$Q_{1}(1290)$ AND $Q_{2}(1400)$ DECAY RATES
AND THEIR SU(3) IMPLICATIONS*

R.K.Carnegie†, R. J. Cashmore \ddagger, W。M. Dunwoodie, T.A.Lasinski, and D.W.G.S.Leith
Stanford Linear Accelerator Center Stanford University, Stanford, California 94305

Abstract

We summarize and combine the known information on the decay rates of the strangeness-one axial vector mesons, Q_{1} and Q_{2}. From this information and the rate for $B \rightarrow \omega \pi$, we determine the $Q_{A}-Q_{B}$ mixing angle and the S-wave, symmetric and antisymmetric octet couplings for vector-pseudoscalar decays of axial vector mesons. If we assume the $\mathrm{D}(1285)$ and the $\mathrm{E}(1420)$ belong to the $\mathrm{J}^{\mathrm{PC}}=1^{++}$nonet, we find the A_{1} to have a mass of $\sim 1.47 \mathrm{GeV}$ and a large (>. 3 GeV) width。

[^0]Of the four $\ell=1$ ，$q \bar{q}$ nonets expected from the three－－quark model［1］，only the A_{2} nonet † is well established $[2,3]$ ，while the δ nonet at least has sufficient candidates $[3,4]$ 。 In contrast，even good candidates for the two axial vector nonets have been elusive．Only the namesake of the B nonet is clearly estab－ lished［5，3］，while the $D(1285)$ and，possibly，${ }^{\dagger \dagger}$ the $E(1420)$ may be identified with the A_{1} nonet．The lack of experimental confirmation of the axial vector nonet states remains a nagging problem for quark model phenomenology．

Recently，however，evidence for two strangeness－one，axial vector mesons was obtained from partial wave analyses［7，8］of diffractively produced $\mathrm{K}^{ \pm} \pi^{+} \pi^{-}$ systems．Subsequently，fits to the partial wave mass spectra of ref．［7］were made in two studies［9，10］using rather different models for the partial wave amplitudes．${ }^{\dagger \dagger \dagger}$ These fits yield information on the masses，total widths，and $K * \pi, \rho \mathrm{~K}$ couplings of $\mathrm{Q}_{1}(1290)$ and $\mathrm{Q}_{2}(1400)$ 。We combine that information with other branching ratios to $\omega \mathrm{K}[12,13]$ and $\kappa \pi, \epsilon \mathrm{K}[14]$ to obtain two complete sets of Q_{1} and Q_{2} partial widths．With the model－dependent uncertainties of refs．［9］and［10］in mind，we obtain from these two sets of partial widths a conservative estimate of the decay rates for Q mesons．From this estimate and the rate for $B \rightarrow \omega \pi$ ，we determine the S－wave，octet couplings g_{A}（anti－ symmetric）and g_{B}（symmetric）for vector－pseudoscalar（V－PS）decays of axial vector mesons as well as the $Q_{A}-Q_{B}$ mixing［15］angle，$\theta_{Q^{\circ}}$ ．Identifying the D

[^1]and E with the A_{1} nonet isosinglets, we can then compute the mass and $\rho \pi$ width of the A_{1} 。

To combine the diverse information on Q decays, we use the fact that the total width is the sum of all (known) partial widths. From refs. [9] and [10], we fix the total width and $\mathrm{K}^{*} \pi / \rho \mathrm{K}$ branching ratio. For $\kappa \pi$ and $\epsilon \mathrm{K}$ decays, we use our observed cross section ratios [14]: $\Gamma\left(\mathrm{Q}_{1} \rightarrow \kappa \pi\right) / \Gamma\left(Q_{1} \rightarrow \rho K\right)=0.35 \pm$ $.08, \Gamma\left(Q_{1} \rightarrow \epsilon K\right) / \Gamma\left(Q_{1} \rightarrow \rho K\right)=0.3 \pm .1$, and $\Gamma\left(Q_{2} \rightarrow \epsilon K\right) / \Gamma\left(Q_{2} \rightarrow K * \pi\right)=0.2 \pm$ -1. For $Q_{1} \rightarrow \epsilon K$ we have assumed a 10% background (tail of Q_{2}), and for Q_{2} $\rightarrow \epsilon \mathrm{K}$ we have inflated the error to accommodate a possibly large background in the $K^{*} \pi$ mode. The branching ratio $\mathrm{Q}_{1} \rightarrow \omega \mathrm{~K} / \mathrm{Q}_{1} \rightarrow \rho \mathrm{~K}$ is more difficult to estimate. Because of the narrow ω width, the ratio of $\omega \mathrm{K}$ to $\rho \mathrm{K}$ phase space exhibits [13] a roughly step-function behavior at $\sim 1.28 \mathrm{GeV}$. Thus this branching ratio is extremely sensitive to the precise value of the Q_{1} mass. Consequently we choose to use the upper limit $[13,12] \Gamma\left(Q_{1} \rightarrow \omega \mathrm{~K}\right) / \Gamma\left(Q_{1} \rightarrow \rho K\right) \leq$ $0.32 \pm .03$ 。

Combining the above information, we obtain columns two and three of table I, corresponding to the input of refs. [9] and [10] respectively. We have used from ref. [10] the results of the "original model" fit in which the $\operatorname{SU}(3), Q_{A}{ }^{-}$ Q_{B} mixing constraints were not imposed. We comment on several important fcatures. First, although the $Q_{1} \rightarrow \rho K$ width is the principal contribution, it corresponds to, at best, only half the total width of Q_{1}. Secondly, both models indicate that Q_{1} decouples from $K^{*} \pi$ while Q_{2} decouples from $\rho \mathrm{K}$. This coupling pattern was central to the qualitative interpretation of the $I^{+} K^{*} \pi-\rho \mathrm{K}$ relative phase motion in terms of two Q mesons as discussed in ref. [7]. Thirdly, there is a substantial difference in the magnitudes of the widths from the two models. Basically this reflects the uncertainty in the amount of coherent
background under Q_{2} in the $K^{*} \pi$ channel．Quantitatively，it corresponds to the very đifferent parametrizations employed in the fits of refs。［9］and［10］。As an attempt to reflect such systematic uncertainties，we offer in the fourth col－ umn of table I a conservative estimate of the partial widths for Q_{1} and Q_{2} ，cor－ responding to the mean and standard deviation of the values and errors in the preceding columns．For comparison，the last column of table I corresponds to the $\operatorname{SU}(3)$ constrained fit of ref．［10］．We note that this fit provides a mildly worse［10］description of the partial wave data and that the ratio $\Gamma\left(Q_{1} \rightarrow \rho \mathrm{~K}\right) /$ $\Gamma\left(Q_{2} \rightarrow K^{*} \pi\right)$ is roughly $1 / 3$ that in the unconstrained fit．All the V－PS widths in table I are for S－wave decay，as the D－wave coupling is known to be small or nonexistent $[7,8]$ 。

We now turn to the extraction of $\operatorname{SU}(3)$ parameters from the information of table I．For V－PS decays of the axial vector（A）mesons，we define the reduced couplings $\gamma(\mathrm{A} \rightarrow \mathrm{V}-\mathrm{PS})$ by the formula

$$
\begin{equation*}
\Gamma(\mathrm{A} \rightarrow \mathrm{~V}-\mathrm{PS})=\frac{\left\langle\mathrm{q}_{\mathrm{V}}\right\rangle}{\mathrm{M}_{\mathrm{A}}^{2}} \gamma^{2}(\mathrm{~A} \rightarrow \mathrm{~V}-\mathrm{PS}) \tag{1}
\end{equation*}
$$

where $\left\langle q_{V}\right\rangle$ is the vector meson momentum averaged over its line shape［13］． These couplings are presented in the upper half of table II．They follow from the corresponding widths of table I ，with the exception of $Q_{1} \rightarrow \omega \mathrm{~K}$ 。 In this case we use $\gamma^{2}\left(Q_{1} \rightarrow \omega K\right)=(.22 \pm .07) \gamma^{2}\left(Q_{1} \rightarrow \rho K\right)$ ，which is independent of the pre－ cise mass of $Q_{1}[13]$. We will also need the s－wave coupling ${ }^{\dagger}$ for $B \rightarrow \omega \pi$ ， $|\gamma(B \rightarrow \omega \bar{\pi})|=.72 \pm .03 \mathrm{GeV}$ ，assuming nominal values［3，5］for the mass， total width，and D / S ratio．

In the usual spirit of $\operatorname{SU}(3)$ phenomenology［2］，we assume that symmetry breaking effects are accounted for by using observed masses in the phase space

of eq. (1), while the reduced couplings are related by exact $\mathrm{SU}(3)$, modified by vector meson singlet-octet mixing. In addition we assume that the physical Q meson states are mixtures [15], characterized by an angle θ_{Q}, of the Q_{A} and Q_{B} states. We may now relate the observed couplings for Q_{I} and $Q_{2} V-P S$ decays to g_{A}, g_{B}, θ_{Q}, and the symmetric singlet coupling, g_{1}. These relations are given in table III. As our final assumption, we set $\gamma(\mathrm{B} \rightarrow \phi \pi)=0$ on experimental grounds [3]。 This relates g_{1} to g_{B} through

$$
\begin{equation*}
\mathrm{g}_{1}=-\mathrm{g}_{\mathrm{B}} \cot \theta_{\mathrm{V}} / \sqrt{5} \tag{2}
\end{equation*}
$$

where we take [2] $\theta_{V}=-31^{\circ} \pm 3^{\circ}$ 。
Qualitatively the observed pattern of the V-PS couplings for Q_{1} and Q_{2} can be readily understood by careful inspection of table III. Thus, if we simply set $\mathrm{g}_{\mathrm{A}} / \mathrm{g}_{\mathrm{B}}=-6 / \sqrt{20}$ and $\theta_{\mathrm{Q}}=45^{\circ}$, we find $\gamma\left(\mathrm{Q}_{1} \rightarrow \mathrm{~K}^{*} \pi\right)=0$ and $\gamma\left(\mathrm{Q}_{2} \rightarrow \rho \mathrm{~K}\right)=0$; that is, we predict that Q_{1} decouples from $K^{*} \pi$ and Q_{2}, from ρK. In addition, for magically mixed [16] $\omega-\phi$, we have $\gamma(\omega \mathrm{K}) / \gamma(\rho \mathrm{K})=-1 / \sqrt{3}$ for both $\mathrm{Q}^{\prime} \mathrm{s}$. This is in rough accord with the observed ratio for Q_{1} (table II); since Q_{2} decouples from $\rho \mathrm{K}$, we would also expect it to decouple from $\omega \mathrm{K}$ (table I). Of course a set of relations similar to those of table III may be written for scalar-pseudoscalar (S-PS) Q meson decays. For $\theta_{Q}=45^{\circ}$, a ratio of h_{A} to h_{B} (the S-PS analogues of g_{A} and g_{B}) may be chosen to have Q_{2} decouple from $\kappa \pi$ (table I). Such a ratio would predict comparable couplings of Q_{1} and Q_{2} to $\kappa \eta$, the phase space being similar to that for the $\in K$ mode. However, the ϵK decays involve not only h_{A}, h_{B}, and θ_{Q}^{-}but also h_{1} and the complications of ϵ, S^{*} mixing [4], as well as their relative contributions to the Q rates $[7,8]$. While such complications presently preclude an $S U(3)$ analysis of $S-P S$ decays, there appears to be sufficient flexibility to accommodate the observations of table I.

To determine g_{A}, g_{B}, and θ_{Q}, we have made least squares fits of the formulas in table III to the couplings of table II and $\gamma(\mathrm{B} \rightarrow \omega \pi)$. The results of these fits and their χ^{2} s are summarized in the lower half of table II. We note that g_{B} and θ_{Q} are rather independent of which input data we use. This reflects the facts that g_{B} is principally determined by the B width and that $\theta_{Q} \approx 45^{\circ}$ corresponds to Q_{1} decoupling from $K^{*} \pi$ and Q_{2}, from ρK. The spread in values for g_{A} stems from the differences in magnitudes of the partial widths from refs. [9] and [10]. With model uncertainties in mind, we take

$$
\begin{equation*}
\mathrm{g}_{\mathrm{A}}=+1.67 \pm .18 \mathrm{GeV}, \mathrm{~g}_{\mathrm{B}}=-.83 \pm .03 \mathrm{GeV}, \quad \theta_{\mathrm{Q}}=41^{\circ} \pm 4^{\circ} \tag{3}
\end{equation*}
$$

as conservative estimates for these $\mathrm{SU}(3)$ parameters. They are consistent with the parameters ${ }^{\dagger}$ which follow from the SU(3) constrained results of ref.[10]。

Restricting our attention to the parameters of eq。(3), we may graphically assess the $\operatorname{SU}(3)$ consistency of V-PS decays. For a given value of θ_{Q} (and θ_{V}), the reduced couplings are linearly related to g_{A} and g_{B}. Thus, in a plot of g_{A} vs g_{B}, the observed couplings and their errors determine straight bands which must intersect at a common point $\left(\mathrm{g}_{\mathrm{A}}, \mathrm{g}_{\mathrm{B}}\right.$) for a consistent $\mathrm{SU}(3)$ description. From fig. 1 we see that the V-PS decays are in good agreement with $\operatorname{SU}(3)$ expectations, the only mild inconsistency possibly being in the coupling for $Q_{1} \rightarrow$ $\rho \mathrm{K}$. For $\theta_{\mathrm{Q}} \approx 45^{\circ}$ we expect (table III) the ratio $\Gamma\left(\mathrm{Q}_{1} \rightarrow \rho \mathrm{~K}\right) / \Gamma\left(\mathrm{Q}_{2} \rightarrow \mathrm{~K}^{*} \pi\right.$) to equal that of the phase spaces for these decays $(\sim, 37)$. Note that this is essentially the ratio found (table 1) from the fit of ref. [10] constrained by $Q_{A}=Q_{B}$ mixing. Within the uncertainties of the models $[9,10,11]$ used, we conclude that the decay rates for Q_{1} and Q_{2} lie within the conservative limits of table I and that they are consistent with $\mathrm{SU}(3)$.

$$
\mathrm{f}_{\mathrm{A}}=1.76 \pm .05, \mathrm{~g}_{\mathrm{B}}=-.87 \pm .03, \theta_{\mathrm{Q}}=42^{\circ} \pm 1^{\circ}, \text { and } \chi^{2}=9.1
$$

Having established a range of possible values for g_{A}, g_{B} ，and θ_{Q} ，we now discuss what inferences may be made regarding the A_{1} ．For $1_{0} 0<\operatorname{M}\left(A_{1}\right)<1.6$ GeV ，we find the A_{1} width to $\rho \pi\left(\Gamma=\frac{2}{3}\left\langle q_{\rho}, \mathrm{g}_{\mathrm{A}}^{2} / \mathrm{M}^{2}\left(\mathrm{~A}_{1}\right)\right)\right.$ to be large（ $>.3 \mathrm{GeV}$ ）． To determine the A_{1} mass，we need an additional assumption．For the A_{1} nonet，the $\mathrm{SU}(3)$ mass formula（with particle names for masses）is

$$
\begin{equation*}
A_{1}^{2}=4 Q_{A}^{2}-3\left(E^{2} \cos ^{2} \theta_{A}+D^{2} \sin ^{2} \theta_{A}\right) \tag{4}
\end{equation*}
$$

where we denote the A_{1} nonet isosinglets by D, E and their mixing angle by θ_{A} 。 From the $Q_{A}-Q_{B}$ mixing mass formula

$$
\begin{equation*}
Q_{A, B}^{2}=\frac{1}{2}\left(Q_{1}^{2}+Q_{2}^{2} \pm\left(Q_{1}^{2}-Q_{2}^{2}\right) \cos 2 \theta_{Q}\right) \tag{5}
\end{equation*}
$$

we find $Q_{A} \sim 1.34 \mathrm{GeV}$ ，roughly independent of which value of θ_{Q} in table II we use．We now assume that the E and D are indeed in the A_{1} nonet．Using the only measurement［17，3］of the rate for $E \rightarrow K * \bar{K}\left(\Gamma={ }^{\prime} q_{K} * g_{A}^{2} \cos ^{2} \theta_{A} / M_{E}^{2}\right)$ ， we may estimate the E－D mixing angle，θ_{A} ．We find $72^{\circ}<\left|\theta_{A}\right|<77^{\circ}$ ，the spread reflecting the range in values for g_{A} 。From eq。（4）we thus compute A_{1} $\sim 1.47 \mathrm{GeV}$ with a broad $\rho \pi$ width as summarized in table II．We note that three recent partial wave analyses［ $18,19,20$ ］of nondiffractively produced 3π sys－ tems find a broad bump in the $\mathrm{J}^{\mathrm{P}}=1^{+}, \mathrm{I}=1$ wave at $\sim 1.5 \mathrm{GeV}$ ．The values of the corresponding cross sections are consistent with the expectations of pro－ duction mechanisms［21］for a broad A_{1} 。

We have summarized and combined the known information on Q decays to obtain a complete set of partial widths for $Q_{1}(1290)$ and $Q_{2}(1400)$ ．In addition we have given a conservative estimate of these rates and their errors to reflect the model－dependent assumptions［9，10］needed to determine the total widths of Q_{1} and Q_{2} ．From this information we determined the range of $\mathrm{SU}(3)$ param－ eters which characterize the V－PS decays of axial vector mesons．These
parameters and the assumption that the D and E mesons have $J^{P C}=1^{++}$lead to the prediction that the elusive A_{1} has a broad $\rho \pi$ width and a mass of ~ 1.47 GeV ．As such a mass yields a curious inverted level structure for the A_{1} nonet $\left(M\left(A_{1}\right)>M\left(Q_{A}\right)\right)$ ，it is clear that the spin of the E and the 3π bumps［18， $19,20]$ at $\sim 1.5 \mathrm{GeV}$ deserve further study．The A_{1} issue aside，we conclude that the observed $Q_{1}(1290)$ and $Q_{2}(1400)$ decay rates can be reasonably de－ scribed within the context of $\operatorname{SU}(3)$ ．

References

［1］R．H．Dalitz，in High Energy Physics，ed．C．DeWitt and M．Jacob（Gor－ don and Breach，New York，1965）．
［2］N．P．Samios et al．，Rev．Mod．Phys． 46 （1974） 49.
［3］Particle Data Group，Rev．Mod．Phys．No。2，Part II（1976）S1．
［4］D．Morgan，Phys。Lett． 51 B （1974）71；S．Flatté，Phys。Lett．$\underline{63 B}$（1976） 224，228．
［5］V．Chaloupka et al．，Phys．Lett．51B（1974）407；S．U．Chung et al．， Phys．Rev．D 11 （1975）2426．
［6］L．Copley and P．Watson，Phys．Lett．61B（1976）477；D．H．Boal，Phys． Rev。Lett。 37 （1976） 1333.
［7］G．W．Brandenburg et al．，Phys．Rev．Lett． 36 （1976）703．
［8］G。Otter et al．，Nucl．Phys．B 106 （1976） 77.
［9］R．K．Carnegie et al。，SLAC－PUB－1767（1976），submitted to Nucl。Phys． B．－
［10］M．G．Bowler，Oxford Report，Ref． $48 / 76$（Rev．）（1976），submitted to Nucl．Phys．B．
［11］J．－L．Basdevant and E．Berger，Phys．Rev．Lett．$\underline{37}$（1976） 977.
［12］ABCLV and BBCMS Collaborations，CERN／EP／PHYS 76。
[13] W. Dunwoodie and T. Lasinski, SLAC Group B Physics Memo.
[14] G. W. Brandenburg et al., to be submitted to Phys. Rev.
[15] H. J. Lipkin, Phys.Rev. 176 (1968) 1709, and references therein.
[16] S. Okubo, Phys. Lett. $\underline{5}$ (1963) 125.
[17] P. Baillon et al., Nuovo Cimento 50A (1967) 393.
[18] F. Wagner et al., Phys. Lett. 58B (1975) 201.
[19] M. J. Emms et al., Phys.Lctt. 60B (1976) 109.
[20] Amstcrdam-CERN-Nijmegen-Oxford Collaboration, CERN/EP/PHYS 7634 (1976).
[21] G。Fox and A. Hey, Nucl. Phys. B 56 (1973) 386.

Figüre Caption

1. g_{A} vs g_{B} plot for $\theta_{Q}=41^{\circ}$ of known vector-pseudoscalar decays of axial vector mesons. A best estimate gives $\mathrm{g}_{\mathrm{A}}=1.67 \pm .18 \mathrm{GeV}, \mathrm{g}_{\mathrm{B}}=-.83$ $\pm .03 \mathrm{GeV}$, and $\theta_{\mathrm{Q}}=41^{\circ} \pm 4^{\circ}$ 。

TABLE I. Partial decay widths (MeV) for $Q_{1}(1290)$ and $Q_{2}(1400)$. The vector-pseudoscalar widths are for S wave decay only. Note that Refs. 9 and 10 find only the total widths and the $\rho \mathrm{K} / \mathrm{K}^{*} \pi$ amplitude ratios. We have combined that information with other Q branching ratios to obtain the tabulated values.

Mode ${ }^{(a)}$	Ref. 9	$\begin{aligned} & \text { Ref. } 10^{(\mathrm{b})} \\ & \text { No } \mathrm{SU}(3) \end{aligned}$	Mean	$\begin{aligned} & \text { Ref. } 10^{(\mathrm{b})} \\ & \mathrm{SU}(3) \\ & \hline \end{aligned}$
$\mathrm{Q}_{1} \rightarrow \mathrm{~K}^{*} \pi$	2 ± 2	21 ± 2	12 ± 13	13 ± 1
$\rightarrow \rho \mathrm{K}$	75 ± 6	125 ± 8	100 ± 35	83 ± 6
$\rightarrow \omega \mathrm{K}^{(\mathrm{c})}$	24 ± 3	40 ± 5	32 ± 11	27 ± 3
$\rightarrow \kappa \pi$	26 ± 6	44 ± 10	35 ± 13	29 ± 7
$\rightarrow \in \mathrm{K}$	22 ± 5	36 ± 8	29 ± 10	24 ± 5
$\mathrm{Q}_{2} \rightarrow \mathrm{~K}^{*} \pi$	117 ± 10	191 ± 19	154 ± 52	239 ± 23
$\rightarrow \rho \mathrm{K}$	2 ± 1	2 ± 1	2 ± 1	1 ± 1
$\rightarrow \omega \mathrm{K}$	~ 0	~ 0	~ 0	~ 0
$\rightarrow \mathfrak{K} \pi$	~ 0	~ 0	~ 0	~ 0
$\rightarrow \in \mathrm{K}$	23 ± 12	38 ± 19	31 ± 11	48 ± 24

(a) Possible $\kappa \eta$ mode neglected; it could be as large as $\epsilon \mathrm{K}$ and would reduce all numbers by a few percent.
(b) $\operatorname{SU}(3)$ refers only to the assumption that Q_{A} and Q_{B} mix; the errors are our estimates.
(c) Maximum $\omega \mathrm{K}$ width; see text.

TABLE II. S-wave couplings (GeV) for vector-pseudoscalar decays of Q_{1}, Q_{2} and resulting $\mathrm{SU}(3)$ parameters.

	Ref. 9	Ref. 10 No SU(3)	Mean ${ }^{(a)}$
$\gamma\left(\mathrm{Q}_{1} \rightarrow \mathrm{~K}^{*} \pi\right)$. $11 \pm .05$. $34 \pm .02$. $26 \pm .14$
$\gamma\left(\mathrm{Q}_{1} \rightarrow \rho \mathrm{~K}\right)$	$1.02 \pm .04$	$1.32 \pm .04$	$1.18 \pm .21$
$\gamma\left(\mathrm{Q}_{1} \rightarrow \omega \mathrm{~K}\right)^{(\mathrm{b})}$	-. $47 \pm .08$	-.61 ${ }^{\text {a }}$. 11	-. $54 \pm .13$
$\gamma\left(\mathrm{Q}_{2} \rightarrow \mathrm{~K}^{*} \pi\right)$	$-.78 \pm .03$	$-.99 \pm .05$	$-.89 \pm .15$
$\gamma\left(\mathrm{Q}_{2} \rightarrow \rho \mathrm{~K}\right)$	$-.13 \pm .03$	$-.13 \pm .03$	$-.13 \pm .03$
$\mathrm{g}_{\mathrm{A}}(\mathrm{GeV})$	$1.40 \pm .06$	$1.95 \pm .04$	$1.67 \pm .18$
$\mathrm{g}_{\mathrm{B}}(\mathrm{GeV})$	$-.80 \pm .03$	-. $90 \pm .02$	$-.83 \pm .03$
${ }^{\theta} \mathrm{Q}$	$45^{\circ} \pm 2^{\circ}$	$40^{\circ} \pm 1^{\circ}$	$41^{\circ} \pm 4^{\circ}$
χ^{2}	25.1	32.0	1.3.
$\mathrm{M}_{\mathrm{A}_{1}}(\mathrm{GëV})^{(\mathrm{c})}$	1.47	1.46	1.47
$\Gamma_{A_{1} \rightarrow \rho \pi}(\mathrm{GeV})$. 32	. 60	. 45

(a) Values correspond to mean widths and errors in Table I.
(b) With $\gamma^{2}\left(Q_{1} \rightarrow \omega K\right)=(.22 \pm .07) \gamma^{2}\left(Q_{1} \rightarrow \rho K\right)$.
(c) Assumes both the D and E have $\mathrm{J}^{\mathrm{PC}}=1^{++}$.

TABLE III. Relation of the couplings $\gamma(\mathrm{Q} \rightarrow \mathrm{V}-\mathrm{PS})$ to the S -wave, $\mathrm{SU}(3) \mathrm{V}-\mathrm{PS}$ couplings $\left(g_{A}, g_{B}, g_{1}\right)$, the $Q_{A}-Q_{B}$ mixing angle $\left(\theta_{Q}\right)$, and the $\omega-\phi$ mixing

Mode	Q_{1}	Q_{2}

$K^{*} \pi \quad \frac{1}{2} g_{A} \cos \theta_{Q}+\frac{3}{\sqrt{20}} g_{B} \sin \theta_{Q} \quad-\frac{1}{2} g_{A} \sin \theta_{Q}+\frac{3}{\sqrt{20}} \mathrm{~g}_{\mathrm{B}} \cos \theta_{Q}$
$\rho \mathrm{K} \quad \quad \frac{1}{2} \mathrm{~g}_{\mathrm{A}} \cos \theta_{\mathrm{Q}}-\frac{3}{\sqrt{20}} \mathrm{~g}_{\mathrm{B}} \sin \theta_{\mathrm{Q}} \quad-\frac{1}{2} \mathrm{~g}_{\mathrm{A}} \sin \theta_{\mathrm{Q}}-\frac{3}{\sqrt{20}} \mathrm{~g}_{\mathrm{B}} \cos \theta_{\mathrm{Q}}$
$\frac{1}{2} g_{A} \cos \theta_{Q} \sin \theta_{V}$
$\omega \mathrm{K}$

$$
+\left(\frac{1}{\sqrt{20}} \mathrm{~g}_{\mathrm{B}} \sin \theta_{\mathrm{V}}+\mathrm{g}_{1} \cos \theta_{\mathrm{V}}\right) \sin \theta_{\mathrm{Q}} \quad+\left(\frac{1}{\sqrt{20}} \mathrm{~g}_{\mathrm{B}} \sin \theta_{\mathrm{V}}+\mathrm{g}_{1} \cos \theta_{\mathrm{V}}\right) \cos \theta_{\mathrm{Q}}
$$

Fig. 1

TABLE I. Partial decay widths (MeV) for $\mathrm{Q},(1290)$ and $Q_{p}(1400)$. The vector-pseudoscalar widths are for S wave decay only. Note that Refs. 9 and 10 find only the total widths and the $\rho K / K^{*} \pi$ amplitude ratios. We have combined that information with other Q branching ratios to obtain the tabulated values.

Mode $^{(a)}$	Ref. 9	Ref. $10^{(b)}$ No $S U(3)$	Mean	Ref. $10^{(b)}$ SU(3)
$Q_{1} \rightarrow K^{*} \pi$	2 ± 2	21 ± 2	12 ± 13	13 ± 1
$\rightarrow \rho K$	75 ± 6	125 ± 8	100 ± 35	83 ± 6
$\rightarrow \omega K^{(c)}$	24 ± 3	40 ± 5	32 ± 11	27 ± 3
$\rightarrow K \pi$	26 ± 6	44 ± 10	35 ± 13	29 ± 7
$-\epsilon K$	22 ± 5	36 ± 8	29 ± 10	24 ± 5
$Q_{2} \rightarrow K * \pi$	117 ± 10	191 ± 19	154 ± 52	239 ± 23
$-\rho K$	2 ± 1	2 ± 1	2 ± 1	1 ± 1
$-\omega K$	~ 0	~ 0	~ 0	~ 0
$-K \pi$	~ 0	~ 0	~ 0	~ 0
$-\epsilon K$	23 ± 12	38 ± 19	31 ± 11	48 ± 24

(a) Possible $k \eta$ mode neglected; it could be as large as ϵK and would reduce all numbers by a few percent.
(b) SU(3) refers only to the assumption that Q_{A} and Q_{B} mix; the errors are our estimates.
(c) Maximum $\omega \mathrm{K}$ width; see text.

TABLE II. S-wave couplings (GeV) for vector-pseudoscalar decays of Q_{1}, Q_{2} and resulting $S U(3)$ parameters.

	Ref. 9	Ref. 10 No $\operatorname{SU}(3)$	Mean ${ }^{(a)}$
$\gamma\left(Q_{1}-K * \pi\right)$	$.11 \pm .05$	$.34 \pm .02$	$.26 \pm .14$
$\gamma\left(Q_{1}-\rho K\right)$	$1.02 \pm .04$	$1.32 \pm .04$	$1.18 \pm .21$
$\gamma\left(Q_{1}-\omega K\right)^{(b)}$	$-.47 \pm .08$	-. $61 \pm .11$	$-.54 \pm .13$
$\gamma\left(\mathrm{Q}_{2}-\mathrm{K}^{*} \pi\right)$	$-.78 \pm .03$	-. $99 \pm .05$	$-.89 \pm .15$
$\gamma\left(Q_{2}-\rho K\right)$	-. $13 \pm .03$	$-.13 \pm .03$	-. $13 \pm .03$
$\mathrm{g}_{\mathrm{A}}(\mathrm{GeV})$	$1.40 \pm .06$	$1.95 \pm .04$	$1.67 \pm .18$
$\mathrm{g}_{\mathrm{B}}(\mathrm{GeV})$	-. $80 \pm .03$	$-.90 \pm .02$	$-.83 \pm .03$
${ }^{*} Q^{2}$	$45^{\circ} \pm 2^{\circ}$	$40^{\circ} \pm 1^{\circ}$	$41^{\circ} \pm 4^{\circ}$
χ^{2}	25.1	32.0	1.3
$\mathrm{M}_{\mathbf{A}_{1}}(\mathrm{GeV})^{(\mathrm{c})}$	1.47	1.46	1.47
$\Gamma_{A_{1} \rightarrow \rho \pi}(\mathrm{GeV})$. 32	. 60	. 45

(a) Values correspond to mean widths and errors in Table 1.
(b) With $\gamma^{2}\left(Q_{1} \rightarrow \omega K\right)=(.22 \pm .07) \gamma^{2}\left(Q_{1} \rightarrow \rho K\right)$.
(c) Assumes both the D and E have $J^{P C}=1^{+}$.

TABLE III. Relation of the couplings $\gamma(\mathrm{Q} \rightarrow \mathrm{V}-\mathrm{PS})$ to the S-wave, $\mathrm{SU}(3) \mathrm{V}-\mathrm{PS}$ couplings $\left(g_{A}, g_{B}, g_{1}\right)$, the $Q_{A}-Q_{B}$ mixing angle $\left(\theta_{Q}\right)$, and the $\omega-\phi$ mixing angle (θ_{V}).

Mode	Q_{1}	Q_{2}
$K^{* \pi}$	${ }^{\frac{1}{2} g_{A} \cos \theta_{Q}}+\frac{3}{\sqrt{20}} g_{B} \sin \theta_{Q}$	$-\frac{1}{2} g_{A} \sin \theta_{Q}+\frac{3}{\sqrt{20}} g_{B} \cos \theta_{Q}$
ρK	$\frac{1}{2} g_{A} \cos \theta_{Q}-\frac{3}{\sqrt{20}} g_{B} \sin \theta_{Q}$	$-\frac{1}{2} g_{A} \sin \theta_{Q}-\frac{3}{\sqrt{20}} g_{B} \cos \theta_{Q}$
	${ }^{\frac{1}{2} g_{A} \cos \theta_{Q} \sin \theta_{V}}$	$-\frac{1}{2} g_{A} \sin \theta_{Q} \sin \theta_{V}$
ωK	$+\left(\frac{1}{\sqrt{20}} g_{B} \sin \theta_{V}+g_{I} \cos \theta_{V}\right) \sin \theta_{Q}$	$+\left(\frac{1}{\sqrt{20}} g_{B} \sin \theta_{V}+g_{1} \cos \theta_{V}\right) \cos \theta_{Q}$

[^0]: *Work supported by the Energy Research and Development Administration. \dagger Now at Physics Department, Carleton University, Ottawa, Canada. \$Now at Nuclear Physics Laboratory, Oxford University, Oxford, U.K.

[^1]: \dagger We refer to each nonet by its isovector member：$\delta\left(\mathrm{J}^{\mathrm{PC}}=0^{++}\right), \mathrm{A}_{1}\left(\mathrm{~J}^{\mathrm{PC}}=\right.$ $\left.1^{++}\right), A_{2}\left(\mathrm{~J}^{\mathrm{PC}}=2^{++}\right), \mathrm{B}\left(\mathrm{J}^{\mathrm{PC}}=1^{+-}\right)$。
 $\dagger \dagger$ Both $\mathrm{J}^{\mathrm{PC}}=0^{-+}$and 1^{++}remain possibilities for the E；see ref．［3］。The pseudoscalar assignment is attractive from the four quark point of view；see ref．［6］．
 $\dagger \dagger \dagger$ In addition to ourselves，Bowler（ref．［10］）and Basdevant and Berger（ref． ［11］）have considered models with only one Q resonance present．From the results of these studies，we conclude at the present time that a one－reso－ nance model cannot provide a quantitative description of the measurements．

