by the 

recently calculated value of CHENG and JOf-INSON [A. 361, the theoretical 

energy level is -141.957 keV. 

TABLE V. Calculated K-electron energy level in 
1 0 ,Fm (in keV) , from FREEDMAN, PORTER, 
and MAN-N [A. 331. - 

Source Amount 

EIS (neutral-atom eigenvalue) -143.051 
Magnetic +o. 709 
Retardation -0.040 
Rearrangement +0.088 
Self-energy +O. 484 
Vacuum polarization -0.154 
Electron correlation -0.001 

EIS (Z = 100) ‘* -141.965ItO.025 
Experimental value -141.967?0.013 

Extensive calculations of electron binding energies for all the elements 

in the range 2929106 have recently been done by HUANG, AOYAGI, CHEN, 

CRASEMANN, and MARK [A.37]. They used relativistic Hartree-Fock-Slater 

wave functions to calculate the expectation value of the total Hamiltonian. 

They assumed complete relaxation and included the Breit interaction and 

vacuum polarization corrections, as well as finite nuclear size effects. 

By comparing their results to experiment, it is possible to see the 

effect of the self-energy radiative corrections to the 2Sl,2 - 2Pl,2 (LL - LII) 

level splitting in heavy atoms. Figure A.4 shows the relative difference 

between the theoretical splitting without the self-energy and the experimental 

values compiled by BEARDEN and BURR [A.30]. The solid line shows theoretical 
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values for the Coulomb self-energy splitting [A.lO], and the dashed line 

shows values modified with a screening correction [A.37]. 

. 

A.1.4 High-Z Atoms and Limits on Nonlinear Modifications of QED 

Various reformulations of classical electrodynamics have been proposed 

which attempt to eliminate the problem of an infinite self-energy of the 

electron. Among these is the nonlinear theory of BORN and INFELD [A.38,39]. 

They proposed that the usual Iagrangian L = $(H2 - E2) be replaced by 

LBI = E; ( [l + (Hz - E2) /E; 1% - 1 ) (A. 8) 

This formulation reduces to the usual form for field strengths much smaller 

than an “absolute field” Eo. Within the Born- Infeld theory, the electric 

field of a point charge is given by 

Er = ;[l + ($,E;]-+ (A- 91 

The magnitude of E. is determined by the condition that the integral of the 

energy density of the electric field associated with a point charge at rest 

is just the rest energy of the electron m. This results in a value E, = 

1.2 x 1018 V/cm and a characteristic radius ro= 3.5 fm inside of which the 

electric field deviates substantially from the ordinary form e/r’. Due to 

the large magnitude of Eo, the observable deviations from linear electro- 

dynamics should be most evident in situations involving strong fields. 

There has been recent interest in the experimental consequences of the 

Born-Infeld modification. RAFELSKI , FULCHER, and GREINER [A.401 have found 

that the critical charge Zcr (see Section A. 3.1) is increased from about 174 
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in ordinary electrodynamics to 215 within the Born-Infeld electrodynamics. 

FREEMAN, PORTER, and MANN LA.331 and FRICKE, DIXIAUX, and WABER [A.341 have 

pointed out that the excellent agreement between the theoretical and experi- 

mental 1s binding energies in fermium (Z=lOO), discussed in Section A.1.3, 

is evidence against deviations from the linear theory of electrodynamics. 

In Fm, the difference in 1s energy eigenvalues between the Born-Infeld theory 

and ordinary electrodynamics is 3.3 keV, based on a calculation using the 

Thomas-Fermi electron distribution with a Fermi nuclear charge distribution. 

This is two orders of magnitude larger than the combined uncertainty in 

theory and experiment listed in Table V. Although the other corrections 

listed in that table might be modified by the Born-Infeld theory, e.g., the 

self-energy, the linear theory produces agreement with experiment in a case 

where the effects of possibl_e nonlinearities are large. SOFF, RAFELSKI, 

and GREINER [A.411 have found that unless E. is greater than 1.7 xl0 20 V/cm 

which is 140 times the Born-Infeld value, the modification due to LBI 

[Eq. (A.8)] would disrupt agreement between measured and calculated values 

for low-n transition energies in muonic lead. 

A.1.5 Wichmann-Kroll Approach to Strong-Field Electrodynamics 

A common aspect of calculations of strong field QED effects is the 

problem of finding a useful representation of the bound interaction (Furry) 

picture propagator SE(x2,x1) for a particle in a strong external potential 

A,, (xl . The approaches based on expanding $(x2,x1) in powers of either the 

potential A,,(x) or the field strength auAv(x) - avA,,(x) suffer from two main 

drawbacks. First, in the case of the self-energy radiative correction, 

the power series generated in this way converges slowly numerically. Seconc 
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for both the self-energy and the vacuum polarization, the expressions 

corresponding to successively higher order terms in the expansion become 

increasingly more complicated and difficult to evaluate. 

In their classic study of the vacuum polarization in a strong Coulomb 

field, WICHMNN and KROLL [A.121 employed an alternative approach to the 

problem of finding a useful expression for the bound particle propagator. 

Their method and variations of it have been the basis for studies of strong 

field QED effects, so we describe the method in some detail here. We also 

give a brief survey of calculations of strong field QED effects based on 

these methods. 

For a time-independent external potential, which we assume has only a 

nonvanishing fourth component -eAo(x) = V(z), i(x) = 0, the bound electron 

propagation function is 

i- 
c $,(2,),(;;,1 ew[-iEn(t2 - tl>l t2 ’ 5 

En’Eo 
s3x2’x1) = (A. 10) 

$$,),(~,I ew[-iEn(t2 - tl)l t2 < 5 

where the o,(g) are the bound state and continuum solutions of the Dirac 

equation for the external potential. It has an integral representation given 

by [A.12,42] 

1 
qx2Pl) = z c s dz G(~2,~1,~)~o e 

-iz(t2 - tl) 

where G (z2, zl, z) is the Green’s function for the Dirac equation 

[-i; l G2 +V(z,) + Bm - z] G(z2,z1,z) = a3(z2 - zl) 

(A. 11) 

(A. 12) 



and the contour C in (A.ll) extends continuously from --oo to +a below the real 

axis for Re(z) < Eo, through Eo, and above the real axis in the region Re (z) > Eo. 

The crossing point E. depends on the definition of the vacuum (see Section 

A.3.1). For the Coulomb potential with (Za) ~1, it is convenient to choose 

E,“= 0. Two possible contours of integration for (Zcx.) >1 are shown in Fig. 

A.5. In that figure, the branch points of G(z2&,z) at z = +m and the bound 

state poles are also shown. 

The Green’s function is formally given by the spectral representation 

G(;;2,;1,z) = c 
9&*)4&) 

Es 
E- z 

(A. 13) 

where the sum in (A.13) is over bound state and continuum solutions as in 

Eq. (A. 10). 

For a spherically synketric external potential V(r), the Green’s function 

may be written as a sum over eigenfunctions (with eigenvalue -K> of the Dirac 

operator K = B(s*z+l). Each term in the sum can be factorized into a part 

which depends in a trivial way on the directions of z2 and 21 and a radial 

Green’s function which contains the nontrivial dependence on r2 and rl, the 

magnitudes of z2 and z 1’ The radial Green’s function GK(r2,rl,z),written 

as a 2 x 2 matrix, satisfies the inhomogeneous radial equation 

V(r,) +m - z 

1 d 
- -2+e r2 dr2 I 

GKtr2,r1,z) = & 6tr2 - rl) 
V(r,) -m - z 

(A.14) 

The utility of this formulation is that the radial Green’s functions Glc can 

be constructed explicitly from solutions of the homogeneous version of (A.14). 

Let A(r) and B(r) be the two linearly independent two-component solutions of 
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(A.14) with the right hand side replaced by 0, where A(r) is regular at r=O 

and B(r) is regular at r = 00. Then for z in the cut plane (Fig. A. 5) and not 

a bound state eigenvalue, the Green’s function GK l,s given by 

GKIr2,yl = J(z) 1 [8(r2-rl)B(r2)AT(rl) + 8(rl-r2)A(r2)BT(rl)] (A.15) 

with the Wronskian J(z) given by (J(z) is independent of r) 

J(z) = r2 [A2 b-1 Bl (r) - Al (r) B2 (r3 1 (A. 16) 

In (A. 16)) l(2) denotes the upper(lower) component of A or B. Note that the 

radial Green’s function can also be expressed in the form of a spectral 

representation, in analogy with Eq. (A.13)) as 

T 

GK(r2,r19z) = 1 
FE b-2) FE b-1) 

E E-z (A. 17) 

where FE(r) is a bound state or continuum solution of the homogeneous radial 

equation. 

In the case of a Coulomb potential, the solutions A(r) and B(r) can be 

expressed in terms of confluent hypergeometric (or Whittaker) functions 

[A. 12,111. WICHMANN and KROLL [A.121 employed integral representations 

for these functions, carried out some of the integrations involved in evalu- 

ation of the vacuum polarization, and arrived at relatively compact expressions 

for the Laplace transform of the vacuum polarization charge density times r2. 

Their starting point was the expression for the unrenormalized vacuum polar- 

ization charge density of order e 

dz[TrGK(r,r,z) + TrG-k(r,r,z)] (A. 18) 
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This expression, which is valid to all orders in Za, may be further expanded 

in a power series in Zci. Many of the calculations relevant to high-Z muonic 

atoms (see Section A.2) are based on results obtained by WICHMANN and KROLL 

in their extensive study of +(r). 

ARAFUNE [A.431 and BROWN, CAHN, and McLERRAN [A.44,45] employed an 

approximation based on setting m= 0 in the radial Green's function GK to 

study finite nuclear size effects on the vacuum polarization in muonic atoms. 

This approximation considerably simplifies the calculation and corresponds 

to including only the short-range effect of the vacuum polarization. 

GYULASSY [A.46-481 constructed Greeri's functions for a finite nucleus 

potential in a numerical study of the effect of finite size on the higher 

order vacuum polarization in muonic atoms and in electronic atoms with Z 
c 

near the critical value (see Section A.3.8). In these studies, it was found 

that the main correction due to nuclear size arises from the ~=l (j =?i) 

term in Eq. (A-18). BROWN, CAHN, and McLERRAN [A.49,50] have constructed 

approximate analytic expressions for the radial Green's functions for a 

Coulomb potential in order to estimate the effect of the spatial distribution 

of the vacuum polarization charge density in muonic atoms. 

BROWN, LAMER, and SCHAEFER [A.511 have developed a method of calculating 

the 1s self-energy radiative correction for large Z, in which the solutions 

A(r) and B(r) are generated by numerical integration of a set of coupled 

differential equations. This method has been generalized to non-Coulomb 

potentials by DESIDERIO and JOHNSON [A.311 who evaluated the self-energy in 

a screened Coulomb potential for the 1s state with Z in the range 70-90. 

More recently, CIIENG and JOHNSON [A.361 have evaluated the self-energy, with 

finite nuclear size and electron screening taken into account for Z in the 

range 70-160, and with a Coulomb potential for Z in the range 50-130. 
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MOHR [A.1 0,111 has evaluated the self-energy radiative correction for 

the lS, ZS, and 2Pl,2 states over the range Z = lo-110 for a Coulomb potential. 

In that calculation, the radial Green’s functions ire evaluated numerically 

by taking advantage of power series and asymptotic expansions of the explicit 

expressions for the radial Green’s functions in terms of confluent hyper- 

geometric functions. In terms of the radial Green’s functions, the (unre- 

normalized) self-energy has the form 

aSE = - sjc dzfir,ri firlri 

2 

cc 

. . 

X [fi (r2)G:’ (r2 ,rl, Z) fj (rl)AK(r2 ,r,> 

K i,j=l 

- f;(r,)Gij (r2,r1 
. . 

,z)fj (r,lAl,-’ (r2,r1) 1 (A. 19) 

where i=3-i, 3=3-j; fi(r), i=1,2 are the large and small components of 

the Dirac radial wave functions, and the A’s are functions associated with the 

angular momentum expansion of the photon propagator and consist of spherical 

Bessel and Hankel functions. In the numerical evaluation of (A.19), partic- 

ular care is required in isolating the mass renormalization term [A.ll]. 
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A. 2 THE ELECTRODYNAMICS OF HIGH-Z MUONIC ATOMS 

A.2.1 General Features 

Muons, impinging on a solid target, can become trapped in bound states 

in the target atoms [A. 521. Because the Bohr radius of a particle in a 

Coulomb potential scales as the inverse of the mass of the particle, the 

radii of the muon orbits are l/207 times the radii of the corresponding 

electron orbits. Thus the muon and the nucleus form a small high-2 hydrogen- 

like system inside the atomic electlon cloud. Observation of the transition 

x rays of the muon yields the energy level spacings of the system. The 

lowest levels of the muon, which have radii comparable to the radius of the 
. . 

nucleus, are sensitive to properties of the nucleus such as charge distribution 

and polarization effects [A. 521. We are here concerned instead with higher 

circular orbits of the muon, such as the 4f 7/2 and 5g9/2 states in lead 

atoms, which have the property 

nuclear radius << muon Bohr radius << electron Bohr radius. 

For these states, the effect of the structure of the nucleus and of the 

bound atomic electrons is small. Hence precise theoretical predictions 

for the energy levels can be made and, in comparison with the experimental 

transition energies,provide a means of testing the effects of QED. In 

particular, the effect of electron vacuum polarization, which is large for 

muon levels, is tested to better than 1% with present-day experimental 

precision. 

Experimental determination of the 3d+2p transition energy in muonic 

phosphorus by KOSLOV, FITCH, and RAINWATER [A.531 showed the effect of the 
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lowest order vacuum polarization. More recently, with the use of lithium 

drifted germanium detectors to measure the x-ray enlergies, which are typically 

in the range 100-500 keV for the transitions considered here, experiments 

have become sufficiently accurate to be sensitive to higher order vacuum 

polarization effects [A. 54-591. The experiments of DIXIT et al [A.551 and 

of WALTER et al [A.561 reported in 1971-2 showed a significant discrepancy 

with theory; however, more recent experiments of TAUSCHER et al [A-57], of 

DIXET et al [A. 581, and of WILLEUMIER et al [A.591 reported in 1975-6 are 

in agreement with theory for the muonic transition energies. The accurate 

experiments, and particularly the apparent discrepancy with theory, led to a 

considerable amount of work on the theory of muonic energy levels. In the 

following discussion, we describe the present status of the theory, with 

attention focused on the well-studied transition 5g 
g/2 + 4f7/2 in muonic ‘08Pb. 

Numerical values for the various contributions to the energy levels are 

collected in Table VI of Section A.2.6. 

The main contribution to the energy levels is the Dirac energy of a muon 

in a Coulomb potential. A small correction must be added to account for the 

finite charge radius of the nucleus. This can be calculated either by first 

order perturbation theory, or by numerical integration of the Dirac equation 

with a finite nuclear potential. The latter procedure is necessary for low 

n states where the finite size correction is large. For high n circular 

states, the correction is small and insensitive to the details of the nuclear 

charge distribution. For the 5gg,2 - 4f7,2 transition in lead, the correction 

is -4 eV compared to the reduced mass Coulomb energy difference of 429,344 eV. 

The other small non-QED corrections from electron screening, and nuclear 

polarization and motion are discussed in subsequent sections. 

The largest correction to the Dirac Coulomb energy levels is the effect 
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of electron vacuum polarization which is discussed in the following section. 

In the remainder of this section, we make some general remarks about the 

magnitude of the radiative corrections in muonic atoms. 

If we restrict our attention to interactions of photons with electrons 

and muons, the QED corrections to the energy levels of a bound muon, to 

lowest order in a, are given by the Feynman diagrams in Fig. A.6. In that 

figure, the double lines represent electrons or muons in the static field 

of the nucleus. The diagrams (a), (b), and (c) represent the muon self-energy, 

the muon vacuum polarization, and the electron vacuum polarization, respectively. 

It is of interest to compare the QED corrections to muon levels to the 

corresponding corrections to electron levels. The lowest order diagrams for 

a bound electron are give; by the diagrams in Fig. A.6 with the p’s and e’s 

interchanged. For a point nucleus, the electron diagrams corresponding to 

(a) and (b) give exactly the same corrections, relative to the electron 

Dirac energy, as (a) and (b) give, relative to the muon Dirac energy. On 

the other hand, diagram (c) gives the large vacuum polarization correction 

in muonic atoms, while its analog, with p and e interchanged, is negligible 

in electron atoms. 

The relatively greater effect of the electron vacuum polarization in 

muonic atoms is due to the short-range nature of the vacuum polarization 

potential. The leading (Uehling) term of the potential falls off exponen- 

tially in distance from the nucleus with a characteristic length of X,/2. 

Hence, the overlap of the vacuum polarization potential with the muon wave- 

function, which has a radius of 0.2Xe for the n= 5 state in lead, is much 

greater than the overlap of the potential with the electron wavefunction, 

which has a radius of about 550 Xe in the n= 2 state of hydrogen. 

The difference in scale between muon and electron atoms has another 
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consequence. The short-ranged muon wavefunction is sensitive to the short- 

range behavior of the electron vacuum polarizatio\ potential, while the 

long-range electron wavefunction is sensitive only to the zero and first 

radial moments of the potential. Hence while the hydrogen Lamb shift, 

with presently measured precision [A.60,61], tests the vacuum polarization 

to O.l%, it is sensitive to a different aspect of the vacuum polarization 

than the muonic atom tests. 

A further difference between muon and electron atoms is that the high- 

Z muonic atom measurements test higher order than Uehling potential contribu- 

tions to the vacuum polarization,which are negligible in the hydrogen Lamb 

shift [A. 121. 

A.2.2 Vacuum Polarization 

The electron vacuum polarization of lowest order in a and all orders in 

Zcc is represented by the Feynman diagram in Fig. A.~(c). For a stationary 

nuclear field corresponding to the charge density p,(G), the effect of the 

vacuum polarization is equivalent to 

an induced charge distribution given 

[A. 12,621 

r 

the interaction of the bound muon with 

by (-e is the charge of the electron) 

1 
P* 6) = <O]j,(;‘,t) IO> = ; 

L 

c b&l2 - c I~~~~) I2 
E>O E<O 1. 

e 
= 27ri 

--I 
dzTrG(q,G’ ,z) ~, 

r -+T 
(A. 20) 

c 

(see also Eq. (A.18))) where G is the Green’s function for the external 

field Dirac equation discussed in Section A.1.5. (The vacuum IO> is the state 
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corresponding to no electrons or positrons in the external potential; 

jp (x) = - 5 [T(x) ,yy$(x)] has a vanishing vacuum expectation value only in 

the limit Za-tO.) The three expressions for the charge density in (A.20) 

are formal expressions and require regularization and charge renormalization 

in order to be well defined. A practical method of regularization is the 

Pauli-Villars scheme with two auxiliary masses [A.63]. The sum-over-states 

formula for the charge density in Eq. (A.20) is related to the last expression 

in (A.20) by choosing a suitable con?our of integration C and evaluating 

the residue of the pole in the spectral representation,Eq. (A.13), of G [A.12]. 

In order to facilitate the evaluation of the charge density (A. 20)) 
. 

it is convenient to expand it in powers of the external field. The Feynman 

diagrams corresponding to this expansion are shown in Fig. A.7. The X’S 

in Fig. A.7 represent interaction with the external nuclear field. klY 

odd powers of the external field contribute due to Furry’s theorem CA.131. 

The expansion in powers of the external field in Fig. A.7 corresponds to the 

Neumann series generated by iteration of the integral equation for the 

Green’s function 

G(:,;‘,z) = G’(;,;‘,z) - 
/ 

d3$ G”(f,;“,z)V(?‘)G@,? ,z) (A. 21) 

In (A.21), G’(q,s’,z) is the Green’s function in the absence of an external 

potential and V(;) is the potential energy of the electron in the nuclear 

field. The term in the expansion of G(G,;fl,z) linear in V(q), when substi- 

tuted for G in (A.20), gives, after charge renormalization, the charge density 

associated with the Uehling potential [A.151 

(A. 22) 
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. 

In (A.22), the charge distribution of the nucleus normalized such that 

/d3;pN(;) = Ze, and the subscripts on V refer to the order of the vacuum 

polarization, i.e., Vnm = O(an(Za)m). The effect of VT1 on a muon energy 

level is accurately taken into account by adcling VT1 to the external nuclear 

potential V in the Dirac equation 

-f -+ 
[ zi l $ + V(T) + V&(r) + Bm,, - E,]@,(r) = 0 (A. 23) 

and solving for the bound state energy En numerically. This procedure is 

equivalent to surmning over the higher order reducible contributions of the 

Uehling potential; Fig. A.8 shows the first three terms in this sum. 

For the high-L states under consideration here, the Uehling contribution 

is well approximated by the point charge value, Vll, obtained by making the 

replacement pN (G) + Zes3(G) in the right-hand side of (A-22), evaluated in 

first order perturbation theory with Dirac wavefunctions for a point nucleus. 

Only the short distance behavior of the electron vacuum polarization is 

important (mer = 0.2 for r = radius of the n = 5 state in lead) [A.64-661: 

aZa 
t 

Tlme 
Vll(r) = y- 6 [!Ln(mer)+y] 9", 2 2 i$ mzr2 +-- + mer - 

+ $ mir3 [an (m,r) + y] + & mir3 + . . . . j (A. 24) 

(y = 0.57721 . . . is Euler’s constant.) There are two non-negligible correc- 

tions to Vll. The first is the correction due to the finite extent of the 

nucleus. The small r form of the correction is [~.65] 

2 

6Vll b-1 = VT,(r) -Vll(r) = + - J-. <r2> + 5 -$- <r2> 
I 9r3 

- --J- <r4> + . . 
30r5 

. 1 
(A. 25) 

where the notation < > denotes an average over the nuclear charge density. 
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The other correction is the second order perturbation correction of the 

main term corresponding to the diagram in Fig. A.8 (II 1 

AE = c Co]Vll In> & <“IV11 

n#O 
0 ‘n 

IO> (A. 26) 

The energy shifts for the Sg9,2 - 4f7,2 transition arising from these 

corrections are listed separately in Table VI [A.65]. 

We next consider the vacuum polarization of order c1 and third and 

higher order in Zcr, corresponding to diagrams with three or more X’S in the 

series in Fig. A. 7. The point nucleus approximation is considered first. 

WICHMANN and KROLL [A.121 obtained an explicit expression for the Laplace 

transform of r2 times the vacuum polarization chargedensity of order ct(Z~)~. 

BLoMQVIST [A.651 has used their result to obtain the vacuum polarization 

potential V13(r) exactly in coordinate space and found the small r series 

expansion which is sufficient to evaluate the muon energy shifts 

a(Zco3 V13W = ~ 1( -f c.(3) ; + - IT2 7 1 
-9 i+ > ( 27r5(3) - + r3 me > 

+ -65(3) 
1 1 

+ =x4 + p2 
> 

rn$- + $ mir2 [kn(m,r) + y] 

+ 2 4 31 32 
3 

n<(3) +vrrRn2 - 27r mer + . . . (A. 27) 

This term contributes -43 eV to the 5g9,2 - 4f7,2 transition energy in muonic 

lead. VOGEL [A.671 has tabulated numerical values of V13(r) as a function of r 

based on BLCMJVIST’s exact expression. Calculations by BELL [A.681 and by 

SUNDARESAN and WATSON [A.69], based on interpolation of the asymptotic forms of 

the Laplace transform of the third order vacuum polarization charge density 

given by WICHMANN and KROLL, are in agreement with the values obtained by 

BLoMQVIST. An earlier calculation by FRICKE [A.701 had the wrong sign for 
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this term, which accounted for part of the apparent original discrepancy 
. 

between theory and experiment (see Section A. 2.1). 

The vacuum polarization of order a(Za)5 and higher can be accounted for 

by considering the small distance behavior of the induced charge density. 

For a point nuclear charge density, the effect of the vacuum polarization 

of third and higher order is to produce a finite change 6Q in the magnitude 

of the charge at the origin and a finite distribution of charge with a mean 

radius of approximately 0.863, [A. 121. The integral over all space of the 

induced charge density of order (ZU)~ and higher must, of course, vanish. 

The induced point charge, which gives rise to a leading term proportional 

to r -1 in the vacuum polarization potential, has the dominant effect on the 

muon energy. The magnitude of the induced charge was calculated by WICHMANN 

and KROLL [A.121 to all orders (2 3) in ZCX. Their result has been confirmed 

by an independent method by BROWN, CAHN, and McLERRAN [A.71,49]. WICHMANN 

and KROLL obtained this result as a special case in a general study of the 

vacuum polarization, while BROWN, CAHN, and McLERRAN were able to simplify 

the calculation by setting me= 0 from the beginning. That this procedure 

produces the leading r -’ term in third order is seen by inspection of V13(r) 

in Eq. (A.27). The lowest order terms in SQ are given by 

SQ = %1[2~(3) +.$-$](~a)~ -[25(S) +FL;(3) -g] (za)‘+ **-\ 

(A. 28) 

The numerical value of the charge to all orders in Za is displayed by writing 

6Q = -e[0.020940(Za)3 + 0.007121(Za)5 F,(Za)l (A. 29) 

where F. (Za) appears in Fig. A. 9. The leading terms of the fifth and seventh 

order vacuum polarization potential are [A.12,65] 
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5 
V15(r) = * 

[ 
f G(5) - y C(4) 

a(Za)7 
V17W = Tr - 5 G(7) + 5 ~(6) 

- - ; c2(3) + Other1 1 

g ~(3) - $ c2(2) + oh,r> 1 
Z$ ~(5) - f c(2)<(4) 

(A. 30) 

The fifth and seventh order leading terms contribute -7 eV to the 5gg,2 - 

4f7/2 energy separation in lead. 

We briefly examine the contribution of terms of higher order in mer 

to the fifth and higher order (in Za) vacuum polarization. The order a 

potential (excluding the r -’ term of the Uehling part) is given by EA.501 

Vll+(r) = AUa) i + B(Za)me+C(Za)me(mer)2h + D(Za)mzr + . . . (A. 31) 

* 

where X = (1 - (Za)2)!T”, and the terms omitted from (A.31) are higher order in 

m,r. The term A(Za)r-’ corresponds to the induced point charge discussed 

earlier. B(Za) has not been calculated in fifth or higher order in Za, 

but gives the same contribution for all states and therefore does not effect 

the transition energies. The coefficients C (Za) and D(Za) have been calcu- 

lated numerically to all orders in Za by BROWN, CAHN, and McLERRAN [A.SO]. 

Their results show that the part of order fifth and higher in (Za) in these 

terms (the third order parts are included in (A.27)) gives a small (of order 

1 eV) contribution to the transition energy. A similar conclusion was 

reached by BELL [A.68]. 

A correction to the vacuum polarization of third and higher order must 

be made to account for the finite size of the nucleus. ARAFUNE [A.431 and 

BROWN, CAHN, and McLERRAN [A.441 have independently obtained approximate 

analytic expressions for the potential corresponding to the finite size 

correction to the vacuum polarization. ARAFUNE’s expression [A. 431 
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6Vll+(r) = (Za)2 - 

. (A. 32) 
for r > R 

where X = (1 - (Za)2)‘, is based on the following approximations: Terms of 

relative order (m,r)’ are neglected, terms of order R4/r5 are neglected, 

higher order terms in (Za)’ are neglected except in the exponent, and the 

nucleus is approximated by a uniformly charged sphere of radius R. The 

effect of the potential inside the radius R is negligible for high-R states. 

In order to isolate the contribution of (A.32) to the third and higher order 

vacuum polarization, it is necessary to subtract from (A.32) the term 

-- (A. 33) 

which corresponds to the Uehling potential portion and appears 

as the first term on the right-hand side of (A.25), (R2 = $ <r2>). 

BROWN, CAHN, and McLERRAN [A.44,45] have done a similar calculation. 

Their expression allows for an arbitrary nuclear charge distribution and is 

valid to all orders in Za. The results of these calculations are in excellent 

agreement and yield a correction of 5 eV for the 5gg,2 - 4f7,2 transition in 

lead. 

GYULASSY [A.46,48] has made a numerical study of the effect of finite 

nuclear size on the higher order vacuum polarization. He was able to 

calculate the finite size effect with or without the approximations of 

ARkFUNE and of BROWN, CAHN, and McLERRAN. The finding was that the approx- 

imations introduce a small error of 1 eV, and the finite size correction is 

6 eV compared to the 5 eV quoted above. GYULASSY also examined the extent 

to which the finite size corrections to the third order vacuum polarization 

are sensitive to the shape of the nuclear charge distribution. The correc- 
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tions were found to be essentially the same for a uniform spherical distri- 

bution and a shell of charge, provided the distributions have the same 

r.m.s. radius. 

RINKER and WILSTS have evaluated the higher order vacuum polarization 

correction by a direct numerical evaluation of the sum over eigenfunctions 

in (A.20). Their early work [A.72], which showed a 162 2 eV finite size 

correction to the higher order vacuum polarization,compared to 6 eV discussed 

above, is incorrect due to numerical difficulties [A.73]. More recently, 

with improved numerical methods, they have evaluated the higher order vacuum 

polarization correction for many states and various values of Z in the range 

26-114 [A. 731. The results in lead are consistent with the work described 

above. 

The fourth order vacuum polarization, of order a2, corresponding to the 

Feynman diagrams in Fig. ArlO, has been calculated and expressed in momentum 

space in terms of an integral representation by K.&L& and SABRY [A.74]. 

The configuration space potential V21(r) derived from the Kallen-Sabry 

representation was obtained by BLoMQVIST [A.65]. The complete expression 

for V21(r) is somewhat complicated, so it is convenient in calculations to 

employ the first terms in the power series expansion [A.651 

a2 Za 
V21(r) = 7 { - $ [h(mer> + y12 - $ b(m,r) + yl 

- c(3) +$+-& ++ 
( > ( 

VT2 ++,p& -ST me 
) 

5 2 m r +xe [Rn(m r) +y] - 65 m2r + e 18 e **‘. 

The power series represents V21(r) sufficiently well for values of r important 

for muonic orbits considered here to give accurate values for the energy shifts. 
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A numerical evaluation V21(r) has been made by VOGEL [A.67], who produced 

a table of point by point values. FULLERTON and RINKER [A.751 give a numerical 

approximation scheme to generate the second order potential for a finite sized 

nucleus based on VOGEL’s tabulated values. Earlie? estimates of this correc- 

tio”n were made by FRICKE [A. 701 and by SUNDARESAN and WATSON [A. 691, however, 

these calculations erroneously counted the diagram in Fig. A.lO(a) twice. 

A.2.3 Additional Radiative Corrections 

According to the discussion of BARRETT, BRODSKY, ERICKSON, and GOLIHABER 

[A. 641, it is expected that the self-energy correction to muon energy levels 

[Fig. A-6(a)] is reasonably well approximated by the terms of lowest order 

in Zcl [A.26,76]. 

4a (za)4 
%E = - % n3 

$I-& (n a) + 3 1 0 ’ 8 K(29,+1) 
a#0 (A. 35) 

where K. is the Bethe average excitation energy,and the second term is due 

to the anomalous magnetic moment of the muon. For high-k states, the point 

nucleus values of KLARSFELD and MAQDET [A.771 are used for Ko. This 

correction contributes -7 eV for the 5g g/2 - 4f7/2 transition in lead. 

A QED correction of order a2 which has been the subject of recent 

interest is shown in Fig. A.11. In that figure, diagrams corresponding to 

the expansion of the electron loop in powers of the external potential are 

also shown. The first term in the expansion is the first vacuum polarization 

correction to the photon propagator. The next three terms correspond to 

a vacuum polarization correction of order a’(Za)‘ discussed in the following 

paragraph. 
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It was suggested by CHEN [A.781 that the contribution of this diagram 

was larger, relative to similar diagrams, than its nominal order would 

indicate. He estimated a value of -35 eV for the Sg-4f energy difference 

in lead. At the same time, WILEXS and RINKER [A.79,73] estimated the effect 

and found that the 4f energy is shifted by an amount in the range l-3 eV, 

in conflict with the result of CHIN. Subsequently, FUJIMOTO [A. 801 estimated 

the a2(Za)2 correction and found that the energy shift for the 5gg,2 - 4f7,2 

transition in lead is approximately 0.8 eV which is consistent with the 

value of WILETS and RINKER. FUJIMOT6 simplified the calculation considerably 

by treating the muon as a static point charge and setting me= 0 in the virtual 

electron loop. The latter approximation takes advantage of the fact that 
c- 

the distance between the muon and the nucleus is much less than the electron 

Compton wavelength. The result is then a vacuum polarization modification 

of the short range interaction potential between two fixed point charges 

given by 

&V(r) = -C a2 ($, 
2 

where C = 0.028(l). BORIE [A.811 has recently reported an approximate 

value of 1 eV for the correction. 

Additional corrections to the muonic energy levels have been examined 

and found to be small. SUNDARESAN and WATSON [A.821 have estimated the 

contributions of hadronic intermediate states in the photon propagator, 

using a method due to ADLER [A.83]. BORIE has calculated various higher 

order QED contributions to the muonic atom energy levels, besides the a2(Za)L 

term just considered, and found them to be negligible compared to the 

experimental errors [A. 841. 
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A.2.4 Nuclear E:ffects 
I 

Besides the effect of the finite nuclear charge radius which has already 

been discussed, the effects of nuclear motion and nuclear polarizability 

must be considered. 

The main effect of nuclear motion is taken into account by replacing 

the muon mass by the reduced mass of the muon-nucleus system in the Dirac 

expression for the binding energy. This reduced mass correction is exact 

only in the non-relativistic limit. The leading relativistic correction for 

nuclear motion is given by [A.26,85] 

(A. 37) 

where M is the nuclear mass. The reduced mass correction to the binding 

energy and relativistic correction contribute -234 eV and 3 eV respectively 

to the 5gg,2 - 4f7,2 transition in lead. The main effects of the nuclear 

motion are correctly taken into account by using reduced mass wavefunctions 

in evaluating the QED corrections, most importantly in the Uehling potential 

correction. 

Up to this point, the nucleus has been treated as a charged object 

with no structure. There is a small correction to the muon energy levels 

due to the fact that the muon can cause virtual excitations of the nucleus. 

This effect has been considered by COLE [A.861 and by ERICSON and HUFNER [A.87 

for the case of high-L muon states. The dominant long-range effect is the 

static dipole polarizability of the nucleus. It can be roughly described 

as a separation of the center of charge from the center of mass of the nucleus 

induced by the electric field of the muon. The approximation that the 
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displacement follows the motion of the muon is expected to be good, because 

the nuclear frequencies are much higher than the relevant muon atomic frequen- 

ties (S-20 MeV compared) to a few hundred keV). The polarization in this 

approximation corresponds to an effective potential VE1(r) given by [A.871 

e2 
VEl(r) = -“El T (A.38) 

where a El is the static El polarizability of the nucleus. The value of aEl 

can be obtained from the measured to_tal y-absorption cross section (I El(*) 
for El radiation in the long wavelength limit by means of the sum rule 

(A.39) 

The energy shifts have been calculated by BLOKJVIST [A.651 using the experi- 

mental photonuclear cross section of HARVEY et al [A.881 for 208Pb. The 

result is 4 eV for the 5gg,2- 4f 712 energy difference,in agreement with 

COLE's value [A.86]. 

A.2.5 Electron Screening 

In the preceding discussion, the effect of the atomic electrons has 

been completely ignored. For the levels of the muonic atom under considera- 

tion, it is sufficiently accurate, to within a few eV, to consider the energy 

shift of a muon in the potential due to the charge distribution of the 

electron density of an atom with nuclear charge Z-l. 

The screening potential is well approximated by a function of the form 

Vs (r) = V _ CrK eT8’ 
0 (A.40) 
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The constant V. is relatively large and is approximately equal to the Thomas- 
. 

Fermi expression Vs(0) = 0.049 Z4’3 keV . Only the second term in (A.40) 

contributes to the energy differences. VOGEL has calculated and tabulated 

Ilartree-Fock-Slater electron potentials and values for C, K, and B for which 

(A.40) approximates these potentials to better than 5% for the range of r 

relevant to muonic orbits [A.67]. VOGEL finds that screening contributes 

-83 eV to the 5gg,2 - 4f7,2 transition in lead [A.89]. Calculations have 

also been done by FRICKE EA.901 and by DIXIT (quoted in [A.55,91]) and are 

in agreement with VOGEL’s results and earlier calculations in Ref. [A.641 to 

within a few eV. The approximation, employed in the preceding calculations, 

of using the Slater approximation to the exchange potential has been checked 

by IWiN and RINKER [A.921 and is found to produce a small (l-2 eV) error. 

RAFELSKI, MhLER, SOFF, and GREINER [A.931 discuss the question of how to 

deal with screening and vacuum polarization corrections in a consistent way. 

A source of uncertainty in the screening calculations is the lack of 

knowledge of the extent to which the muonic atom is ionized. During the 

early stages after the muon is captured, it cascades in the atom partly by 

radiative transitions and partly by Auger transitions. The screening 

corrections depend on how many electrons have been ejected by Auger 

transitions of the muon. This problem has been considered by VOGEL who 

finds that the effect of ionization is partly compensated by refilling of 

the empty levels, and that the uncertainty in the muon levels is only l-3 

eV [A. 941. 
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A.2.6 Summary and Comparison with Experiment 

Numerical values for the corrections described in the preceding sections 

are listed in detail for muonic lead in Table VI. In Table VII theoretical 

contributions to the transition energies for measured transitions with Z in 

the range 56-82 are listed. The sources of the values are as follows. The 

point nucleus energy differences are the Dirac values for the muon-nucleus 

reduced mass m,,M/ (mu+M) . The value?n eV is based on the recent determination 

of the ratio m /m 
P e 

= 206.76927(17) deduced from measurement of the muonium 

hyperfine interval by C&PERSON et al IA.951 together with R,h = 13.605804(36) 

eV recommended by COHEN and TAnOR [A.96]. (There is a small change of about 

2 eV in the results for the muon energy levels if the value of m /m 
JJ P 

determined by CROWE et al [A.971 is used.) Numerical values for the contri- 

butions in Table VII are taken from Table 2 of the review by WATSON and 

SUNDARESAN [A.981 with the following exceptions. The finite size correction 

to the higher order vacuum polarization is evaluated by means of ARAFUNE’s 

formula (with the Uehling term subtracted) in Eq. (A.32) and is included 

in the column labeled a (Za) 3+. The a2 (Zo)2 term is based on the results 

in References A. 79-81. The self-energy term includes an approximate 

error estimate of 30% to account for higher order terms in Za and finite 

nuclear size effects [A.64]. 

Table VIII lists the most recent measurements of muonic x rays for the 

transitions being considered. The 1971-2 experiments show substantial 

disagreement with theory whereas the 1975-6 experiments are generally in 

good agreement with theory, as is easily seen in Fig. A.12. The apparent 

agreement of the latest results with theory provides an impressive confirmation 

of strong field vacuum polarization effects in QED. 
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. 
TABLIi VI. Summary of contributions to energy levels in muonic lead 2"8Pb (eV). __--p- --.-- 

Contribution Order 4f7/2 5g9/2 
Static external potential 

Dirac Coulomb energy" 
F&ite nuclear size 

Vacuum polarization of order a 

Coulomb Uehling potentiala 
Finite nuclear size corr.to Uehling 
Second order perturbation of Uehling 
Third order in Za Coulomb 
Fifth order in Za (leading term) 
Seventh order in Za (leading term) 
Finite size corr. to higher order in Za 

Vacuum polarization of order ct* 
Coulomb fill&n-Sabry potential 

Self Energy 
Bethe term 
Magnetic moment 

Other radiative corrections 
Virtual Delbriick diagram 

Nuclear motion 
Relativistic reduced mass 

Nuclear Polarization 

Dipole term 

Atomic electrons 
Screening correctionb 

TOTAL 

TRANSITION ENERGY s 431,332 eV 

-1188314 - 758970 
4 0 

am> -3652 -1562 
-12 -3 
-9 

a(Za)3 
-3 

93 
a(Za)5 

50 
16 

a(Za)7 
10 

3 2 
-8 -3 

a2 (Za) -25 -11 

a2 (Za) 2 -1 0 

(Za14m,,/M -4 -1 

a(Za)4CrEl 0 

-89 -172 

-1191992 -760660 

aIncludes reduced mass correction mu -f Mmu /(mu + M) . 

bConstant term VO is not included. 



TABLE VII. Theoretical contributions to muonic atom energy separations, in eV. 

Transition Pt.Nucl. Finite Vacuum Polarization Self Rel. NC. Elec. Total 
Size 3+ En* 4 Rec. Pol. Ser. 

a Gal a Gal a*(Za) a2(Za)' a Ua) 

439,069+1 -146?8 2436 
431,654+1 -55+5 2328 

200,544+1 0 761 
199,194+1 0 747 

414,182+1 -8+1 2047 

408,465&l -2 1972 

424,8501tl -921 2117 
418,837kl -3 2039 

435,666kl -1021 2189 -4622 
429,344-+1 -4 2106 -4552 

-2lk2 17 1 9+3 
-20+2 16 1 -8+2 
-921 5 0 2+1 
-9kl 5 0 -2+1 

-4252 14 1 7+2 
-40+2 14 1 -622 

-4422 15 1 7k2 
-43+2 14 1 -722 

15 1 7?2 
15 1 -7i2 

3 

3 
1 
1 

2 

2 

2 
2 

2 
2 

7 -18kl 441,357+9 
7 -18+1 433,908+6 

0 -X+2 201,273+3 

0 -31+2 199,905+3 

3 -78_+4 416,12&S 

3 -79*4 410,330+_5 

4 -79x4 426,864?5 
4 -81+4 420,763+5 

4 -81+4 437,747+5 

4 -8324 431,333+5 



. 

TABLE VIII. Recent measurements of muonic x rays. in eV. 

BACKENSTOSS DIXIT WALTER TAUSCHER DIXIT VUILLEUMIER 
et al. 1970 et al. 1971 et al. 1972 et al. 197Sa et al. 197Sb et al. 1976b 

56Ba 

4f5/2-3a3/2 441,299+21 441,366&13 441 371+12 

4f7/2-3a5/2 433,829+19 433,916+12 433:910?12 

5g7/2-4f5/2 201,260+16 201,282? 9 

5g9/2-4f7/2 199,902*15 199,915? 9 

416,087*23 
410,284+24 

426,828_+23 
420,717+23 

82Pb 

5g7/2-4f5/2 437,806+40 437,6871t20 437,744+16 437,762+13 

5g9/2-4f7/2 431,410?40 431,285+17 431,353+14 431,341+11 

416,100*28 
410,292-+28 

426,851+29 
420,741?29 

+he new 198 Au (412 keV) standard of DESLATI'ES et al [A.991 would increase these values by about 10 eV. 
b Based on the new Au standard. 
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A.2.7 Muonic Helium 

Recently, the separation of the 2P3,2 and 2Sl,2 ener,v levels in muonic 

helium (p4He)+ was measured by BERTIN et al [A.1001 . In that experiment, 

muons were stopped in helium and in some cases formed (u4He)+ in the metastable 

(T = 2 nsec) 25 state. Transitions to the 2P3,2 state were induced by a 

tunable infrared pulsed aye laser, and monitored by observation of the 

2P-1s 8.2 keV x ray. A fit to the resonance curve yielded a line center 

corresponding to the transition energy 

AE (exp) = 1527.4(g) meV (A. 41) 

The theory of the muonic helium system provides an instructive contrast 

to the heavy muonic atoms. The relative importance of the various corrections 

is quite different in the two cases. For example, in muonic lead, the 

electron vacuum polarization of order a(Zu)> plays an important role, while 

it is negligible in muonic helium. On the other hand, the effect of finite 

nuclear size, which is a small correction to high-L levels in muonic lead, 

is the major source of uncertainty in the theoretical value of the energy 

separation 2P3,2 - 2S1,2 in muonic helium. In the following, we briefly 

summarize the contributions to the theoretical value of the 2P 
312 

- 2s 
l/2 

splitting in (u4He)+. The numerical values are collected in Table IX. 

The fine structure is qualitatively different from the fine structureof 

a one-electron atom; the vacuum polarization is the dominant effect in 

determining the muonic level spacings. The 2Sl,2 level is lowered 1.7 eV by 

vacuum polarization compared to the Sommerfeld fine structure splitting of 

0.1 eV. The finite nuclear size correction is the second largest effect and 

raises the 2s 
l/2 

level by 0.3 eV. 
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The starting point for the theoretical contributions is the point 

nucleus fine structure formula 

AERS = [l + $ (Zc$ + . ..I (A. 42) 

where M is the nuclear mass. This must be corrected for the finite size 

of the nucleus. The nuclear charge radius is only known approximately from 

electron scattering experiments, so it is convenient to parameterize the size 

contribution to the fine structure in terms of the r.m.s. nuclear radius 

[A. 1011 

ACNS = -103.1 xi-*> meV - fmv2 (A. 43) 

The value of the sum of the above corrections is in satisfactory numerical 

agreement with the more recent work of RINKER [A.102]. 

The largest radiative correction is the electron vacuum polarization 

of order ct(Zcr) . The value has been calculated by RINKER [A.1021 who numerically 

solves the Dirac equation with a finite-nucleus vacuum polarization potential 

included (see Section A.2.2). The result appears in Table IX. The order 

a2 (Za) vacuum polarization was calculated by CAMPANI [A.103], by BORIE 

[A.lOl], and by RINKER [A.102]; all of the results are in accord. 

The point nucleus value for the self-energy and muon vacuum polarization 

is given by [A.71 

a(Zcc)4m 
AESh+AI:$, = - 6~ u { (1 +iu,M)3 [g + 9,n(Za)-2+!Ln(l +mu/M) - Rn ~:~~~i 1 

- & (1 + m,,/M) -2 (A. 44) 

The lowest order term may be partially corrected for finite nuclear size 
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2 
effects by replacing the wavefunction at the origin I+(O) 1 by the expectation 

value of the nuclear charge density <p,(f)>, as has been done by RINKER 

[A.102]. An evaluation of the finite-nucleus average excitation energy K. 

would be necessary for a complete evaluation of the effect of finite nuclear 

size. 

A further small correction arises from the effect of the finite nuclear 

size on the relativistic nuclear recoil terms. RINKER [A.1021 estimates a 

value of 0.3 meV for this correction, using the prescription of FRIAR and 

NEGLE [A.1041 for finite nuclei. This correction is nearly cancelled by the 

Salpeter recoil term from the non-instantaneous transverse photon exchange 

of order (ZC,)~ mE/M. 

An important effect is nuclear polarization, which has been the subject 

of some controversy. The simple approximation used for high-% states (see 

Section A.2.4) is not accurate for low-R states in muonic helium. BERNABEU 

and JARLSKOG [A.1051 calculated a value of 3.1 meV for the nuclear polariz- 

ability contribution using photoabsorption cross section measurements as 

input data. On the other hand, HENLEY, KREJS and WILETS [A.1061 obtained 

a value of 7.0 meV based on a harmonic oscillator model for the nucleus. 

This value agrees with an earlier result of JOACHAIN [A.107]. However, in a 

subsequent analysis of the discrepancy, BERN/&U and JARLSKOG [A.1083 point 

out that the harmonic oscillator model predicts a value for the electric 

polarizability of the nucleus “El which is in substantial disagreement with 

the value deduced from existing measurements of the photoabsorption cross 

section (see Eq. (A.39)). A subsequent calculation by RINKER [A.1021 confirms 

the conclusions of BERNABkl and JARLSKOG and also yields a value of 3.1 meV 

for the nuclear polarizability contribution. 

The total theoretical value for the 2P 
312 - 2%/2 energy separation is 
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given by (see Table IX) 

AE(th) = 1815.8f1.2 meV - 103.1 <r2> fme2-meV (A. 45) 

Using a weighted average of the results of electron scattering data for the 
4 He charge radius (<r2>li = 1.650+0.025 fm) [A.1001 the theoretical energy 

separation is 

AE (th) = 1535(g) meV (A. 46) 

in agreement with the experimental result. On the other hand, assuming that 

the theory is correct, one can equate (A.45) and (A.41) to obtain a measured 

value for the charge radius 

5- <r2> ’ = 1.673(4) fm (A. 47) 

TABLE IX. Theoretical contributions to the fine structure 
in muonic helium (in meV) . 

--- 
Source Lowest order Value 

Fine structure 

Finite nuclear size 

Electron vacuum polarization 
Uehling potential 

Electron vacuum polarization 
Kallk-Sabry term 

Self energy and muon 
vacuum polarization 

w4 

(Za)4 rni<r2> 

aU4 

a2 (Zal 

a(Za)4%n(Za) 
-2 

145.7 

-103.1 <r2>fmm2 

1666.1 

11.6 

-10.7kl.O 

Nuclear polarization 3.1kO.6 

TOTAL 
1815.821.2 
-103.1 <r2>fm -2 

_- 
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A.2.8 Nonperturbative Vacuum Polarization Modification 

and Possible Scalar Particles 

A possible deviation of QED from the ordinary perturbation theory 

predictions might be through a nonperturbative modification of the vacuum 

polarization. The corresponding change in the vacuum polarization potential 

would be of the form 

m 
aZa &V(r) = - - dt t-l Q(t) e 

-fir 
3nr 

(A. 48) 

where &p(t) is a nonperturbative change in the vacuum-polarization spectral 

function. The change ho(t) excludes the ordinary electron and muon vacuum 

polarization contributions of order a and a2, but might be substantially 

larger than would normally be expected from perturbation theory terms of 

order a3 and higher. 

Phenomenological analyses of such a deviation have been given by ADLER 

[A.83], ADLER, DASHEN, and TREIMAN [A.109], and BAREUERI [A.1101 with particu 

emphasis on constraints on such a deviation imposed by various comparisons 

of theory and experiment. ADLER finds, with the technical assumption that 

6p(t) increases monotonically with t, that if the vacuum polarization 

deviation is large enough to produce a change in the muonic atom transition 

energies of the magnitude of the difference between ordinary QED predictions 

for high-Z muonic atoms and the disagreeing 1971-2 experimental values, then 

(a) the theoretical value of the muon magnetic moment anomaly au = +(g, - 2) 

would be-reduced by at least 96x10 -9 , and (b) there would be a reduction 

of order 27 meV in the theoretical value of the 2P 3/2 - 2Sl/2 transition 

energy in muonic helium. Prediction (a) would introduce a 2u difference 

between theory and experiment in the recent results for au ]A.111,112]: 

.ar 
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ap (exp) = 1165895(27) x lo-’ 

ap(th) = 1165918(10) x lo-’ 

Prediction (b) appears to be incompatible with the results for muonic helium 

discussed in Section A.2.7. However, such modifications of vacuum polariza- 

tion at a level h 3 times smaller have not been ruled out. 

A second proposed explanation for the 1971-2 discrepancy between muonic 

atom measurements and theory is the existence of a light weakly-coupled 

scalar boson $. Such particles are predicted by unified gauge theories of 

weak and electromagnetic interactions, but the mass is not determined. It 

was pointed out by JACKIW and WEINBERG IA.1131 and by SUNDARESAN and WATSON 

[A.691 that if the mass of the $ meson were small enough, then its effect 

on muonic atom energy levels could account for the discrepancy. The coupling 

produced by a $-exchange between a muon and a nucleus of 

of the Yukawa form 

-M+r 
V,(r) = - g+!6 g+NN A e 

4lr r 

mass number A is 

(A. 49) 

where g $lpc and ggai are the +-muon and $-nucleon couplings respectively 

and M+ is the mass of the 4. In gauge models, the $-electron coupling is 

expected to be of order (m,/mu)g~,, so the effect of such a potential could 

be observable in muon experiments without affecting the electron ge - 2 or 

Lamb shift experiments [A.83]. 

WATSON and SUNDARESAN [A.981 found that the values g+,l?g+G/(4*) = 

-8 x 1O-7 and M 
4 

=12 MeV would explain the early muonic atom discrepancy 

(the sign of the coupling is changed here according to ADLER [A.83]). 

ADLER [A.831 found a range of values for the coupling strength and 4 mass 

which explain the discrepancy. However, ADLER [A.831 and BARBIERI IA.1101 
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have shown that such a particle with M$ >lbleV which could explain the 

discrepancy would also reduce the theoretical value for the muonic-heliwn 

fine structure AE (2P3,2 - 2Sl,2) by approximately 27 meV. RESNICK, SDNDARESAN, 

and WATSON [A.1141 pointed out that the effect of a @-meson could be observed 

in a 0+-O+ nuclear decay in which the $ is emitted and subsequently decays 

into an e+e- pair. A search for e+e- pairs in the decays of the 160 (6.05 

MeV) and 4He (20.2 MeV) O+ levels to corresponding O+ ground states was 

carried out by KOHLER, BECKER, and WATSON [A.1151 who concluded from the 

negative results that the mass of the 9 could not be in the range 1.030 - 18.2 

MeV. ADLER, DASHEN, and TRBIMAN [A.1091 argue that neutron-electron and 

electron-deuteron scattering data rules out the 0 meson explanation for M 
4 

in the range between 0 and 0.6 MeV. 

The most serious constraint, however, was derived by BARBIERI and ERICSON 

[A.1161 who show that low energy neutron-nucleus scattering data yields a 

limit giNiMi4/ (471) < 3.4x 10 -” MeVe4. The Weinberg-Salam theory predicts 

gi,/(4r) = GFrnE/(v’-? HIT) = 1.3~10~~; hence for blip = 1 MeV, for example, 

Ig~,~~/(4*) 1 s 7 x lo-lo which is orders of magnitude smaller than the 

value 1.4x10 -7 [A.831 required to explain the muonic atom discrepancy. 
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A.3 QUANTUM ELECTRODYNAMICS IN HEAVY-ION COLLISIONS AND 

SUF’ERCRITICAL FIELDS 

A.3.1 Electrodynamics for Za > 1 

One of the most fascinating topics in atomic physics and quantum electro- 

dynamics is the question of what happens physically to a bound electron when 

the strength of the Coulomb potential increases beyond Za=l. This question 

involves properties of quantum electrodynamics which are presumably beyond 

the limits of validity of perturbation theory, so it is an area of funda- 

mental interest. Although a completely rigorous field-theoretic formulation 

of this strong field problem has not been given, it is easy to understand in 

a qualitative way what happens physically: As Za increases beyond a critical 

value, the discrete bound electron state becomes degenerate in energy with 

a three-particle continuum state (consisting of two bound electrons plus 

an outgoing positron wave) and a novel type of pair creation can occur 

[A. 117,118] . Remarkably, as first suggested by GERSHTEIN and ZELDOVICH 

tA.1191, it may be possible that such “autoionizing” positron production 

processes of strong field quantum electrodynamics can be studied experimentally 

in heavy-ion collisions. 

In addition to the spontanteous pair production phenomena, a number of 

other questions of fundamental interest also become relevant at high Za: 

a) What is the nature of vacuum polarization if a pair can be 

created without the requirement of additional energy? 

b) Do higher order radiative effects in a from vacuum polarization 

and self-energy corrections significantly modify the predicted 

high-Za phenomena? 
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c) How should the vacuum be defined if the gap in energy between 

the lowest bound state and the negative continuum states 

approaches zero? 

d) Can we test the non-linear aspects of QED, e.g. as contained 

in the Euler-Heisenberg Lagrangian [A.1201 and the Wichmann- 

Kroll calculation [A. 12]? (The conventional tests of high- 

2 electrodynamics are discussed in Sections A.1 and A.2.) 

The high-Za domain is also fascinating in that it provides a theoretical 

laboratory for studying the interplay of single-particle Dirac theory and 

quantum field theory. A speculative possibility is that it may be of 

considerable interest as a model for strong binding and confinement of 

elementary particles in gauge theories. In the non-Abelian theories, such 

as “quantum chromodynamics” [A.121], the effective coupling oS between 

quarks could well be beyond the critical value. In addition, theoretical 

work on the “psion” family of particles (J/Q, JI’, etc.) has focused on a 

fermion-antifennion potential and various gauge theory models in the strong 

coupling regime [A.122]. 

Perhaps the most practical way to create the strong fields necessary 

to test the exotic predictions of high-h electrodynamics is in the slow 

collision of two ions of high nuclear charge [A.119]. In addition to the 

spontaneous and induced pair phenomena, a number of interesting atomic physics 

questions arise concerning, among other things, the atomic spectra and radiation 

of the effective high-Z quasi-molecule momentarily present in the collisions. 

These topics are reviewed by MOKLER and FOLKMANN IA.1231 in this volume. 

The high magnetic field aspects are also of interest (see Section A.3.11). 

Studies of the high-Z exotic phenomena ideally require highly-stripped ions; 

the physics of vacancy formation (see Section A.3.6) and recent experimental 
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progress is discussed by MEYERHOF [A.1241 and references therein. 

Historically, the first discussions of the strong field problem were 

concerned with the solutions of the Dirac equation for an electron in a 

Coulomb field, 

[6*$+Bm+V(r)]$ = EJ, 

V(r) = - $ 
(A. 50) 

This is, of course, a mathematical idealization for r-t0 since the nucleus 

has finite mass and size. (In the case of positronium, V is effectively 

modified at small r by vertex corrections and relativistic finite mass 

corrections implicit in the Bethe-Salpeter formalism. We should emphasize 

that the analysis of positronium for ccl1 remains an unsolved problem.) 

The spectrum of the Dirac-Coulomb equation is given by the Dirac-Sommerfeld 

fine-structure formula; the energy of the electron in the 1s state is 

E = Jl-(Zo1’J2m (A. 51) 

E= 0 appears to be the lower limit of the discrete spectrum as Za+l, and 

E is imaginary for Zcc > 1. The Dirac Hamiltonian then is apparently not 

self-adjoint. Actually, this result is just a mathematical problem associated 

with a pure Coulomb potential [A.125-1271. The solutions are well-defined 

when nuclear finite size is introduced [A.117,128-1331. 

Thus, we should consider the “realistic” potentials 

(A. 52) 

where, for example, f(o) = ‘/,(3 - p2) for the case of a uniform charge density. 
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The energy eigenvalue is then found by matching the solutions for the Dirac 

wavefunct ion at r = R. Early discussions of the bound state problem for 

Zcr>l appear in Refs. [A.128-1301; accurate extensive calculations were 

given after 1968 by PIEPER and GREINER [A.117], by REIN [A. 1311, and by 

POPOV [A. 1331. The energy spectrum for typical nuclear radii, from Ref. 

[A.117], is shown in Fig. A.13. In Fig. A.14, POPOV’s [A-132,133] result for 

the dependence of (Zct)cr (the value of Za for which E = -m) on the nuclear 

radius R is shown. It is clear that the “limit point” E = 0 of the point 

nucleus case is artificial: at sufficiently large Za, E reaches -m, the 

upper limit of the negative energy continuum. The critical Z for an 

extended superheavy nucleus with R = 1.2 A 1’3 fm is Z~l70, 185, and 245 

for the 1Sl,2, 2Pl,2, and 2Sl,2 levels, respectively [A.134]. The possibility 

of simulating such a nuclear state with heavy-ion collisions is discussed 

in the next Section. 

It should be noted that the physical situation is already quite 

unusual if EC 0, let alone when E reaches the negative continuum. 

If Z I 150 and E< 0, then the combined energy of the nucleus and one or 

two electrons bound in the 1s state is lower than the energy of the nucleus 

alone ! Of course, since charge is conserved, an isolated nucleus of charge 

Z 2 150 cannot “spontaneously decay” to this lower energy state. 

However, the situation becomes more intriguing if Z can be increased 

beyond the critical value Zcr - 170 where E “dives” below -m (see Fig. A. 13). 

In this case, the total energy of a state with a bound electron and an 

unbound slow positron (with E positron - ml 

E nucl + EIS + Epositron < Enucl (A. 53) 

is less than that of the nucleus alone, and an isolated nucleus may decay 
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to that state. In fact, for Z ? 170, the nucleus will emit two positrons 

and fill both 1s levels. Clearly the physics is that of a multiparticle 

state and we must leave the confines of the single particle Dirac equation. 

However, in these first two sections we will ignore the higher order QED 

effects from electron self-energy corrections and vacuum polarization. 

(This can always be done mathematically - if we envision taking ct small 

with Za fixed [A.135].) We return to the question of radiative corrections 

in Section A. 3.8. In the remainder of this section we discuss a qualitative 

interpretation in terms of a new vacuum state. Quantitative results are 

discussed in the following sections. 

The vacuum state, as originally interpreted by Dirac, is the state 

with all negative energy eigenstates of the wave equation occupied. Thus 

for fermions 

a(+),lO> = 0 , ‘+(-)n IO> = b(+),/O> = o 

where a(+) (a(-)) are the anticommuting annihilation operators for the 

positive (negative) energy single-particle states. The operators bl,) = a(-) 

can be interpreted as the positron creation (= negative energy electron 

annihilation) operators. Normally, the En< 0 states are continuum eigen- 

states. Then, up to a constant, the total energy is 

H = 
c ‘+(+)na(+)n En + c 

b+ b 
(+)n (+)n lEnI 

En>0 En<0 

(A. 55) 

(This is just normal ordering the Hamiltonian - i.e. placing the annihilation 

operators to the right .) 

However, in the case of nuclear Coulomb potentials with Z> Zo-100, 

at least one bound state solution of the Dirac equation has negative energy 
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(see Fig. A.13). Thus it is evident that as soon as the field is strong 

enough to yield bound eigenstates of negative energy, one gains energy by 

filling these states. For example, imagine that there are two separated 

nuclei with charge Z and -Z, the latter made of antinucleons! If the charge 

of both nuclei were increased adiabatically beyond Z= Z. then there would be 

spontaneous decay of the nuclear system, to the state where two electrons in 

the 1s state are bound to the nucleus and two positrons are bound to the 

antinucleus. 

Notice, incidentally, that charge conjugation symmetry is always 

preserved and one does not have “spontaneous symmetry breaking” in the 

vacuum decay. This is contrary to the claim of Ref. [A.134]. 

It is thus clear that when Z > Zo, the state where the negative energy- 

bound states are filled represents the natural choice as reference state 

for excitations [A.136,137]. Accordingly for Z>Zo, we define the “new” 

Dirac vacuum [A.1361 

lonew> = ais &(+I loold> 

i.e. 

lo old> = &+I &(+I 1 Onew> 

where we suppose the spin up and down 1s states are the only bound states 

with negative energy. The charge of the new vacuum is Q,, = Qold - 2. 

Notice that the operator bis(+):alS(+) creates a hole with respect to the 

new vacuum, and thus effectively creates a bound positron state with positive 

energy E pas = ]EIS(. The old vacuum appears as an excited state of the system; 

namely, two positrons are bound with positive total energy if Z < Zcr-170. 
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However , if Z is raised above Zcr, the positrons become unbound. Thus 

from the standpoint of the new picture, the phenomenon of the instability 

of the (old) vacuum at Z = Zcr is reinterpreted by the statement that the 

positron wavefunction becomes unbound for this value of the charge (see 

Fig. A.15). 

The bound negative energy one-electron state may be written 

t als(f) 1 Oold> ’ &(+I &(+I &(+I lOnew> 

t t = blsWl bls(+) blsW lOnew> 

= -&(+I tOnew> (A. 58) 

i.e. it is equivalent (with respect to the new vacuum) to a bound positron 

for Z < Zcr and a continuum positron for Z > Zcr. The effective potential 

u eff (r) in the r e a lvistic Coulomb problem (see Section A.3.4) behaves like 1 t’ 

-EZa/r as r+m, i.e.: is attractive for E > 0 and repulsive for E < 0 (at 

sufficiently large distances from the nucleus)[A.133,138]. Thus, as shown 

by ZELDOVICH and POPOV [A.138], the bound positron moves in a non-monotonic 

effective potential which becomes shallower as Z increases (see Fig. A.16), 

until at Z = Zcr it becomes unbound. A plot of the average radius for the 

bound states as a function of E as computed by POPOV [A.1331 is shown in 

Fig. A.17. The process involved in spontaneous positron production for 

’ ’ ‘cr is then simply 

(A. 59) 

Formally, from Eqs. (A.56-58), this is equivalent, in terms of the conventional 

vacuum, to 
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corresponding to the degeneracy of the discrete bound electron state with 

a three-particle continuum. The old vacuum is, however, inappropriate for 

the description of the system for Z> Zcr simply because it is unstable. 

The description of high-Z electrodynamics in terms of the new vacuum thus 

has the advantage of displaying the continuity of the physics at Z= Zcr. 

As we discuss in Section A.3.8, the vacuum polarization problem is also 

clarified. The formal aspects of positron autoionization are discussed in 

more detail in Ref. [A.139]. 

A.3.2 Spontaneous Pair Production in Heavy-Ion Collisions 

It would be very interesting if the physical realization of an electron 

bound to a strong field with Z greater than Zcr-170 could be attained 

experimentally. It is not excluded that nuclei with Z-Zcr will eventually 

be synthesized, but at present this possibility seems remote. Suggestions 

of positron production in overcritical nuclei were discussed in 1969 by 

PIEPER and GREINER [A.1171 and by GERSHTEIN and ZELDOVICH [A. 1181. In the 

same year, GERSHTEIN and ZELJWICH [A.1191 proposed that the critical field 

condition could be attained in the close approach of two heavy ions with 

z1+z2>zcr. If the velocity of collision is assumed to be sufficient to 

approach the Coulomb barrier, then, at least in the adiabatic approximation 

(v. /v ion electron ,< l/10), a ground state electron sees an effectively coalesced 

nuclear potential. This pioneering paper by GERWTEIN and ZJIl,DoVICH and the 

early papers of POPOV [A.132,133,140] and GREINER et al [A.40,141-1451 

contain many of the fundamental physical ideas which have been subsequently 

discussed in more quantitative fashion over the past seven years [A.134, 

139,141,144-1541. 
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In collisions of heavy ions with several-meV/nucleon kinetic energy, 

the typical collision time of the ions inside the K shell of an electron is 

TC 
- 10-19 set whereas the “orbiting” time of the electron is T e- 10-20 sec. 

Thus, roughly speaking, the molecular electronic states have time to adjust 

to the varying distance $ = s2 -51 between the nuclei. One can then consider 

an approximate adiabatic treatment of the two-center Dirac equation 

[z*;+Bm+V(G-sl) + V(;-c2)]$ = E$ (A. 61) 

(assuming one electron is present). An extensive discussion of this problem 

and numerical solutions for the molecular spectra of “intermediate super- 

heavy molecules” are given in Refs. [A.1231 and [A.134]. 

Let us suppose that only one ground state electron is present. For 

z1+z2>z cr, there will be a critical distance Rcr between the two nuclei 

for which the electron is bound with an energy -m. Then as the ions collide 

with R < Rcr, the lowest one-electron state becomes mixed with the le-e-e+> 

continuum level (spontaneous pair production); see Fig. A.18. As the ions 

recede, we are left with two electrons in the 1s level plus an outgoing 

positron. Note that double pair production with two outgoing positrons 

can occur if no ground state electron is initially present. Pair production, 

however, is suppressed by the Pauli principle if the 1s levels are full, so 

preionization or stripping is necessary. The energy for the spontaneous 

pair production is compensated by a decrease in the kinetic energy of the 

outgoing nuclei. Additional pairs can in principle be produced when the 

2P levels in turn reach their critical energy E2P = -m. However, according 

to the calculations of RAFELSKI, MiiLLER, and GREINER [A.1391 for g2U- g2U 

molecular orbitals, the 2P l,2 level reaches the negative energy continuum 

at a distance R which may be too close to the Coulomb barrier for experiments 
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to be feasible (see Fig. A.18). 

In a series of comprehensive papers, POPOV, GREINER and others have 

presented detailed analytic and numerical calculations of the spontaneous 

positron production process in heavy-ion collisions. We shall review the 

main points of this work which are particularly relevant to practical 

experiments and refer the reader to the original papers for more details. 

For simplicity, we consider a beam of completely stripped nuclei Zl 

incident on an ordinary target with nuclear charge Z2. (The non-stripped 

case will be discussed in Section A.3.6.) If Zl>Z2 then the K shell of 

the combined atom will generally be vacant as a result of the behavior of 

the molecular terms in the adiabatic approach of the nuclei [A.155]. In 

fact, the cross section for positron production turns out to be only slightly 

smaller than in the idealized case of the collision of two bare nuclei (see 

Ref. [A.156]). For definiteness we will usually consider U-U collisions, 

for which the combined Coulomb field Z = Zl+ Z2 = 184 is beyond the critical 

charge Zcr 2170 necessary for spontaneous positron production. 

As shown by MijLLER, RAFELSKI, and GREINER [A.1571 (see Section A.3.3), 

the critical distance for positron production in U-U collisions (where the 

energy of the two-center atom reaches the negative continuum) is Rcrz34 fm 

= 0.088 xe. The calculation of Rcr can be carried out precisely and 

requires an analysis of the two-center Dirac problem; we return to this 

in Section A.3.3. Thus the lab kinetic energy of the beam at the positron 

production threshold is 

= 717 MeV (A. 62) 

or - 3 MeV/nucleon for U-U collisions. The lab velocity is vL=O.O8 which 

is clearly in the adiabatic non-relativistic domain, and small compared to 
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the velocity of a K-shell electron. 

The classical orbits and Rutherford cross section of non-relativistic 

charged particles are, of course, well understood. Detailed discussions 

and kinematics are given in Refs. [A.145,158,159]. It is convenient to 

define n = ELAB /E which is also related to the distance of closest approach T 

R. for backward scattering of the nuclei: n = Rcr/Ro. Spontaneous positron 

production is possible only if n>l. If 8 is the CM angle of the scattering 

then the requirement that the nuclei are sufficiently close, Rmin< Rcr, 

where R mln is the distance of closest approach, is . 

riation of the positron product The va ion cross section as a function of n 

and 8 gives a simple tool for testing the positron production calculations. 

= ELAB rl - 
ET 

> 4(1 + cosec i ) = nmin(e) (A. 63) 

For nuclei approaching each other, the two-center Dirac equation can 

be solved in the adiabatic approximation with nuclear separation R = R(t), 

assuming v<<c. Each value R < Rcr then gives a corresponding (complex) 

energy level near the lower continuum: E = E. + i I’/2 [A. 1531. (The unusual 

sign of the imaginary part is discussed in Section A.3.4.) The real part of 

the energy level is identified as the produced positron’s kinetic energy 

‘r = ]EO] -m, the positron production rate is dw/dt = T. Integration of 

dw/dt over the ion’s Coulomb orbit then gives the probability of positron 

production in the collision. Note that here we consider only spontaneous 

production in the adiabatic approximation; induced production will be 

discussed in Section A.3.5. 

Clearly the maximum cross section for e+ production is the geometric 

limit jA.1511, u geom = nREr (1 - n-l) = 36b(l - n“) for U-U collisions, which 
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would be attained if the Coulomb field of the nuclei succeeded in producing 

a positron in each collision for which Rmin<Rcr. (The corresponding impact 

parameter at Rmin = Rcr is p = Rcr(l - n-l)’ and o geom = no*.) In fact, the 

actual cross section calculated by MARINOV and POPOV [A.1591 is exponentially 

damped at threshold (~‘1) rising to a fraction of 0.1% of u geom for r-122, 

increasing slowly thereafter. The ratio Wav = a/a geom averaged over the 

positron spectrum is shown in Fig. A.19. The maximum energy such that there 

is no nuclear interaction in the collision is determined by (rN is the 

nuclear radius) [A. 1591 

R cr 
17 -- max 2rN+Ar 

- 2.8 (A. 64) 

allowing Ar-!i fm for the diffuseness of the nuclear boundary. The background 

process of e+e- production due to Coulomb excitation of the nucleus is 

discussed in Section A-3.7. 

Hence for U-U collisions, with n-2, EM-l.4 GeV, ~~-0.1, we have 

‘geom -18b and cr- 2 mb, i.e. : spontaneous positron production occurs roughly 

in one out of nine thousand nuclear collisions in which the distance R<R cr 
is reached and the 1s level is unoccupied. A recent semiclassical calculation 

by JAKUBASSA and KLEBER [A.1601 based on a one-center analysis yields a 

spontaneous production cross section of similar value. 

The ratio of the differential cross section with positron production 

to the Rutherford cross section (du/dR)R = R&/(~T$~ sin4 p at 0 = 71 (backward 

scattering) is given by an integral over the Coulomb path [A.1591 

W$-l) = 
du/dR 

CduldQ) R / e =71 = cj-1 b ($-$ l-(x) 

n 

(A. 65) 
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where the positron width is written as a function of x = R/Rcr. Since 

rN << (R,Rcr) << RK (RK is the electronic K-shell radius for Zo-1) the 

energy E 0 and width r are insensitive to the detailed two-center situation; 

as shown by POPOV [A.153], these quantities are dependent only on the ratio 

R/Kc,. Thus the only critical parameter in the two-center problem is the 

actual value of Rcr. The constant C in Eq. (A.65) is proportional to RzL2 

and 1 (Zl + z,Ial -’ and is equal to 2.3 for U-U collisions. The result of a 

numerical calculation for W, is also shown in Fig. A-19. The corresponding 

positron spectrum w(T), proportional to the integrand of Eq. (A.65), 

normalized to dT w(T) = 1, is shown in Fig. A.20 for Bwn=rr. 

The maximum positron kinetic energy is 

T,,(Q,~) = I”o(Rmin/Rcr) 1 - m (A. 66) 

The distribution in T peaks sharply at Tmax since the ion spends the most 

time at the point of closest approach,and F(R/Rcr) is largest there. Near 

the maximum energy, w(T) - (Tmax - T)-%. For n- 2, approximately 60% of the 

positrons have an energy above 0.9 Tmax. The square-root singularity is 

due to the fact that the radial velocity vanishes at R=Rmin. The strong 

peaking and maximal effect at 8 =rr is clearly favorable for experiments. 

For 8 = m/2, w is smaller by an order of magnitude. If the angle of the 

scattered ion is not measured, the peak in w(T) is considerably washed out. 

The small value for the probability of single positron production W(l) = 

W av < 1o-3 means that the double spontaneous positron production probability 

W(2) (filling both 1s levels with electrons) is only of order W(t) 5 10e6, 

and is probably not a useful signal for spontaneous production. 



-61- 

A.3.3 Calculation of the Critical Internuclear Distance 

An important numerical parameter for phenomena involving a supercritical 

Coulomb field in heavy-ion collisions is the value of the internuclear 

distance R = Rcr at which the energy of the ground state of the quasi-molecule 

(Zl,Z2,e) crosses the boundary of the lower continuum. For low-velocity 

collisions with Zl= Z2= Z it is sufficient to calculate the energy of the 

two-center Dirac equation with the potential V(G) = -Za/rl - Za/r2, where 

ri = 1: - iii I (adiabatic approximation). Since Rcr is substantially greater 

than the nucleon size, the nucleon finite size effects can be estimated 

from perturbation theory [A. 1561. MARINOV and POPOV [A.1561 and MARINOV, 

POPOV, and STOLIN [A.1611 calculate Rcr using a variational method in which 

each component of the trial wavefunction of the two-center Dirac equation 

is written as a sum of terms with the correct singularity behavior at large 

and small distances; e.g. near the nuclei the Dirac wavefunction has the 

singularity 

d&l - &2 _ n2>- l+Jl - (zap (A. 67) 

where 5 = (rl+ r2)/R, n = (rl - r2)/R are elliptical coordinates. This 

method converges quickly with just a few terms. As shown by MARINOV et al 

[A.156,161], the variational method gives a lower limit on Rcr. 

A similar variational calculation was also performed for U-U collisions 

by MULLER, RAFELSKI, and GREINER [A.1571 and by MULLER, SMITH, and GREINER 

[A.1621 giving the result Rcr -36 fm compared to the lower limit, Rcr? 38 fm 

obtained by MARINOV et al [A.163]. (It should be noted that the published 

numerical results beyond the (1,O) approximation given in Refs. [A.1561 and 

[A.1611 need to be revised because of a recently discovered calculational 

error [A.163].) The small difference between the MULLER et al and MARINOV 

et al results could be accounted for by the absence of the relativistic 
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Coulomb singularity of Eq. (A.67) in the loo-term l&LLER et al trial 

wavefunction [A. 1561. 

A.3.4 Calculation of the Spontaneous Positron Production Rate 

An exact calculation of spontaneous positron production by two colliding 

nuclei would be extremely difficult. The calculations which have been done 

for the two-center problem have employed a variety of approximations, which 

should be carefully considered. In general terms, the analytic analysis 

of POPOV and co-workers is based on two separated point nuclei where the 

combined Z is above the threshold Zcr - 170 for positron production. An 

essential feature of the analysis of GREINER and co-workers is the assumption 

that the functional dependence of the decay width r on the positron energy 

E in the two-center problem is the same as -the dependence in the one-center 

problem for a finite-size nucleus. A recent semi-classical calculation by 

JAKUBASSA and KLEBER [A.1601 assumes that the width I for the two-body 

problem may be simulated by the width for a one-center atom with an 

effective nuclear charge Z(R) which depends on the nuclear separation. 

The GREINER et al and JAKLTBASSA et al analyses both depend on the nuclear 

size in the single-center problem which of course cannot accurately represent 

the effective size of the two-nucleus system. 

In the work of POPOV and co-workers, as discussed in Section A.3.2, 

the positron production cross section is dependent on the imaginary part I 

of the energy of the level E = E. + i I/2 which for nuclear separation R < Rcr 

is in the lower continuum. In principle the full complexity of the adiabatic 

two-center problem is required to determine E for the quasi-molecule. 

However, as shown by POPOV [A.133,146,149,151,153] E. and P depend, to a 
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the “inner” solution with the singularity given in Eq. (A.67) to the “outer” 

solution for the one-center problem: V(r) = - (Zl+ Z,)a/r. The result is 

the relation (valid for Rcr small compared to Xe) 

R 
Rn + = $(- f)+ !Ln$+ * (A. 68) 

where A = -i(E’ -m2)$ for R<Rcr and I/J(Z) is the derivative of the logarithm 

of the gamma function. Equation (A.68) can then be solved numerically for 

the real and imaginary parts of E. These results are used for the calculation 

of the positron production cross section and spectrum given in Section A.3.2. 

It is interesting to note that the solution to Eq. (A.68) gives a 

positive imaginary part to E, rather than the familiar position of the pole 

on the second sheet for a decaying state. This is due to the fact that we 

are dealing with the solutions of the Dirac equation in non-second-quantized 

form. The quasi-discrete level E = Eo+iI/2 corresponds physically to a 

resonance for positron-scattering on a supercritical nucleus at the energy 

E 
Pas 

= -E = ]EoJ - ir/2. This has the correct sign for the imaginary part 

[A. 1531. 

An important feature of the solution of Eq. (A.68) is the dependence 

of the imaginary part of E near threshold: 

r(v) - y, expi-2a(Z1 + Z2) a/VI (A. 69) 

where v is the positron velocity and v. ir (6/5)nm. This can also be 

written in terms of the internuclear distance [A.1511 

rWRcr) - Y, exp[-b(1 - R/R,,)-%] (A. 70) 
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where b z 5.7 (Zl+ ZZ)a. Thus, the positron probability is exponentially 

small at threshold and increases rapidly with increasing n = E/ET. 

The threshold dependence of r is characteristic of problems involving 

the penetration of a Coulomb barrier. We can see the origin of the barrier 

by writing the equation for the large component G(r) =rg(r) of the Dirac- 

Coulomb equation in the Schrodinger form [A.138,151] 

& x” + [Eeff - U,,,(r)]X = 0 (A. 71) 

where X = [m+ E - V(r)]-‘G(r) , Eeff = 4(E2 - m2), and Ueff (for a finite 

nuclear size) is shown in Fig. A.16 for Z-Zcr and E - -m. A striking 

feature of Ueff is its large distance behavior: Ueff(r) = E/m V(r), i.e. 

it becomes a repulsive potential for EC 0. In the case of a Coulomb potential 

V(r) = -Zcr/r, 

Ueff(r) a $ - (z~~~~ ’ (A. 72) 

for the 1s state at E - -m. At short distances, the relativistic attractive 

rm2 term dominates in Ueff Note that Ueff has a maximum at r=rm=Kex 

[ (ZU)~ - l]/Za, where U eff(rm) = $(Za)2m/((Za)2 - 1) - 1.4 m for Z= 170. 

It is clear that for E just above -m where Eeff< 0, the effective 

potential yields a localized discrete state with a radius of order rm. 

The Schrodinger wavefunction attenuates at infinity in the form [A.1381 

x(r) - r4 exp[-q I (A. 73) 

The radius of the localized ground state is shown in Fig. A.17. For Eeff>O, 

i.e. when E dives into the lower continuum, the wavefunction extends beyond 

the barrier, and the width of the quasi-static level is given by the barrier 

penetrability [A.151,164] 



r = y, exp[-Zn(Za/v - JG$Y)] (A. 74) 

where 

1 6n/5 , Za =1 

YO 
iii 

= 3(Za)‘(l - e-““) --* 
12(Za)2 + 3]u I 

I 3/4(Zcx) -1, zci >> 1 

and v = m is the velocity of the outgoing positron ; and in Eq. (A. 75) 

v = ZX/(ZCC)’ - 1. The simplest interpretation is that given in Section A.3.1: 

If E < -m, then the one electron state becomes degenerate with the two 

electron plus one positron state. The electron-positron pair is created 

near the nucleus where V(r) > 2m; the form of Eq. (A. 74) reflects the 

probability that the positron can penetrate the barrier. Because I’ is small 

compared to m, the single particle analysis of the Dirac equation used to 

describe the supercritical atom can be justified [A.164]. 

One can now proceed to the calculation of the positron production 

probability by integrating over the classical ion trajectory, which is 

familiar from treatments by BATES and MASSEY [A.1651 for autoionization in 

a slow collision and the level crossing formula of IANDAU and ZENER for the 

probability of near adiabatic transitions between discrete levels [A.166]. 

POPOV’s result for the positron production cross section is [A.1511 
R cr 

cjY%. 
vL I 

dR R3” (R - Ro)+ I’(R) (A. 76) 

RO 

where @l-v: is the lab kinetic energy of the incident nucleus and R0 is the 

distance of closest approach at zero impact parameter. (If the probability 

P = a/a geom is not small, P should be replaced by (l- eeP).) The cross 

section for producing a positron with kinetic energy T is IA.1511 
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da - 
dT 

= &(R)R3j2 (R-Ro)1/2 
vL 

(A. 77) 

where T = ] Eo(R/Rcr) 1 - m. Since r is small compared to /El, the positron 

energy can be identified with a given internuclear distance R, and IS is 

correctly obtained by integrating over the complete ion orbit. 

The calculation of GREINER and co-workers differs substantially in 

approach from that of POPOV et al. The first step is the computation of 

the width for positron production in a supercritical atom using the Fano 

autoionization method. The second step is to use these results to calculate 

the spontaneous and induced positron production rate, assuming that the 

relation between r and the bound state energy is the same in the one- and 

two-center problems. 

The method used by GREINER and co-workers [A.145,158] to evaluate the 

positron width in the one-center problem is based on the analogy of the 

supercritical nucleus to that of autoionization in nuclear and atomic 

physics, where a bound state is imbedded in a continuum, and FANO’s formalism 

[A.1671 should be applicable. One begins by assuming that the nuclear 

potential is at criticality so that ]$Cr>, the single particle bound-state 

solution of the Dirac equation, has E = -m. Let ]I#~> denote the s-wave 

negative-energy continuum solutions to the same equation with E < -m. If 

V is increased above criticality, AV = V-Vcr< 0, then to first order in AV 

AE cr = <+crlA”l$cr’ 

and 

(A. 79) 

Calculations [A.1431 show that AEcr - -30 (Zl + Z2 - Zcr) keV; see Fig. A.21. 



Thus the bound state (@cr > dives into the negative continuum with an 

energy shift roughly linear in A2 = 21+ Z2 - Zcr and a monotonically 

increasing width. If one defines the negative energy solutions ]YE> for 

the Dirac equation with Vcr+AV, then 

2 I+&.‘l = 1 r 

;i;; [E - (Ecr + AEcr) ] 2 + I”/4 
(A. 80) 

is the probability that the bound electron is promoted to IyE> when AV is 

added adiabatically. (This Breit-Wigner form for the admixture probability 

neglects an extra energy shift from the energy variation of I’.) This 

treatment thus far is, in principle, complementary to that given earlier 

in this section. 

There may, however, be difficulties with using the autoionization 

method and a perturbation expansion near Zcr for calculating the spontaneous 

decay width. In the papers of MhLER et al [A.134,145], the estimate 

r = 2nI<4crIAVI$E>j2 w (AZ)2 50 eV (A. 81) 

is reported to be a good approximation to the exact one-center Dirac equation 

width, at least for AZ = Zl + Z2 - Zcr ? 3. (For example, in the more recent 

work of K. SMITH et al [A.134,168] a curve is given showing numerical results 

based on a one-center Dirac equation calculation for the function y(T) = ml’(T)/T2 

where T is the positron kinetic energy. For 180< Z< 210, R>15 fm, and 

0.4 MeVcTc1.2 MeV, y(T) is roughly constant at 0.015, giving 4.7~ r(T)<42 

keV which agrees within a factor of two with Eq. (A.81).) However, as noted 

by MiLLERSet al [A.1451 and POPOV [A.153], the threshold behavior character- 

istic of the Coulomb barrier leads to strong exponential damping at zero 

positron momentum; for AZ-to, POPOV [A.1531 obtains I’ = exp[-b(2cr/AZ)‘]. 
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Thus, (A.81) should not be considered a reliable approximation for small 

AZ. The equation F = ZT~]<Q~~]AV]$J~>/~ . IS evidently invalid near threshold 

since it requires an expansion in A2 about the critical value. Furthermore, 

the continuum solution ]I+,> which is defined to obey the Dirac equation for 

V=Vcr does not see the Coulomb barrier in the effective potential Ueff 

appropriate to V = Vcr +AV and the level energy Eo. (In the paper by POPOV 

and MUR [A. 1641, it is argued that P/m 5 e -2nZa << 1 even for (E. [ >>m in a 

one-center problem because the barrier in Ueff increases in height as Eo+ a. 

In fact, the width of the level can increase with 1~~1 despite the increasing 

barrier height because the tunneling distance becomes smaller IA.160 

is also consistent with the barrier penetration formula (A.74) which 

r-foe -a’(zol) in the limit Z-tm, v-+1 ) . 

The results of a recent one-center calculation of F by JAKUBASS 

. This 

gives 

and 

KLEBER [A.1601 (based on a semi-classical method) are shown in Fig. A.22. 

We have also indicated the values calculated from Eq. (A.81). The width 

computed by JAKUBASSA and KLEBER is about three times as large as that given 

by Eq. (A.81) at Z-200. 

It should be noted that the corresponding calculations of r/E, as a 

function of R/Rcr by POPOV [A.1531 for the two-center problem yield much 

smaller widths, with r/E0 < 0.012, i.e. an order of magnitude below those 

of the one-center problem results of JAKUBASSA and KLEBER. This may indicate 

that the one-center values, which are based on the nuclear size - and not on 

the actual nuclear separation - give an over-estimate of the decay width. 



A.3.5 Induced Versus Adiabatic Pair Production 

One of the controversial questions concerning positron production in 

heavy-ion collisions is the relative importance of pair production induced 

by the changing Coulomb field. In the review of ZELIXNICIH and POPOV [A.1381 

and the later papers of POPOV [A. 151,153], arguments are given that this 

mechanism can be neglected since (i) the frequency of collision wc (equal 

to the inverse of the collision time rc) is a small fraction of 2m, and 

(ii) the characteristic electron time is much shorter than the collision 

time, so that the electron state can adiabatically adjust to the changing 

Coulomb potential. However, as emphasized in the papers by SMITH et al 

[A.154,168], the energy required for pair production during the collision 

is just the (narrow) gap between the 1s level and the negative continuum. 

Thus the changing Coulomb field can induce a transition (pair production) 

even at very low velocities. In typical inelastic atom-atom collisions, 

an appreciable cross section for transitions occurs when [A.1691 

AE 5 28$ (A. 82) 

where v is the relative velocity and a is a length characteristic of the 

inducing potential. Taking a-50 fm, v-0.05, gives AE-1 MeV. Thus, 

induced pair production with a continuum positron could well be an important 

process even for collisions in which diving does not occur. In fact, SMITH 

et al [A.1681 find that in typical U-U collisions, induced positron production 

is two orders of magnitude larger than the spontaneous cross section alone! 

Obviously, the induced contribution also will spread the kinetic energy 

spectrum of the positron, with substantial contributions occurring at 

kinetic energies - 1 MeV beyond the kinematic limit for spontaneous production. 
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The results of SMITH et al [A.168,170] compared with the spontaneous 

positron production spectrum calculated by PEITZ et al [A.1581 are shown 

in Fig. A.23. The cross section calculated by SMITH et al for positron 

production in central U-U collisions at 812.5 MeV center-of-mass energy is 

shown in Fig. A.24. The curve denoted A is the contribution “during diving,” 

i.e., integrated over the times when the 1s level joins the negative 

cant inuum. Curve B denotes the contribution before and after diving. 

The coherent sum is also shown. The Rutherford cross section for U-U 

scattering and the ionization probability Lo have been divided out. By 

integrating over energy, one sees that roughly 5% of all the collisions 

with a 1s vacancy will produce a positron by the induced process. The 

positron production cross section for different CM kinetic energies is 

shown in Fig. A.25. 

The during-diving positron production amplitude computed by SMITH et al 

[A.154,168] takes the form t cr t 
CD = i dt VE(tl exp dt’[iE - iEIS(t’) - +T(t’>] 

I 
(A. 83) 

-co 
-tcr 

where E is the positron energy level, r(t’) gives the positron resonance 

otential is taken to be width at time t’. The perturbing p 

V$) = ‘$, ,tAV(Nt)) bcr’ (A. 84) 

as in Section A.3.4. 

As we have remarked in Section A.3.4, this expression for V,(t) and 

the definition F = Zn]VE(t) j2 are in apparent conflict with the analytic 

results of POPOV [A.1531 for the resonance width near threshold. Hence, 

it is important that calculations of the induced process which avoid 



-71- 

expansions in AV = V(R) - V(Rcr) about the diving point be done. 

Recently, JAKUBASSA and KLEBER [A.1601 have also presented a method of 

evaluation of induced positron production in heavy-ion collisions within 

the WICB semi-classical approximation. Their results for both spontaneous 

and induced production are about ten times larger than those calculated by 

SMITH et al [A. 1681. In particular, JAKLJBASSA and KLEBER find a total cross 

section a=4b for vL=0.15 and a=lb for vL=O.l in U-U collisions with 

R cr= 34 fTn. 

It should be noted that so far all the calculations of the induced 

production rate are based on the single-center results for the widths and 

transition matrix elements. 

We also note that the induced process may make positron production 

experimentally practical even for medium-Z heavy ion collisions. Diving 

is not critical. Further, induced pair production where both the positron 

and electron are in the continuum may be feasible in U-U collisions even 

without ionization. In fact, pair production requires not much more energy 

transfer than induced 1s hole production when the energy is near critical. 

From a general point of view, induced and spontaneous positron productiol 

in heavy-ion collisions can be identified with the Feynman diagram shown in 

Fig. A.26. The physical process, however, goes beyond perturbation theory 

in that the production occurs as a result of the coherent energy of the 

Coulomb interaction in the strong field relativistic domain. 
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A.3.6 Vacancy Formation in tleavy-Ion Collisions 

The physics of inner-shell vacancy formation is currently a subject of 

active experimental [A.1241 and theoretical interest [A.171,172] and our 

discussion here can only be very brief. According to the extrapolation of 

BIA‘XHE, FRANICE and CU. SCflMELZER [A.173], completely ionized U atoms are 

possible at beam energies of order 300 MeV/nucleon (which should be achievable 

within the next five years at the LBL Bevalac) . However, as we have seen, the 

optimum kinetic energy of the ion for the positron production experiments 

is in the few MeV/nucleon range. Ions with this kinetic energy could be 

achieved either by ion deceleration, or more ingeniously (as suggested by 

GREINER and CH. SCHMELZER [A.171]) by arranging low relative velocity collisions 

between colliding beams in storage rings, as in Fig. A.27. A similar config- 

uration could be attained using the configuration of the CERN-ISR, with both 

ion beams circulating in the same direction. 

At lower and more practical energies one must rely on the formation of 

the 1s vacancy of the combined quasi-molecule which occurs in the same 

atomic collision which produces the pair. (The lifetime of the vacancy is 

too short at high Z for collisions involving more than one target atom to 

be important [A.124].) For U-U collisions, estimates of the vacancy formation 

probability LO range from 0.2 for ELAB = 1600 MeV [A.1741 (using an “atomic” 

model in which the time variation of the Coulomb field causes energy to be 

transferred to the electron, which is ejected) to values between 10 
-4 to 10 -6 

depending on projectile energy [A.175,176] [using a “molecular” model in 

which the collision is assumed slow enough to allow the electrons to adjust 

themselves to the diatondc molecular levels; transitions caused by the 

varying Coulomb fields then produce vacancies). 



-?3- 

However, very recently, BETZ, SOFF, MULLER, and GREINER [A. 1771 have 

performed an approximate calculation of the ground state vacancy production 

probability in U-U collisions. The vacancies are produced by the Coulomb 

field variation in the two-center Dirac equation. They find the vacancy 

production probability at 1600 MeV and zero impact parameter to be larger 

than 0.08 -much larger than was anticipated and very encouraging for the 

experiments discussed here. 

Since 1s state vacancy production followed by positron production in a 

single collision will be accompanied by direct pair production associated 

with the time variation of the fields in the collison, and the latter process 

may have an amplitude of comparable magnitude, the cross section for 

atom + atom + atom + atom + e- + e+ should be calculated from the coherent sum 

of both processes. In fact, all processes which produce a pair must, of 

course, be considered together. This includes summation over pair production 

processes which fill higher n vacancies. Although pair production which 

fills higher n vacancies may be less likely, there could be a partial 

compensation due to a larger probabili:y of vacancy formation in higher n 

states. The relative importance of these processes has not yet been 

estimated for the case of collisions between neutral atoms. 

A.3.7 Nuclear Excitation and Other Background Effects 

There are general background effects which can complicate the experimental 

observation of positron production associated with the overcritical Coulomb 

field. We will closely follow the discussion of POPOV [A.151], OKUN [A-178], 

and OBERACKER et al [A.1?9,180] here. 

When heavy particles collide, e+e- pairs can he produced by hard photon 
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bremsstrahlung and pair conversion. The cross section is small [A.151,1?8] 

because the motion of the nuclei is non-relativistic. A typical cross 

section for Z=92, Ro=40 fm is a<10 -16b . For identical nuclei U-U, this 

is suppressed by a few more orders of magnitude since the cross section for 

dipole radiation, proportional to (Z1A2 - Z2A1)L, vanishes [A.l51]. 

The most important background is the production of e+e- pairs by pair 

conversion in transitions resulting from Coulomb excitation of nuclei. 

An estimate given by POPOV [A.1531 for U-U collisions gives oE+“- - 10-4b 

which is somewhat smaller than the estimates for the cross section for 

spontaneous positron production. 

Extensive calculations of the nuclear and Coulomb excitation cross 

sections have been recently performed by OBERACKER et al [A.1?9,180]. 

The calculated differential cross section (dashed lines) for 238u _ 238” 

collisions at the Coulomb barrier E kin 
011 

= 800 MeV, as a function of the ion 

scattering angle Bion, is shown in Fig. A.28. The two dashed lines correspond 

to two different models for the nuclear states. The associated cross section, 

calculated by PEITZ (quoted in Refs. [A.1791 and [A.180]), via spontaneous 

and induced decay (assuming Rcr = 35 fm, and the K-vacancy probability 

Lo=10m2) is given by the solid line. Representative total nuclear and 

Coulomb excitation production cross sections calculated by OBERACKER et al 

[A.1?9,180] for U-lJ collisions range from oE+“- - 1.25x10-4b to o;+“- - 

2.28 x10m4b depending on the model for the nuclear states. This is in good 

agreement with the estimate of POPOV. As noted by OBERACKER et al, the 

nuclear background is suppressed in the backward and forward directions for 

syrrunetric systems 238lJ _ 238u . In addition, the nuclear positron spectrum 

terminates at E p-8OO keV while the induced positron spectrum extends to 

much higher energies. Both of these characteristics should aid in separating 
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out the background positrons. More complicated, but negligible backgrounds, 

involving conversion of gamma rays from nuclear transitions where the 

electron occupies the vacant ground state are also estimated by OBERACKER 

et al. 

A.3.8 Radiative Corrections in Critical Fields 

There is considerable theoretical interest in the question of whether 

radiative corrections could modify or even eliminate the predictions 

discussed here for pair production at Z >Zcr. As we have noted in Section 

A.3.1, the radiative corrections are controlled by a rather than Zo so they 

are,in principle, independently controllable in their physical effects, and 

thus one would not expect dramatic changes in the previous description. 

One also would not expect that calculations based on a Feynman diagram 

treatment indicated by Fig. A.26, could be much affected by effects of 

order a. However, since virtual pairs may be produced with an arbitrarily 

small expenditure of energy as Z+Zcr, the smallness of a is not necessarily 

decisive. In the following, the tractable model of a single nucleus of 

charge Z is examined. The results for a heavy-ion collision are expected 

to be qualitatively similar. 

The situation is well understood in the case of the order a vacuum 

polarization corrections; the modifications turn out to be small. For r at 

the maximum of the near-critical 1s probability distribution, ro-0.1 Xe, 

the Coulomb Uehling potential has the value 

-9 keV (A. 85) 

Calculation of the 1s Uehling energy shift at Z=Zcr by SOFF, MhLLER, and 
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RAFELSKI [A.1811 gives AE = -11.8 keV for Z=l?l, in good agreement with 

an extrapolation of the results, for Z Q 160, of PTEPER and GREINER [A. 1171 

and with the order-of-magnitude estimate in Eq. (A.85). The corresponding 

shift AZcr in Zcr is found, with the aid of [A.4?,144,145] 

dEIS 
dZ z = 

-27 keV 

cr 

(A. 86) 

to be AZcr = -0.4, i.e., the critical charge is reduced by less than one 

unit. The result of POPOV [A.133], AZcr = O(10e3), appears to be an under- 

estimate. 

The higher order correction to the Uehling potential of the Wichmann- 

Kroll type (from the Coulomb interactions of the electron-positron pair) is 

an order of magnitude smaller. Arguments of POPOV [A.1331 and of MULLER, 

RAFELSKI, and GREINER [A.144,145] suggest that the higher order corrections 

are small. A calculation has been done by GYULASSY [A.4?,48] who found 

AEIS = 1.2 keV which is negligible compared to the Uehling term. GYlJLASSY 

[A.471 has also shown numerically that the vacuum polarization charge density 

associated with the charged vacuum, discussed by FULCHER and KJ,EIN [A.136], 

varies smoothly as Z passes through Zcr. The vacuum polarization associated 

with the charged vacuum is formally related to the ordinary vacuum polariza- 

tion by a shift in the contour of integration in the bound electron 

propagator as discussed in Section A.1.5 [A.4?]. 

In the case of the self-energy corrections to the electron level, a 

simple heuristic argument is that a fraction a of the lepton charge is spread 

out over a Compton radius of the electron Xe (modulo a logarithmic tail out 

to the Bohr radius (Zam) -1 associated with the Bethe sum).. Such a distribu- 
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tion convoluted with the nuclear size distribution could only change Zcr 

by a small amount. Also, since the determination of the nuclear radius R 

derives from electron scattering experiments, the influence of radiative 

corrections is already partially included. The situation for the self-energy 

is more obscure at very high Z where higher order terms in Zcr are important; 

quantitative calculation is necessary. 

Results of calculations of the self-energy of the 1s state for large Z 

are shown in Fig. A.29. The self-energy for a Coulomb potential appears 

to become infinite as Zcr-+l. This is clearly an anomaly due to the point 

charge singularity. CHENG and JOHNSON [A.361 have extended calculations to 

Z=160 for a finite nucleus. By extrapolation, they find that the 1s self- 

energy is at least 1% of the binding energy at Z=Zcr. Although it seems 

unlikely, we note that if the self-energy were to increase sufficiently 

rapidly as Z-+Z cr, there might be no diving phenomenon, and further analysis 

would be necessary. In any case, induced positron production would still 

be possible (see Section A. 3.5). 

Calculation of radiative corrections to the positron emission rate would 

be very complicated, because the self-energy graph will include the long 

range radiative correction associated with the outgoing charged particle. 

The effect of photon emission would have to be separated from the energy shift. 

A.3.9 Coherent Production of Photons in Heavy-Ion Collisions 

Another intriguing, possibly feasible test of strong field electrodynamics 

utilizing-high-z ion collisions is single or multiple hard photon production. 

The quantum electrodynamic process is a variation of Eelbriick, or light-by- 

light scattering (see Fig. A.30). The photons are created by the coherent 
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energy of the ions’ Coulomb field. Unlike bremsstrahlung processes, the 

spectrum of the photon peaks in the electron mass (MeV) range. The production 

cross section for n photons should be of order on times the Rutherford cross 

section for collisions in which the potential energy at the distances of 

closest approach significantly exceeds the total photon energy. Such photons 

should be distinguishable from nuclear excitation photons and combined-atom 

x-rays by their (calculable) spectrum and angular distribution, and by 

coincidence (correlation) measurements. 

Note that this photon production process occurs at ion energies and 

charges well below those required for spontaneous pair production. 

Conversely, if the photons have energies beyond 1 MeV, they provide a 

background for positron production from internal pair conversion, or by 

conversion in a nearby atom. 

A.3.10 Self-Neutralization of Matter 

The possibility of spontaneous pair production at high Coulomb field 

strength leads to a rather novel self-neutralization mechanism of ionized 

matter. Suppose that one could arrange a contained plasma of completely 

stripped uranium ions (no electrons present). For any finite temperature 

there will occasionally be ion-ion collisions at sufficient velocity such 

that the distance of closest approach is less than Rcr-35 fm, where diving 

of the lowest electronic level of the two-center Dirac system begins. 

Eventually, all the bound electron atomic levels which dive will be filled 

by the pair production process and - assuming the continuum positrons are 

allowed to escape - the ionic system will be partially neutralized. Although 

the process can occur in principle at any finite temperature via the Maxwell 
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velocity distribution, the positron production probability becomes large 

only at high temperatures, kT - 0(1 GeV), i.e., 1’ - O(lO’” K). At still 

higher temperatures, other pair production mechanisms become important; 

however, the spontaneous pair production is the lowest energy mechanism. . 

A-3.11 Very Strong Magnetic Field Effects 

RAFELSKI and MiiLLER [A.1821 have suggested looking at heavy-ion collisions 

as a means of testing the behavior of matter in strong magnetic fields. Such 

tests would be sensitive to possible anomalous higher order effects of strong 

fields . In a heavy-ion collision, the magnetic fields are produced by the 

motion of the charged nuclei, with the corresponding vector potential given by 

e;(f) = - Za $1 

Ji’-iill 
- zcr $2 

I;?-ii,1 
(A. 87) 

where ci are the nuclear velocities and ci are the position vectors of the 

nuclei. In a sub-Coulomb barrier heavy-ion collision, the magnetic field 

created in the vicinity of the-colliding nuclei is of the order of 1014 gauss 

over a small volume [A.182]. The magnetic fields give rise to a splitting 

of the lowest quasi-molecular states through interaction with the electron 

spin. RAFELSKI and gLLER have calculated the magnetic splitting which can 

be expected in various heavy-ion collisions. Figure A.31 shows the energy 

separation of the spin-up and spin-down states relative to the binding energy 

for various systems. For example, the separation of the Isa state in a U-U 

collision with T= 9 MeV/nucleon and impact parameter b= 20 fm is calculated 

to be approximately 0.1 m = 50 keV. This splitting corresponds to an average 

magnetic field g - 4 ~10~~ gauss. The magnetic splitting results in a 

difference of 3.3 fm in Rcr for the two states. 
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We note that any model for strong magnetic field anomalies which could 

be evident in heavy-ion collisions would be constrained by existing fine 

structure measurements in exotic atoms. The determination of the magnetic 

moment of the anti-proton to 1% accuracy by the fine-structure measurement 

in pPb by H1J et al [A.1831 has yielded a value which is in excellent agree- 

ment with the proton magnetic moment (in accord with the TCP theorem). 

The fine structure in the lower level (n=lO, II= 9) in that experiment 

arises from interaction of the anti-proton moment with an average magnetic 

field of order 1014 gauss. A similar test in somewhat stronger magnetic 

fields is made by muonic atoms. The measured fine structure splitting in 

the 21) state of muonic lead [A.1841 agrees with theory, and the average 

magnetic field seen by the muon is of order 10 16 gauss. 
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CONCLUSION 

All of the tests of high-Za quantum electrodynamics which we have 

discussed in this review probe in various ways the Furry bound state inter- 

action picture description of the bound leptons. In the strong field domain 

where Za is not small, a natural question is whether this generalization of 

weak field perturbation theory continues to be applicable if the binding 

strength is not small compared to the mass of the bound particle. 

Thus far the tests of high field strength QED involving the spectra 

of bound electrons and muons are in extraordinary agreement with predictions, 

ruling out anomalous non-linear interactions, low-mass scalar particles with 

certain couplings, and anomalous modifications of vacuum polarization at 

momentum transfers - z”“ncl* The high-Zcr spectra also test electromagnetic 

interactions in the strong magnetic field regime, where the effective fields 

reach 1016 gauss. Tests of relativistic bremsstrahlung in high magnetic 

fields are reviewed in Ref. [A.185]. Further tests of the Furry picture of 

bound leptons and their radiative corrections are possible by measurements 

of the bound state gyromagnetic ratio via Zeeman interactions and by photon 

scattering from high-Z atoms. The Lamb shift measurements in heavy atoms 

confirm the calculations of radiative corrections for highly off-shell 

electrons. The measurements in high-Z few-electron ions provide a means of 

testing QED in strong fields with multiparticle systems for which the theory 

is still tractable. Precision measurements in muonic atoms are now beginning 

to confirm higher order vacuum polarization corrections of order ct(Za)‘, 

ruling out broad classes of anomalous muon-nuclear interactions [A.186]. 

Although the basic predictions for positron production in heavy-ion 

collisions appear to be understood from a fundamental point of view, there 
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are many quantitative questions which have not been completely settled. 

As we have noted, it is difficult to compare details of results based on 

different calculations because of the wide range of models employed. This 

is particularly critical in the questions concerning the absolute magnitude 

of both the spontaneous and induced positron production rates. 

The dynamical tests of high-Zcr QED, especially positron production 

(and possibly anomalous photon production) in heavy-ion collisions, are 

particularly interesting because they require an extension of the theory to 

a domain which is otherwise unexplored. For example, when the binding 

becomes critical, the ordinary vacuum is effectively unstable, and a new 

vacuum reference state is required. 

There are many issues of fundamental interest which still need to be 

resolved. These include a complete field theoretic treatment of the positron 

production problem which considers the effects of radiative corrections; the 

problem of the Klein-Cordon equation for Zct>l, where Bose condensation can 

occur [A.138,187]; and the nature of positronium when o>l, and in particular, 

whether there is a mechanism (possibly recoil corrections) which can moderate 

the singular Coulomb problem. 
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FIGURE CAPTIONS 

Fig. A.l. Feynman diagrams for the lowest order self-energy (a) and vacuum 

polarization (b). The double line represents an electron in the external 

Coulomb field. 

Fig. A.2. Calculated values of GSE(Zcr) for Z=lO to 50 and the extrapolated 

value at Z=l. From MOHR [A. lo]. 

Fig. A.3. Feynman diagrams which contribute to the Lamb shift in helium-like 

ions. 

Fig. A.4. Comparison of theory and experiment for the LI- LII level split- 

ting in heavy atoms. The error bars give the probable error in the 

experimental values. Estimated experimental errors smaller than the 

data points are not shown. See text for explanation. 

Fig. A.5. Possible contours of integration in Eq. (A.ll) for Zor>l. The 

contour labelled se corresponds to a vacuum state with both 1s levels 

filled. 

Fig. A.6. Lowest order QED corrections to the energy levels of a bound muon. 

Fig. A.7. Expansion of the vacuum polarization in powers of the external field. 

Fig. A.8. Sum over all orders in perturbation theory for Vll (r) . 

Fig. A.9. The function F,(Za) which describes the charge induced at the 

nucleus by the higher order vacuum polarization in a Coulomb field. 

From BROWN et al [A.49]. 

Fig. A. 10. Fourth order vacuum polarization diagrams. 

Fig. A.ll. Higher order radiative correction to muon levels. 

Fig. A.12. Difference between theory and experiment for muonic atom x rays 

plotted as a function of x-ray energy. Experimental values from Refs. A. 54- 59. 

Fig. A.13. Energy levels for the Dirac-Coulomb equation as a function of Z. 

A uniform charge density with R = 1.2 A l/3 fm is assumed. From PIEPER 

and GREINER [A.117]. 
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Fig. A.14. Critical value of Za in the Dirac-Coulomb equation for EIS = -m 

as a function of nuclear radius (in units of Xe = 386 fm). From POPOV 

[A. 1331. 

Fig. A.15. Spontaneous positron production from the viewpoint of the old 

and new vacuum. The old vacuum is unstable due to the adiabatic 

introduction of AV = Z - Z cr’ 
Fig. A.16. The effective potential IJeff of the effective Schr’odinger 

equation (A.71) for Z-t Zcr, E + -m. The potential V(r) is the potential 

in the Dirac equation. From ZELIXlVICH and POPOV [A.138]. 

Fig. A.17. The mean radius r of the ground state as a function of its energy 

E. The radius contracts to 7 = 0.13 Ke at E = -m. From POPOV [A.133]. 

Fig. A-18. The combined atom relativistic molecular states for g2U- g2U 

collisions as a function of the internuclear distance R; from MkLER 

et al [A.134]. The lowest state reaches the negative continuum at 

R cr-34 fm. 

Fig. A-19. The probability of spontaneous positron production for scattering 

of uranium nuclei at 180” (W,) and the probability averaged over all 

angles (Wav = a/a geom). From MARINOV and POPOV [A.159]. These curves 

should be multiplied by the factor 0.54 for Rcr= 34 fm (see Section 

A. 3.3). 

Fig. A.20. The energy spectrum of spontaneously-produced positrons for 

backward ion scattering (0=180’). The curves labeled 1,2,3 refer to 

n = 2, 2.8, and 4 respectively. From MARINOV and POPOV [A.159]. 

Fig. A.21. Dependence of the atomic levels on nuclear charge. The positron 

escape width, which gives the rate for spontaneous decay, increases 

monotonically with AZ = Z - Zcr. Adapted from MiLLER et al [A.143]. 
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Fig. A.22. Energy and width of the supercritical 1.S state calculated by 

JAKUBASSA and KLEBER [A.160]. The solid lines labeled ]El] and I’1 give 

the energy and width in the WKB approximation; the dashed lines give 

the corresponding results when the effective potential is modified by 

adding a centrifugal term. The results of MULLER et al [A. 134,145], 

labeled 12, for the width of the 1s state (Eq. (A.81)) have been added 

to the figure for comparison. Adapted from JAKUBASSA and KLEBER [A.160]. 

Fig. A.23. Probability W(E) for production of a positron with energy E per 

AE = 1 keV. Comparison of the spontaneous and spontaneous-plus-induced 

spectrum as calculated by SMITH et al. From the review of RAFELSKI and 

KLEIN [A. 1701. 

Fig. A.24. Cross section for positron production as a function of positron 

energy, divided by the ionization probability Lo and Rutherford cross 

section for U-U central collisions at 812.5 MeV. From SMITH et al 

[A.168,170]. 

Fig. A.25. (a) The positron cross sections calculated for U-U central 
. 

collisions, with Lo set equal to 10eL. The ion center-of-mass kinetic 

energies are: [l] 815.5 MeV (distance of closest approach, 15 fm) ; 

[2] 609.4 MeV (20 fm); [3] 478.5 MeV (25 fm); [4] 706.3 MeV (30 fm); 

[S] 398.2 MeV (35 fm). The vertical scale here is corrected according 

to the relevant footnote in Ref. [A.134]. (b) The total positron 

cross section dependence on the ion CM energy. From SMITH et al [A.168]. 

Fig. A.26. Feynman diagram for positron production in ion-ion collisions. 

The produced electron becomes bound to the nucleus with charge Zl]e]. 

Fig. A.27. Schematic diagram of a heavy ion storage ring configuration, 

suggested in Ref. [A.171], arranged to obtain low relative velocity 

collisions. By changing 0, the relative velocity can be adjusted. 

From GREINER [A.171]. 
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Fig. A.28. Differential pair production cross sections (CM) as a function 

of ion angle for 238U- 238U collisions. Spontaneous and induced 

positron production cross section (solid line) and pair production 

from Coulomb and nuclear excitation cross sections (dashed lines 

corresponding to two nuclear models) are shown. From OBERACKER et al 

[A.179]. 

Fig. A.29. Results of various calculations of the 1s self-energy at high Z. 

The energy shift is given by AE = (a/~)(Za)~ F(Zcr)m. The results are 

from Refs. [A.8,11,36]. Error estimates smaller than 2% are not shown. 

From CHENG and JOHNSON [A.36]. 

Fig. A.30. Feynman diagrams for production of photons by vacuum polarization 

in high-i: collision. 

Fig. A.31. Relative magnetic splitting (E+ - E+)/EB (EB is the binding energy) 

for selected quasi-molecular states. Collision parameters are EIAB = 9 

MeV/nucleon and impact parameter b=13 fm. From RAFELSKI and MULLER 

[A.182]. 
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