## Q<sub>1</sub>(1290) AND Q<sub>2</sub>(1400) DECAY RATES AND THEIR SU(3) IMPLICATIONS\*

R. K. Carnegie<sup>†</sup>, R. J. Cashmore<sup>‡</sup>, W. M. Dunwoodie, T. A. Lasinski, and D.W.G.S. Leith

Stanford Linear Accelerator Center Stanford University, Stanford, California 94305

## ABSTRACT

We summarize and combine the known information on the decay rates of the strangeness-one axial vector mesons,  $Q_1$  and  $Q_2$ . From this information and the rate for  $B \rightarrow \omega \pi$ , we determine the  $Q_A - Q_B$ mixing angle and the S-wave, symmetric and antisymmetric octet couplings for vector-pseudoscalar decays of axial vector mesons. If we assume the D(1285) and the E(1420) belong to the  $J^{PC} = 1^{++}$  nonet, we find the  $A_1$  to have a mass of ~ 1.47 GeV and a large (>.3 GeV) width.

(Submitted for publication.)

<sup>\*</sup>Work supported by the Energy Research and Development Administration. †Now at Physics Department, Carleton University, Ottawa, Canada. ‡Now at Nuclear Physics Laboratory, Oxford University, Oxford, U.K.

Of the four l=1,  $q\bar{q}$  nonets expected from the three-quark model [1], only the  $A_{\vec{2}}$ -nonet<sup>†</sup> is well established [2,3], while the  $\delta$  nonet at least has sufficient candidates [3,4]. In contrast, even good candidates for the two axial vector nonets have been elusive. Only the namesake of the B nonet is clearly established [5,3], while the D(1285) and, possibly, <sup>††</sup> the E(1420) may be identified with the  $A_1$  nonet. The lack of experimental confirmation of the axial vector nonet states remains a nagging problem for quark model phenomenology.

Recently, however, evidence for two strangeness-one, axial vector mesons was obtained from partial wave analyses [7,8] of diffractively produced  $K^{\pm}\pi^{+}\pi^{-}$ systems. Subsequently, fits to the partial wave mass spectra of ref. [7] were made in two studies [9,10] using rather different models for the partial wave amplitudes.<sup>†††</sup> These fits yield information on the masses, total widths, and  $K^{*}\pi$ ,  $\rho K$  couplings of  $Q_1(1290)$  and  $Q_2(1400)$ . We combine that information with other branching ratios to  $\omega K$  [12,13] and  $\kappa \pi$ ,  $\epsilon K$  [14] to obtain two complete sets of  $Q_1$  and  $Q_2$  partial widths. With the model-dependent uncertainties of refs. [9] and [10] in mind, we obtain from these two sets of partial widths a conservative estimate of the decay rates for Q mesons. From this estimate and the rate for  $B \rightarrow \omega \pi$ , we determine the S-wave, octet couplings  $g_A$  (antisymmetric) and  $g_B$  (symmetric) for vector-pseudoscalar (V-PS) decays of axial vector mesons as well as the  $Q_A^{-}Q_B$  mixing [15] angle,  $\theta_Q^{-}$ . Identifying the D

†We refer to each nonet by its isovector member:  $\delta (J^{PC} = 0^{++})$ ,  $A_1 (J^{PC} = 1^{++})$ ,  $A_2 (J^{PC} = 2^{++})$ ,  $B (J^{PC} = 1^{+-})$ .

 $\dagger$  Both  $J^{PC} = 0^{-+}$  and  $1^{++}$  remain possibilities for the E; see ref. [3]. The pseudoscalar assignment is attractive from the four quark point of view; see ref. [6].

†††In addition to ourselves, Bowler (ref. [10]) and Basdevant and Berger (ref. [11]) have considered models with only one Q resonance present. From the results of these studies, we conclude at the present time that a one-resonance model cannot provide a quantitative description of the measurements.

- 2 -

and E with the  $A_1$  nonet isosinglets, we can then compute the mass and  $\rho\pi$  width of the  $A_1$ .

To combine the diverse information on Q decays, we use the fact that the total width is the sum of all (known) partial widths. From refs. [9] and [10], we fix the total width and  $K^*\pi/\rho K$  branching ratio. For  $\kappa\pi$  and  $\epsilon K$  decays, we use our observed cross section ratios [14]:  $\Gamma(Q_1 \rightarrow \kappa\pi)/\Gamma(Q_1 \rightarrow \rho K) = 0.35 \pm .08$ ,  $\Gamma(Q_1 \rightarrow \epsilon K)/\Gamma(Q_1 \rightarrow \rho K) = 0.3 \pm .1$ , and  $\Gamma(Q_2 \rightarrow \epsilon K)/\Gamma(Q_2 \rightarrow K^*\pi) = 0.2 \pm .1$ . For  $Q_1 \rightarrow \epsilon K$  we have assumed a 10% background (tail of  $Q_2$ ), and for  $Q_2 \rightarrow \epsilon K$  we have inflated the error to accommodate a possibly large background in the K\* $\pi$  mode. The branching ratio  $Q_1 \rightarrow \omega K/Q_1 \rightarrow \rho K$  is more difficult to estimate. Because of the narrow  $\omega$  width, the ratio of  $\omega K$  to  $\rho K$  phase space exhibits [13] a roughly step-function behavior at ~1.28 GeV. Thus this branching ratio is extremely sensitive to the precise value of the  $Q_1$  mass. Consequently we choose to use the upper limit [13, 12]  $\Gamma(Q_1 \rightarrow \omega K)/\Gamma(Q_1 \rightarrow \rho K) \leq 0.32 \pm .03$ .

Combining the above information, we obtain columns two and three of table I, corresponding to the input of refs. [9] and [10] respectively. We have used from ref. [10] the results of the "original model" fit in which the SU(3),  $Q_A^ Q_B$  mixing constraints were not imposed. We comment on several important features. First, although the  $Q_1 \rightarrow \rho K$  width is the principal contribution, it corresponds to, at best, only half the total width of  $Q_1^{\circ}$ . Secondly, both models indicate that  $Q_1$  decouples from  $K^*\pi$  while  $Q_2$  decouples from  $\rho K$ . This coupling pattern was central to the qualitative interpretation of the  $1^+K^*\pi - \rho K$  relative phase motion in terms of two Q mesons as discussed in ref. [7]. Thirdly, there is a substantial difference in the magnitudes of the widths from the two models. Basically this reflects the uncertainty in the amount of coherent background under  $Q_2$  in the K\* $\pi$  channel. Quantitatively, it corresponds to the very different parametrizations employed in the fits of refs. [9] and [10]. As an attempt to reflect such systematic uncertainties, we offer in the fourth column of table I a conservative estimate of the partial widths for  $Q_1$  and  $Q_2$ , corresponding to the mean and standard deviation of the values and errors in the preceding columns. For comparison, the last column of table I corresponds to the SU(3) constrained fit of ref. [10]. We note that this fit provides a mildly worse [10] description of the partial wave data and that the ratio  $\Gamma(Q_1 \rightarrow \rho K)/$  $\Gamma(Q_2 \rightarrow K^*\pi)$  is roughly 1/3 that in the unconstrained fit. All the V-PS widths in table I are for S-wave decay, as the D-wave coupling is known to be small or nonexistent [7,8].

We now turn to the extraction of SU(3) parameters from the information of table I. For V-PS decays of the axial vector (A) mesons, we define the reduced couplings  $\gamma(A \rightarrow V-PS)$  by the formula

$$\Gamma(A \rightarrow V-PS) = \frac{\langle q_V \rangle}{M_A^2} \gamma^2 (A \rightarrow V-PS) , \qquad (1)$$

where  $\langle q_V \rangle$  is the vector meson momentum averaged over its line shape [13]. These couplings are presented in the upper half of table II. They follow from the corresponding widths of table I, with the exception of  $Q_1 \rightarrow \omega K$ . In this case we use  $\gamma^2(Q_1 \rightarrow \omega K) = (.22 \pm .07)\gamma^2(Q_1 \rightarrow \rho K)$ , which is independent of the precise mass of  $Q_1$  [13]. We will also need the S-wave coupling<sup>†</sup> for  $B \rightarrow \omega \pi$ ,  $|\gamma(B \rightarrow \omega \pi)| = .72 \pm .03$  GeV, assuming nominal values [3,5] for the mass, total width, and D/S ratio.

In the usual spirit of SU(3) phenomenology [2], we assume that symmetry breaking effects are accounted for by using observed masses in the phase space  $\overline{\text{†By S- and D-wave we}}$  mean those amplitudes such that  $\Gamma = q(|S|^2 + |D|^2)/M^2$ .

of eq. (1), while the reduced couplings are related by exact SU(3), modified by vector meson singlet-octet mixing. In addition we assume that the physical Q meson states are mixtures [15], characterized by an angle  $\theta_Q$ , of the  $Q_A$  and  $Q_B$  states. We may now relate the observed couplings for  $Q_1$  and  $Q_2$  V-PS decays to  $g_A$ ,  $g_B$ ,  $\theta_Q$ , and the symmetric singlet coupling,  $g_1$ . These relations are given in table III. As our final assumption, we set  $\gamma(B - \phi\pi) = 0$  on experimental grounds [3]. This relates  $g_1$  to  $g_B$  through

$$g_1 = -g_B \cot \theta_V / \sqrt{5} , \qquad (2)$$

where we take [2]  $\theta_V = -31^0 \pm 3^0$ .

Qualitatively the observed pattern of the V-PS couplings for  ${\rm Q}_1$  and  ${\rm Q}_2$  can be readily understood by careful inspection of table III. Thus, if we simply set  $g_A/g_B = -6/\sqrt{20}$  and  $\theta_Q = 45^{\circ}$ , we find  $\gamma(Q_1 \rightarrow K^*\pi) = 0$  and  $\gamma(Q_2 \rightarrow \rho K) = 0$ ; that is, we predict that  $Q_1$  decouples from  $K^*\pi$  and  $Q_2$ , from  $\rho K$ . In addition, for magically mixed [16]  $\omega - \phi$ , we have  $\gamma(\omega K)/\gamma(\rho K) = -1/\sqrt{3}$  for both Q's. This is in rough accord with the observed ratio for  $Q_1$  (table II); since  $Q_2$  decouples from  $\rho K$ , we would also expect it to decouple from  $\omega K$  (table I). Of course a set of relations similar to those of table III may be written for scalar-pseudoscalar (S-PS) Q meson decays. For  $\theta_Q = 45^\circ$ , a ratio of  $h_A$  to  $h_B$  (the S-PS analogues of  $g_A$  and  $g_B$ ) may be chosen to have  $Q_2$  decouple from  $\kappa\pi$  (table I). Such a ratio would predict comparable couplings of  $Q_1$  and  $Q_2$  to  $\kappa\eta$ , the phase space being similar to that for the  $\varepsilon K$  mode. However, the  $\varepsilon K$  decays involve not only  $h_{A}$  ,  $h_{B}$ , and  $\theta_{Q}$  but also  $h_{1}$  and the complications of  $\epsilon$ , S\* mixing [4], as well as their relative contributions to the Q rates [7,8]. While such complications presently preclude an SU(3) analysis of S-PS decays, there appears to be sufficient flexibility to accommodate the observations of table I.

To determine  $g_A$ ,  $g_B$ , and  $\theta_Q$ , we have made least squares fits of the formulas in table III to the couplings of table II and  $\gamma(B \rightarrow \omega \pi)$ . The results of these fits and their  $\chi^{2}$ 's are summarized in the lower half of table II. We note that  $g_B$  and  $\theta_Q$  are rather independent of which input data we use. This reflects the facts that  $g_B$  is principally determined by the B width and that  $\theta_Q \approx 45^{\circ}$  corresponds to  $Q_1$  decoupling from K\* $\pi$  and  $Q_2$ , from  $\rho$ K. The spread in values for  $g_A$  stems from the differences in magnitudes of the partial widths from refs. [9] and [10]. With model uncertainties in mind, we take

$$g_{A} = \pm 1.67 \pm .18 \text{ GeV}, \quad g_{B} = -.83 \pm .03 \text{ GeV}, \quad \theta_{Q} = 41^{\circ} \pm 4^{\circ}$$
 (3)

as conservative estimates for these SU(3) parameters. They are consistent with the parameters<sup>†</sup> which follow from the SU(3) constrained results of ref. [10].

Restricting our attention to the parameters of eq. (3), we may graphically assess the SU(3) consistency of V-PS decays. For a given value of  $\theta_Q$  (and  $\theta_V$ ), the reduced couplings are linearly related to  $g_A$  and  $g_B$ . Thus, in a plot of  $g_A$ vs  $g_B$ , the observed couplings and their errors determine straight bands which must intersect at a common point  $(g_A, g_B)$  for a consistent SU(3) description. From fig. 1 we see that the V-PS decays are in good agreement with SU(3) expectations, the only mild inconsistency possibly being in the coupling for  $Q_1 \rightarrow \rho K$ . For  $\theta_Q \approx 45^\circ$  we expect (table III) the ratio  $\Gamma(Q_1 \rightarrow \rho K)/\Gamma(Q_2 \rightarrow K^*\pi)$  to equal that of the phase spaces for these decays (~.37). Note that this is essentially the ratio found (table I) from the fit of ref. [10] constrained by  $Q_A = Q_B$ mixing. Within the uncertainties of the models [9, 10, 11] used, we conclude that the decay rates for  $Q_1$  and  $Q_2$  lie within the conservative limits of table I and that they are consistent with SU(3).

 $fg_{A} = 1.76 \pm .05$ ,  $g_{B} = -.87 \pm .03$ ,  $\theta_{Q} = 42^{\circ} \pm 1^{\circ}$ , and  $\chi^{2} = 9.1$ .

Having established a range of possible values for  $g_A$ ,  $g_B$ , and  $\theta_Q$ , we now discuss what inferences may be made regarding the  $A_1$ . For  $1.0 < M(A_1) < 1.6$  GeV, we find the  $A_1$  width to  $\rho \pi$  ( $\Gamma = \frac{2}{3} \langle q_{\rho'} g_A^2 / M^2(A_1)$ ) to be large (>.3 GeV). To determine the  $A_1$  mass, we need an additional assumption. For the  $A_1$  nonet, the SU(3) mass formula (with particle names for masses) is

$$A_{1}^{2} = 4Q_{A}^{2} - 3(E^{2}\cos^{2}\theta_{A} + D^{2}\sin^{2}\theta_{A}), \qquad (4)$$

where we denote the  $A_1$  nonet isosinglets by D, E and their mixing angle by  $\theta_A$ . From the  $Q_A-Q_B$  mixing mass formula

$$Q_{A,B}^2 = \frac{1}{2} \left( Q_1^2 + Q_2^2 \pm (Q_1^2 - Q_2^2) \cos 2\theta_Q \right),$$
 (5)

we find  $Q_A \sim 1.34$  GeV, roughly independent of which value of  $\theta_Q$  in table II we use. We now assume that the E and D are indeed in the  $A_1$  nonet. Using the only measurement [17,3] of the rate for  $E \to K^*\overline{K}$  ( $\Gamma = 'q_{K^*} > g_A^2 \cos^2 \theta_A / M_E^2$ ), we may estimate the E-D mixing angle,  $\theta_A$ . We find  $72^\circ < |\theta_A| < 77^\circ$ , the spread reflecting the range in values for  $g_A^\circ$ . From eq. (4) we thus compute  $A_1$  $\sim 1.47$  GeV with a broad  $\rho\pi$  width as summarized in table II. We note that three recent partial wave analyses [18, 19, 20] of nondiffractively produced  $3\pi$  systems find a broad bump in the  $J^P = 1^+$ , I = 1 wave at  $\sim 1.5$  GeV. The values of the corresponding cross sections are consistent with the expectations of production mechanisms [21] for a broad  $A_1^\circ$ .

We have summarized and combined the known information on Q decays to obtain a complete set of partial widths for  $Q_1(1290)$  and  $Q_2(1400)$ . In addition we have given a conservative estimate of these rates and their errors to reflect the model-dependent assumptions [9, 10] needed to determine the total widths of  $Q_1$  and  $Q_2$ . From this information we determined the range of SU(3) parameters which characterize the V-PS decays of axial vector mesons. These parameters and the assumption that the D and E mesons have  $J^{PC} = 1^{++}$  lead to the prediction that the elusive  $A_1$  has a broad  $\rho\pi$  width and a mass of ~ 1.47 GeV. As such a mass yields a curious inverted level structure for the  $A_1$ nonet  $(M(A_1) > M(Q_A))$ , it is clear that the spin of the E and the  $3\pi$  bumps [18, 19,20] at ~ 1.5 GeV deserve further study. The  $A_1$  issue aside, we conclude that the observed  $Q_1(1290)$  and  $Q_2(1400)$  decay rates can be reasonably described within the context of SU(3).

## References

- R. H. Dalitz, in <u>High Energy Physics</u>, ed. C. DeWitt and M. Jacob (Gordon and Breach, New York, 1965).
- [2] N. P. Samios et al., Rev. Mod. Phys. <u>46</u> (1974) 49.
- [3] Particle Data Group, Rev. Mod. Phys. No. 2, Part II (1976) S1.
- [4] D. Morgan, Phys. Lett. <u>51B</u> (1974) 71; S. Flatté, Phys. Lett. <u>63B</u> (1976)
   224, 228.
- [5] V. Chaloupka et al., Phys. Lett. <u>51B</u> (1974) 407; S. U. Chung et al., Phys. Rev. D <u>11</u> (1975) 2426.
- [6] L. Copley and P. Watson, Phys. Lett. <u>61B</u> (1976) 477; D. H. Boal, Phys.
   Rev. Lett. 37 (1976) 1333.
- [7] G. W. Brandenburg et al., Phys. Rev. Lett. <u>36</u> (1976) 703.
- [8] G. Otter et al., Nucl. Phys. B 106 (1976) 77.
- [9] R. K. Carnegie et al., SLAC-PUB-1767 (1976), submitted to Nucl. Phys.
   B. .
- [10] M. G. Bowler, Oxford Report, Ref. 48/76 (Rev.) (1976), submitted to Nucl. Phys. B.
- [11] J.-L. Basdevant and E. Berger, Phys. Rev. Lett. 37 (1976) 977.
- [12] ABCLV and BBCMS Collaborations, CERN/EP/PHYS 76.

- [13] W. Dunwoodie and T. Lasinski, SLAC Group B Physics Memo.
- [14] G. W. Brandenburg et al., to be submitted to Phys. Rev.
- [15] H. J. Lipkin, Phys. Rev. 176 (1968) 1709, and references therein.
- [16] S. Okubo, Phys. Lett. 5 (1963) 125.
- [17] P. Baillon et al., Nuovo Cimento 50A (1967) 393.
- [18] F. Wagner et al., Phys. Lett. <u>58B</u> (1975) 201.
- [19] M. J. Emms et al., Phys. Lett. <u>60B</u> (1976) 109.
- [20] Amsterdam-CERN-Nijmegen-Oxford Collaboration, CERN/EP/PHYS 76-34 (1976).
- [21] G. Fox and A. Hey, Nucl. Phys. B 56 (1973) 386.

## **Figure** Caption

1.  $g_A vs g_B plot for \theta_Q = 41^{\circ}$  of known vector-pseudoscalar decays of axial vector mesons. A best estimate gives  $g_A = 1.67 \pm .18$  GeV,  $g_B = -.83 \pm .03$  GeV, and  $\theta_Q = 41^{\circ} \pm 4^{\circ}$ .

TABLE I. Partial decay widths (MeV) for  $Q_1(1290)$  and  $Q_2(1400)$ . The vector-pseudoscalar widths are for Swave decay only. Note that Refs. 9 and 10 find only the total widths and the  $\rho K/K^*\pi$  amplitude ratios. We have combined that information with other Q branching ratios to obtain the tabulated values.

| Mode <sup>(a)</sup>                                                      | Ref. 9       | Ref. 10 <sup>(b)</sup><br>No SU(3) | Mean         | Ref. 10 <sup>(b)</sup><br>SU(3) |
|--------------------------------------------------------------------------|--------------|------------------------------------|--------------|---------------------------------|
| $Q_1 \rightarrow K^* \pi$                                                | $2 \pm 2$    | $21 \pm 2$                         | $12 \pm 13$  | $13 \pm 1$                      |
| $\stackrel{\scriptscriptstyle \oslash}{\longrightarrow} \rho \mathrm{K}$ | $75 \pm 6$   | $125 \pm 8$                        | $100 \pm 35$ | $83 \pm 6$                      |
| $\rightarrow \omega K^{(c)}$                                             | $24 \pm 3$   | $40 \pm 5$                         | $32 \pm 11$  | $27 \pm 3$                      |
| κ π                                                                      | $26 \pm 6$   | $44 \pm 10$                        | $35 \pm 13$  | 29 ± 7                          |
| → <i>€</i> K                                                             | $22 \pm 5$   | 36 ± 8                             | $29 \pm 10$  | $24 \pm 5$                      |
| $\textbf{Q}_2 \twoheadrightarrow \textbf{K}^* \pi$                       | $117 \pm 10$ | $191 \pm 19$                       | $154 \pm 52$ | $239 \pm 23$                    |
| - <b>-</b> ρK                                                            | $2 \pm 1$    | $2 \pm 1$                          | $2 \pm 1$    | 1 ± 1                           |
| ωΚ                                                                       | ~ 0          | ~ 0                                | ~ 0          | ~ 0                             |
| $\rightarrow \kappa \pi$                                                 | ~ 0          | ~ 0                                | ~ 0          | ~ 0                             |
| → ∈ K                                                                    | $23 \pm 12$  | $38 \pm 19$                        | 31 ± 11      | $48 \pm 24$                     |

(a) Possible  $\kappa \eta$  mode neglected; it could be as large as  $\epsilon K$  and would reduce all numbers by a few percent.

(b) SU(3) refers only to the assumption that  $Q_A$  and  $Q_B$  mix; the errors are our estimates.

(c) Maximum  $\omega K$  width; see text.

ŝ

s

e

| TABLE II.   | S-wave of              | couplings | (GeV) for | vecto | r-pseudo- |  |
|-------------|------------------------|-----------|-----------|-------|-----------|--|
| scalar deca | ys of Q <sub>1</sub> , | Q, and    | resulting | SU(3) | param-    |  |
| eters.      | Т                      | 4         |           |       |           |  |

|                                                                            | Ref. 9                     | Ref. 10<br>No SU(3)        | Mean <sup>(a)</sup>        |
|----------------------------------------------------------------------------|----------------------------|----------------------------|----------------------------|
| $\gamma(Q_1 \to K^*\pi)$                                                   | .11 ± .05                  | $.34 \pm .02$              | .26 ± .14                  |
| $\gamma(\text{Q}_1 \rightarrow \rho \text{K})$                             | $1.02 \pm .04$             | $1.32 \pm .04$             | $1.18 \pm .21$             |
| $\gamma(Q_1 \rightarrow \omega K)^{(b)}$                                   | $47 \pm .08$               | 61 ± .11                   | 54 ± .13                   |
| $\gamma(\text{Q}_2 \rightarrow \text{K}^*\pi)$                             | $78 \pm .03$               | 99 ± .05                   | $89 \pm .15$               |
| $\gamma(\text{Q}_2 \rightarrow \rho \text{K})$                             | 13 ± .03                   | 13 ± .03                   | 13 ± .03                   |
| g <sub>A</sub> (GeV)                                                       | $1.40 \pm .06$             | $1.95 \pm .04$             | $1.67 \pm .18$             |
| g <sub>B</sub> (GeV)                                                       | $80 \pm .03$               | $90 \pm .02$               | $83 \pm .03$               |
| $\theta_{\mathbf{Q}}$                                                      | $45^{\circ} \pm 2^{\circ}$ | $40^{\circ} \pm 1^{\circ}$ | $41^{\circ} \pm 4^{\circ}$ |
| $\chi^2$                                                                   | 25.1                       | 32.0                       | 1.3                        |
| $M_{A_1}$ (GeV) <sup>(c)</sup>                                             | 1.47                       | 1.46                       | 1.47                       |
| $\begin{bmatrix} \Gamma & (GeV) \\ A_1 \rightarrow \rho \pi \end{bmatrix}$ | .32                        | . 60                       | . 45                       |

(a) Values correspond to mean widths and errors in Table I.
(b) With γ<sup>2</sup>(Q<sub>1</sub> → ωK) = (.22 ± .07)γ<sup>2</sup>(Q<sub>1</sub> → ρK).
(c) Assumes both the D and E have J<sup>PC</sup> = 1<sup>++</sup>.

| Mode | Q <sub>1</sub> .                                                                          | . Q <sub>2</sub> .                                                                                                                                                |
|------|-------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| К*π  | $\frac{1}{2}g_{A}\cos\theta_{Q} + \frac{3}{\sqrt{20}}g_{B}\sin\theta_{Q}$                 | $-\frac{1}{2}g_{A}\sin\theta_{Q}+\frac{3}{\sqrt{20}}g_{B}\cos\theta_{Q}$                                                                                          |
| ρK   | $\frac{1}{2} g_{A}^{\cos \theta} Q - \frac{3}{\sqrt{20}} g_{B}^{\sin \theta} Q$           | $-\frac{1}{2}g_{A}\sin\theta_{Q} - \frac{3}{\sqrt{20}}g_{B}\cos\theta_{Q}$                                                                                        |
| ωK   | $\frac{1}{2}g_{A}\cos\theta_{Q}\sin\theta_{V}$                                            | $-\frac{1}{2}g_{A}\sin\theta_{Q}\sin\theta_{V}$                                                                                                                   |
|      | + $\left(\frac{1}{\sqrt{20}}g_{B}\sin\theta_{V}+g_{1}\cos\theta_{V}\right)\sin\theta_{Q}$ | $+ \left(\frac{1}{\sqrt{20}} \mathbf{g}_{\mathrm{B}} \sin \theta_{\mathrm{V}} + \mathbf{g}_{\mathrm{1}} \cos \theta_{\mathrm{V}}\right) \cos \theta_{\mathrm{Q}}$ |

TABLE III. Relation of the couplings  $\gamma(Q \rightarrow V-PS)$  to the S-wave, SU(3) V-PS couplings  $(g_A, g_B, g_1)$ , the  $Q_A - Q_B$  mixing angle  $(\theta_Q)$ , and the  $\omega - \phi$  mixing angle  $(\theta_V)$ .





TABLE I. Partial decay widths (MeV) for  $Q_1(1290)$  and  $Q_2(1400)$ . The vector-pseudoscalar widths are for S-wave decay only. Note that Refs. 9 and 10 find only the total widths and the  $\rho K/K^*\pi$  amplitude ratios. We have combined that information with other Q branching ratios to obtain the tabulated values.

| Mode <sup>(a)</sup>  | Ref. 9   | Ref. 10 <sup>(b)</sup><br>No SU(3) | Mean        | Ref. 10 <sup>(b)</sup><br>SU(3) |
|----------------------|----------|------------------------------------|-------------|---------------------------------|
| Q <sub>1</sub> → K*π | 2 ± 2    | 21 ± 2                             | $12 \pm 13$ | 13 ± 1                          |
| <u> </u>             | 75 ± 6   | 125 ± 8                            | 100 ± 35    | 83 ± 6                          |
| $-\omega K^{(c)}$    | 24 ± 3   | <b>40</b> ± 5                      | 32 ± 11     | 27 ± 3                          |
| κπ                   | 26 ± 6   | 44 ± 10                            | 35 ± 13     | 29 ± 7                          |
| ε K                  | 22 ± 5   | <b>36 ±</b> 8                      | 29 ± 10     | 24 ± 5                          |
| $Q_2 - K^* \pi$      | 117 ± 10 | 191 ± 19                           | 154 ± 52    | 239 ± 23                        |
| <b>-</b> ρK          | 2 ± 1    | $2 \pm 1$                          | 2 ± 1       | 1 ± 1                           |
| ωΚ                   | ~ 0      | ~ 0                                | ~ 0         | ~ 0                             |
| — к т                | ~ 0      | ~ 0                                | ~0          | ~ 0                             |
| - e K                | 23 ± 12  | 38 ± 19                            | 31 ± 11     | 48 ± 24                         |

(a) Possible  $\kappa\eta$  mode neglected; it could be as large as (c) A start of the second of the start of the second of the start of the second of the sec

| TABLE II.   | S-wave coupl                            | ings (GeV) for | vector-pseudo- |
|-------------|-----------------------------------------|----------------|----------------|
| scalar deca | ys of Q <sub>1</sub> , Q <sub>2</sub> , | and resulting  | SU(3) param-   |
| eters.      | 1 4                                     |                |                |

|                                    | Ref. 9                           | Ref. 10<br>No SU(3)        | Mean <sup>(a)</sup>        |
|------------------------------------|----------------------------------|----------------------------|----------------------------|
| $\gamma(Q_1 - K^*\pi)$             | .11 ± .05                        | .34 ± .02                  | .26 ± .14                  |
| $\gamma(Q_1 - \rho K)$             | $1.02 \pm .04$                   | 1.32 ± .04                 | 1.18 ± .21                 |
| $\gamma(Q_1 - \omega K)^{(b)}$     | 47 ± .08                         | 61 ± .11                   | 54 ± .13                   |
| $\gamma(Q_2 - K^*\pi)$             | 78 ± .03                         | 99 ± .05                   | 89 ± .15                   |
| $\gamma(Q_2 - \rho K)$             | 13 ± .03                         | 13 ± .03                   | 13 ± .03                   |
| g <sub>A</sub> (GeV)               | $1.40 \pm .06$                   | 1.95 ± .04                 | 1.67 ± .18                 |
| g <sub>B</sub> (GeV)               | 80 ± .03                         | $90 \pm .02$               | 83 ± .03                   |
| ଂଦ                                 | 45 <sup>°</sup> ± 2 <sup>°</sup> | $40^{\circ} \pm 1^{\circ}$ | $41^{\circ} \pm 4^{\circ}$ |
| x <sup>2</sup>                     | 25.1                             | 32.0                       | 1.3                        |
| $M_{A_1} (GeV)^{(c)}$              | 1.47                             | 1.46                       | 1.47                       |
| $\Gamma^{(GeV)}_{A_1 \to \rho\pi}$ | . 32                             | . 60                       | . 45                       |

(a) Values correspond to mean widths and errors in

Table I. (b) With  $\gamma^2(Q_1 - \omega K) = (.22 \pm .07)\gamma^2(Q_1 - \rho K)$ .

(c) Assumes both the D and E have  $J^{PC} = 1^{++}$ .

TABLE III. Relation of the couplings  $\gamma(Q - V-PS)$  to the S-wave, SU(3) V-PS couplings  $(g_A, g_B, g_1)$ , the  $Q_A - Q_B$  mixing angle  $(\theta_Q)$ , and the  $\omega - \phi$  mixing angle  $(\theta_V)$ .

| Mode         | Q <sub>1</sub>                                                                                     | Q <sub>2</sub>                                                                                                                                           |
|--------------|----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| Κ*π          | $\frac{1}{2}g_{A}\cos\theta_{Q} + \frac{3}{\sqrt{20}}g_{B}\sin\theta_{Q}$                          | $-\frac{1}{2}g_{A}\sin\theta_{Q}+\frac{3}{\sqrt{20}}g_{B}\cos\theta_{Q}$                                                                                 |
| ρΚ           | $\frac{1}{2}g_{A}\cos\theta_{Q} - \frac{3}{\sqrt{20}}g_{B}\sin\theta_{Q}$                          | $-\frac{1}{2}g_{A}\sin\theta_{Q}-\frac{3}{\sqrt{20}}g_{B}\cos\theta_{Q}$                                                                                 |
| 1.0 <b>K</b> | $\frac{1}{2}g_{A}\cos\theta_{Q}\sin\theta_{V}$                                                     | $-\frac{1}{2}g_{A}\sin\theta_{Q}\sin\theta_{V}$                                                                                                          |
| WK .         | + $\left(\frac{1}{\sqrt{20}} g_{B} \sin \theta_{V} + g_{1} \cos \theta_{V}\right) \sin \theta_{Q}$ | $+ \left(\frac{1}{\sqrt{20}} \mathbf{g}_{\mathbf{B}} \sin \theta_{\mathbf{V}} + \mathbf{g}_{1} \cos \theta_{\mathbf{V}}\right) \cos \theta_{\mathbf{Q}}$ |