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ABSTRACT 

We explore the possibility that the Poincare stresses needed to 

stabilize a completely electrodynamical electron arise through a phase 

transition in the vacuum. By extending our previous work on dynamical 

symmetry breaking in finite quantum electrodynamics we are able to 

look for extended structures to see whether a composite electron could 

be stabilized by critically polarizing its own negative energy sea. 
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1. INTRODUCTION 

Qne of the oldest and most intriguing ideas in physics is that the masses 

of elementary particles arise entirely through dynamics. This has been a 

recurring theme since classical electron theory up to present day ideas on the 

role of collective phenomena in theories with an infinite number of degrees of 

freedom. Though classical electron theory is actually the forerunner of con- 

temporary theories it has not itself been discussed from the viewpoint of 

broken symmetry. Recently however we have been developing a theory for the 

electron mass based on the mechanism of dynamical symmetry breaking, 192 

and it is thus natural to seek the relation between modern work and the original 

classical electron problem. We shall explore such a relation in detail in this 

paper. We shall derive a set of mathematical equations which determine 

whether the electron is an extended object, but must apologize to the reader at 

the outset as we have not yet succeeded in actually solving these equations, 

Thus this work must be viewed as a progress report on an ongoing research 

problem. 

Historically the idea that all mass came from self-interaction was suggested 

by Lorentz who equated the electrostatic energy of a ball of charge with its rest 

energy, i.e., 
2 

>=mc 2 
(1) 

C 

where rc-is the classical electron radius. The two main difficulties with this 

idea were in getting such a structure to be compatible with Lorentz invariance 

(given a nonzero rc) and in securing stability against Coulomb repulsion. Both 

of these difficulties were resolved by Poincare who introduced an extra attrac- 

tive force, the so-called Poincare stress, which then allowed an extended 
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classical electron to be a consistent dynamical system (see, e.g., Ref. 3 for 

-a recent discussion). Of course the introduction of the Poincare stresses was 

an ad hoc addition to the theory and so this resolution was not completely 

satisfactory. 

Since the above discussion ignored quantum mechanics it was hoped that 

the Poincare stresses could be generated by quantum fluctuations. However, it 

was soon found that in perturbation theory radiative corrections increase the 

masses of elementary particles (as is familiar for instance from the fact that 

perturbatively the proton is heavier than the neutron) rather than produce an 

attraction which would lower the mass of the system. This specific situation is 

met in the analysis of the Lamb shift. In perturbation theory the energy of the 

2s1/2 level of the hydrogen atom is decreased by an infinite amount (since kinetic 

energy behaves as p2/2m this is equivalent to saying that the mass of the hydro- 

gen atom has increased). Then an ad hoc counterterm is introduced which not 

merely eliminates this infinity but actually overcompensates so that the 2s 
l/2 

level finally lies above the 2Pl,2 level in accord with the observed shift. 4 Thus 

we see that the Poincare stresses cannot be generated in perturbation theory 

since the normal vacuum is 9epulsive”, so that if the Poincare stresses are 

to be electrodynamic at all we must look to possible nonperturbative effects 

which might be able to produce an “attractive” vacuum. Moreover because of 

the role that the counterterm plays in Lamb shift calculations a better under- 

standing of the renormalization program might be expected to provide some 

insight into the origin of Poincare’s extra attractive force. 

Now during the last few years Johnson, Baker and Willey5 have made an 

extensive nonperturbative study of the structure of electrodynamics and found 

a set of conditions under which the ultraviolet divergences of the theory can 
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organize themselves away nonperturbatively, the theory being known as finite 

-quantam electrodynamics (finite QED). An eigenvalue for the coupling constant 

of the Cell-Mann Low type is required in order to obtain finite coupling constant 

renormalization, i . e. , finite Z 3. At such an eigenvalue it is possible to find a 

gauge in which Z l=Z 2 is finite, and more importantly the bare mass is found to 

satisfy 

2 ;y*w 
mO 

=m L 0 P2 
(2) 

where y,(a) is the anomalous dimension of the composite mass operator :$(x)$(x):. 

[The distinction between m and the subtraction point ,U will be made clear later .] 

Should y,(a) prove to be negative it then follows that m. vanishes as the cutoff 

is sent to infinity leaving 6m=m-m. ffnite with the mass then being entirely 

dynamical. Moreover the Bethe-Salpeter integral equation for the self-energy 

(see, e.g., Ref. 2) 

{~5AP))+ = / d4k KCp, W W+p) [y5, W+P)}+ W+P) 

+ 2m0 / d4k K(P, k) W+P) Y,SW-P) (3) 

becomes homogeneous since m. vanishes faster than the integration over the 

kernel in Eq. (3). Consequently the self-energy equation 

[y5 9 S-‘(P)]+ = /d4k WP, k) [y5. WP)} 
-I- 

(4) 

. 

exists without renormalization (the integration in Eq. (4) being finite because 

the negative anomalous dimension y,(a) in the solution 

S-‘(p) = L$E _ m. 
(-:ig,(o) = $+ _ m (-~Wie)+ye(a) (5) 
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provides the necessary convergence), and the self-energy bootstraps itself. 

Also the particular form found for m. would be infinite order by order in per- 

turbation theory thus suggesting that the counterterms used in calculations such 

as the Lamb shift-have been able in any given order to approximate the effects 

of the higher order radiative corrections because of their nonperturbative 

organization. 

It is important to add that there is however a hidden infinity in finite QED. 

From the axial-vector Ward identity it follows that 

i I Yg 9 Z:(p) 
+ 

= 2m0rp@,w) = 2mFp@,p,o) (6) 

where lYp is the Green’s function obtained by inserting :‘;(x) iy5 $(x): into the 

inverse f ermion propagator , and where the final equality is obtained by noting 

that m. is a multiplicative renormalizing factor for rp. Equation (6) now 

shows that y C(p) 
L’ I, 

is cutoff independent even though lYp needs to be renor- 

malized. It is this renormalization of lYp which then allows Eq. (4) to admit 

of chiral symmetry breaking solutions without the need for an accompanying 

Goldstone boson, with there being an anomalously nonconserved axial-vector 

current in the solution. 5 Unfortunately this lack of current conservation has 

somewhat obscured the symmetry breaking aspects of the theory, since some 

stability principle is still required in order to guarantee that the theory choose 

the nontrivial solution to Eq. (4). Moreover since mass is an on-shell concept 

insight into this problem should not be expected to come from ultraviolet infor- 

mation alone. 

In order to answer this stability question we decided to construct the 

vacuum energy as a function of the self-consistent solution to Eq. (4), and in 

Refs. 1 and 2 we found that the nontrivial solution becomes energetically 
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favored when y,(o)=-1, a new eigenvalue condition for the fine-structure con- 

&ant, At this critical value the infrared divergences of the massless theory 

become so severe so as to force the theory into a new nonperturbative chiral 

degenerate vacuum, IS>, in which,the order parameter <S I&x)+(x)IS> is non- 

zero and sets the scale for a self-consistent fermion mass. Thus because of 

this new eigenvalue condition finite QED becomes a relativistic generalization 

of the Bardeen-Cooper-Schrieffer (BCS) theory of superconductivity with the 

mass generation mechanism being of the attractive long range order (infrared) 

type typical in phase transitions. 

Our discussion so far has given us the structure of the self-consistent 

vacuum whereas the original picture of the Poincare stresses applies to states 

carrying fermion number. Consequently we must now try to build particle 

states on the vacuum. The immediate anticipation of course would be that the 

physical fermion is simply the lowest positive energy plane wave excited out 

of the translation invariant vacuum itself filled with negative energy plane waves 

(Fig. 1). However the fermion is able to lower its energy with respect to the 

plane wave by localizing in space. In order to make such a system stable the 

order parameter must acquire a space dependence such as that anticipated in 

Fig. 2, so as to provide a restoring force known as the bag pressure. ’ The 

new negative energy sea is phase shifted with respect to the original plane waves 

to define a coherent state, 10, in which <C l@x)$(x)lC> is space dependent 

(Fig. 3). - The observed state with fermion number one is then the lowest posi- 

tive energy state excited out of these distorted negative energy waves (i. e., out 

of IC>) with the structure of Fig. 2 interpolating between normal symmetry at 

short distances and broken symmetry at large distances, similar to the struc- 

ture already found for the propagator of Eq. (5). Since the fermion can lower 
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its energy by getting the negative energy sea to readjust to it as it localizes 

into anextended structure it is then very natural to identify the Poincare 

stresses with a dynamically generated bag pressure coming from the polariza- 

tion of the Dirac sea. 

Formally this generation of extended structures is analogous to the exist- 

ence of vortex solutions in a superconductor since Gorkov was able to derive 

the macroscopic Ginzburg-Landau theory for the superconducting order param- 

eter by summing the quantum fluctuations of the underlying microscopic BCS 

theory. Now in a recent paper’ we have presented a graphical formulation of 

Gorkov’s work suitably generalized to relativistic systems and in this paper we 

shall therefore apply the techniques of Ref. 7 to finite QED. This in principle 

(but not yet in practice) allows us to investigate whether the electron is an 

extended object held together by its own negative energy sea. 

In order to avail ourselves of the method of Ref. 7 we shall first (in Section 

II) reformulate the work of Ref. 2 as a mean field theory. We present the explicit 

calculation for the extended electron in Section III, and finally in Section IV we 

examine some novel features of our program (such as the fact that the electron 

comes accompanied by another lepton) and discuss some possible difficulties 

that it possesses. 

II. FINITE QED AS A MEAN-FIELD THEORY 

In this section we briefly review the work of Ref. 2 and recast it as a mean- 

field theery so that w’e can proceed to look for extended structures. We con- 

sider the conventional Lagrangian of massive QED 

(7) 

where we presuppose an eigenvalue for the coupling constant. At such an eigen- 

value the underlying massless theory (i. e., the one obtained by allowing the 
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parameter m to go to zero in the Green’s functions of the above theory) is con- 

- - f.ormaLinvariant for all momenta. In particular the Green’s function obtained 

by inserting :&x)$(x): into the inverse fermion propagator satisfies (up to an 

irrelevant overall constant) 

03) 

to describe the quantum fluctuations about the conformal invariant vacuum Q (0) 

with respect to which the fermion is massless. Here /A denotes the off-shell 

subtraction point used to renormalize the massless theory, and is to be dis- 

tinguished from m which is defined through the explicit additional mass term in 

Eq. (7). 

The utility of the conformal invariance of the massless theory is that it 

allows us to calculate the Green’s functions of :$(x)$(x):~ in the massive vacuum 

S2(m) ofiEq. (7), i.e a, in the vacuum where the conformal (and chiral) invariance 

is explicitly broken. This follows since each Green’s function in the presence of 

the source term m(x) :$(x)+(x): is calculable as a sum of an infinite series of 

Green’s functions of the massless theory via the $+ generating functional 

- /d4x W(m(x)) = c 2 /d4xl . O . d4xn m(x,) . . . m(xn) G{z(xl. . . xn) . (9) 

Here the G(@ (o) are the connected Green’s functions of the :$(x)$(x): composite as 

given in the massless theory. Noting that m(x) inserts a completely dressed 

:$(x)+(x): into the vacuum functional we are then able to construct W(m(x)) in 

terms of 7:; given in Eq. (8). In fact in the explicit case of a space-time 
, 

independent mass term m we have already noted that the generating functional 
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admits of the loop expansion of Fig. 4, and is explicitly summable as 2 

e(m) = i J-dJ Tr ln{-j[$ - m($)+ye(‘j) ; (lo) 

e(m) thus has the typical’loop expansion form, namely the Fredholm determinant 

of the full inverse propagator. Three comments are in order. Firstly, unlike 

the usual loop expansion with bare vertices our loop expansion uses dressed 

vertices and we discussed in Ref. 2 to what extent Eq. (10) could be exact with- 

out approximation (given the eigenvalue of course). Secondly, we have here 

constructed the propagator of Eq. (5) without ever needing to study the self 

consistent equation for the massive propagator, Eq. (4), thus showing the con- 

sistency of our loop summation of massless graphs with an independent result 

- 

already known in-the massive theory. The third and final remark (which we will t 

discuss in some detail in Section IV since it is clearly puzzling) is that our deri- 

vation of S-‘(p) requires Eq. (5) to be an exact result for all momenta and not 

merely for asymptotic momenta where it had originally been derived in Ref. 5. 

-(m) [A consequence of this is that l?S (p, p, o) of the massive theory is then given 

by Eq. (8) for all momenta. ] 

Recognizing e(m) as the vacuum energy density of massive QED2 we must 

now require e(m) to be negative for a nontrivial value of m in order for the non- 

trivial solution to Eq. (4) to be energetically favorable, and so in Refs. 1 and 2 

we varied e(m) as a function of y,(a). [ Strictly speaking e(m) is a multisheeted 
- 

function in the complex m2 plane and we discuss here only the behavior of its 

real part. We return to a discussion of its multiple valuedness in Section IV.] 

Looking only at the behavior of e(m) near m=O we note from the first term in the 
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expansion of Fig. 4 that 

-c, 

E”(0) = - 

From Eq. (11) we see that the physically interesting piece of E”(O) for dynami- 

cal symmetry breaking, i . e. , the infrared divergent piece, changes sign at 

y,(a) = -1 and turns a local minimum into a local maximum at that point, and 

thus the value of -1 is critical (and should be approached from below). Now in 

Ref. 2 we have presented a completely independent derivation of this same 

critical value based on the consistency of the mass bootstrap with the Wilson 

operator product expansion in the presence of a degenerate vacuum and so we 

will use this value in the following. The infrared logarithm in Eq. (11) is then 

removed by summing the rest of the series of Fig. 4 so that at ye(o) = -1 (Ref. 2) 

which is negative for any nontrivial value of m, as required. 

The origin of the infinity in Eq. (12) is due to the fact that the ultraviolet 

divergence in G (2) 
(0) 

is not removed by any of the conventional counterterms of 

QED but rather is usually removed by normal ordering with respect to fi(m). 

Since we have already normal ordered once and for all with respect to a (O) we 

shall thus have to remove this infinity by a counterterm. In order that this new 

counterterm should define the same mass spectrum as before we-shall introduce 

it through the self-consistent field mechanism presented in Ref. 7. Consider the 

chiral invariant Lagrangian 

(13) 
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written in the mean field form. From 9riD we obtain the tadpole graph of 

Fig. & 

e’(m) = <s2(m)]:$(x)~(x):]SJ(m)> = -i/h4Tr r”gL@,p,o) S(p) . 
cw 

(14) 

In order that the residual 4-Fermi interaction produce no mass corrections to 

the propagator in the Hartree-Fock approximation we require 

< s2(m)l:~(x)~(x):Isl(m), = f (15) 

Denoting by M that particular value of the trial parameter m which satisfies 

Eq. (15) we obtain 

, 

strongly reminiscent of the BCS gap equation. [ Noting that g-O- as the cutoff 

is sent to infinity we see that the induced 4-Fermi interaction corresponds to 

zero-coupling and is thus self-generating in the sense of Brout and Englert.‘] 

Returning now to Eq. (13) we can eliminate g to obtain the vacuum energy density 

of the mean field theory 

2 22 
F(m) = e(m) -g=q 

16n 
(17) 

which is now completely finite and has the double-well structure of Fig. 6 with 

nontrivial minima at *M. Thus by introducing the mean field self-consistently 

we discover that the imposition of the gap equation automatically renders the 
- 

vacuum energy to be completely finite. 

Thus by dressing the bare fermion loops with photons we are able to gener- 

alize to interacting theories the Hartree-Fock method usually used in the 4-Fermi 

theory. Moreover we may regard Eq. (13) as the Lagrangian of a 4-Fermi inter- 

action to which we add the exchange of a vector field in such a way so as to spread 
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out the 4 fermion vertex into an effective nonlocal interaction. Treating the 

scattering problem defined by Eq. (13) to lowest nontrivial order in g and simul- 

taneously to all orders in a? then yields the graph of Fig. 7. Unlike the quad- 

ratically divergent point vertex cas.e we see that-this graph is only log divergent 

(since y,(o) = -l), and hence the 4 fermion vertex has been spread out just 

enough to make it apparently renormalizable as a power series in fully dressed 

vertices. This method is of course different from the usual procedure of 

replacing a 4-Fermi interaction by an intermediate boson and proceeding per- 

turbatively. Here we add the boson and treat it nonperturbatively in order to 

obtain a renormalizable S-matrix. While this remark is of interest in itself it 

still remains to be studied as to what extent the scattering problems defined by 

Eqs. (7) and (13) differ from one another and whether the self-consistent way in 

which the 4-Fermi interaction was introduced prevents any significant new 

rescattering effects. 

Having set up the problem as a mean field theory we can now proceed to 

look for extended structures. 

III. THE ELECTRON AS AN EXTENDED OBJECT 

To look for extended structures we merely repeat the calculation of Section 

II using a space dependent mass term m(x). Introducing Ps(x) as the Fourier 

transform of F(O) s, ,(p, p, o) we replace Eq. (10) formally by a functional trace, 

d4xW(m(x)) - iTr In (18) 

since the interacting propagator is nonlocal. In order to give a meaning to 

Eq. (18) we still have to specify the contour for the frequency integration. This 

will be done below. The self-consistency condition which replaces Eq. (15) (the 
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trace now being the usual one on spin indices only) is 

&l:$(x)+(x):IC> = -iTr d4xtFs(x-xt) S(X,X’) J 
= Tr I 2 d3x’ ?,S(~-?, w) S(z,,, QJ) = m(x) g (19) 

where S(x,x’) is defined via its inverse given in Eq. (18), and where g is defined 

through Eq. (16). Defining 

2 
@(m(x)) = W(m(x)) - v 

enables us to rewrite Eq. (19) as a variational condition 

(20) 

a 
am(x) J d4x %(m(x)) = 0 (21) 

which serves to determine the trial state IC>. 

To evaluate W(m(x)) we try first to expand it as a series of gradients of the 

order parameter. We introduce 

n(s2 
4 

, m(x)) = -i 1% Tr t\@+q, P, -s) S(P)Fs, cL -lo) (P, P+q, Q S(P+q) 
(27-d 31 m=m(x) 

m=m(x) 

(22) 

using the specific form for the Green’s functions given in Ref. 2. Then follow- 

ing Ref. 7 we may write an effective Ginzburg-Landau type Lagrangian for the 

contribution due to the negative energy states of Fig. 3, viz. 

-%(m(x)) = -Y(m=m(x)) - im(x)/jI(-apap,rn(x))-II(o, m(x)j m(x) + . . . 

+ 256>m(xj [dpm(x;12 + . . . (23) 
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where the dots denote higher gradient terms. We thus see that Eq. (23) has a 

typicaLHiggs form since the potential has a double-well structure, with the 

kinetic energy of the order parameter being the first approximation to an infinite 

series of higher gradient terms. Equation (23) thus emerges as a completely 

dynamical Higgs theory in which the fundamental scalar field is replaced by the 

c-number expectation value of the fermion composite, As we already noted in 

Section I there is an anomalously nonconserved current in the theory and thus 

the Higgs field m(x) is not accompanied by any associated scalar bound state, so 

that there is no observable scalar particle in the theory, even though there is a 

nontrivial order parameter. Furthermore Eq. (23) is an equation for a c-number 

Green’s function and should not be second quantized. Consequently the existence 

of higher gradients does not spoil renormalizability since that only has to be 

discussed at the level of the quantum fluctuations of the fundamental fermion 

fields, with Eq. (13) already describing a renormalizable theory in the sense 

we have already discussed. It is important to notice that the coefficients in the 

expansion of Eq. (23) are all cutoff independent (since r,(a) = -1) so that the order 

parameter itself will be completely finite even at short distances. Furthermore 

%(m(x)) provides a scalar potential of the type used in the bag models and hence 

we can anticipate the existence of extended structures such as those found in 

Ref. 6. For the moment however it does not appear possible to sum the higher 

gradient terms analytically and so the structure of @(m(x)) is only illustrative. 

An al_ternative way of proceeding is to evaluate W(m(x)) in the basis of its 

eigenstates (we discuss the basis itself in more detail in Section IV). We set 

(following Eq. (30) below) 

S(?;,2,i,,) =; c n (d-kp) + (w-Wn+iE) 1 
v,i;;t) iQ2) u,(3) fin(Z) 

I 
(24) 
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where 

+ /3 J d3xt rn@) ~$?-~, mn) 

Then 

ld3x W(m(q) = - C kn - un(M=O)) 
n 

(25) 

(26) 

if we restrict the summation to the negative energy states alone. While such a 

choice is useful if we want to find sectors of the theory which are topologically 

distinct from the vacuum our program here is to look for bag states which are 

in the same Hilbert space as the vacuum. Consequently we must modify the 

contour so that we also pick up the lowest positive energy state, uo(z), of 

Fig. 3; 7,lO this adds one more energy, wo, to the right-hand side of Eq. (26). 

Hence we must evaluate :$(x)$(x): in the state br’+lC> (where b(oC)lC>= 0) rather 

than in lC> itself so that Eq. (19) becomes 

i%@ = ; c /d3x’ r”,(y-3, w 
-‘g 

) 3 (?j v nn n (3) 
n 

1 + F J d3x’ P,(y-?, wo) co(??j u,(2) . (27) 

Equations (25) and (27) now define a self-consistent Hartree-Fock problem in 

which the potential m(x) (i. e., the negative energy sea) deforms itself and 

adjusts to the fact that the lowest positive energy level of the coherent basis is 

occupied. Solutions to this family of coupled equations then give the self- 

consistent particle states of the theory. 

It is important to note that the state 10 itself is not an eigenstate of the 

theory. The state IC> is constructed from the vacuum IS> (i.e., fi (m)) by a 

space-dependent Bogoliubov transform and will have a nontrivial overlap with 
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1% and hence not be stable unless of course it carries a topological charge 

(which-would occur only if the phase of the order parameter varies over surfaces 

at infinity); this we are not considering here. The state IS> found in Section II 

is the translation invariant vacuum .of the theory so there is no breaking of trans- 

m+ lation invariance. However the state b. IC > can still be a better single par- 

ticle state than bf)+lS> (where bf’ IS> = 0) even while lC> itself is not merely not 

a better vacuum than 1% but is not even an eigenstate at all. Moreover since 

both these particle trial states are in the same Hilbert space and have a non- 

trivial overlap they cannot simultaneously be eigenstates of the theory. Thus 

b(‘)+lS> does not describe some other state with fermion number one, but rather 

b&j+ 
0 

[C> is the only one of its kind, assuming of course that it has lower energy. 

Since the localization of Fig. 3 is a property of the particle states and not of the 

vacuum 1% we remark that the coherent state concept allows matter to localize 

without any conflict with relativity and translation invariance. Essentially a 

relativistic particle is not a single degree of freedom but rather it is accom- 

panied by a filled sea, and it is this sea which provides a preferred direction or 

location and allows extended structures to form in the first place. 

While prospects for actually solving the set of coupled Eqs. (25) and (27) 

seem somewhat remote at the moment (the only apparent method would be to gen- 

eralize the work of Ref. 10 which would require a solution to the inverse scat- 

tering problem for a nonlocal potential with relativistic kinematics in three space 

dimensions) the equations are at least closed in principle since r”, is known 

explicitly and hence define a well-posed mathematical problem. Also they are 

completely finite. 11 Should these equations admit of an extended structure of 

the type indicated in Fig. 2 it will then be possible to calculate the radius of 

bound state as a function of its energy. By using Eq. (1) this would then provide 
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a first principles determination of an order of magnitude estimate for the value 

of the fine structure constant. 

IV. THE TACHYON DIFFICULTY 

Throughout this work we have been using the-propagator cf Eq. (5) both in 

the asymptotic and nonasymptotic regions. This clearly poses serious problems 

for the interpretation of the particle spectrum. We shall now discuss the low 

momentum behavior of the propagator in some detail. This will then clarify the 

nature of the set of basis states used in Eq. (24). 

We return to the case of constant mass and look at the structure of the 

propagator in the complex p2 plane when y0 (Q) = -1. We see that the propagator 

contains two poles, at p2 = &n./~, and behaves near the poles as 

(28) 

where the f refers to which determination of the square root singularity we make. 

The reason why the poles are not on the real axis is because of how we located 

the branch cut in Eq. (5). We find it more convenient instead to consider the 

propagator 

where vLI>O. Then near the poles 

SV(P2) N ?j I #+ (mu) l/2 

[ P2 

+ $- (-mv)l’2 

1 c p2+mv+ie 1 I 
. 

-mv+ie 
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Thus the propagator possesses a particle of mass (mu) l/2 and a (y5 rotated) 

.tachym (positive metric residue and spacelike mass squared) of mass (-mv) l/2 

when y,(a) = -1. 

In order to make the role of the tachyon more apparent we evaluate the 

vacuum energy density cl/ (m) defined as 

ey (m) = i J-$Tr lnl&)[%- rn(y)-I’2 

An integration by parts yields 

II (31) 

cu (m) = 4 J 
I 

. P-2) 

We now evaluate Eq. (32) as a contour integral, viz. 

1 

J 
d3p I( F?+rnv)‘/” + (<2-m)1’2 B(F2 -m,)s- 2lFI 

eu (m) = -2 , ^_ . 

m3 + i(mv -F2)I’2 S(m, -s2) 

(33) 

which is exactly the structure due to filling up the negative energy seas of a free 

fermion and of a free tachyon fermion. Thus in Eq. (26) we sum over two sets 

of negative energy seas rather than over one and it is this doubled basis (with 

m replaced by m(x)) which was used to construct Eq. (24), with one nonlocal 

potential effectively replaced by two local ones. 

It is important to notice that the quadratic divergences of the two seas 

identically cancel in Eq. (33) leaving eV(m) only log divergent. It is also of 

interest to see how this is achieved in the covariant basis. Equation (32) has 

the structure of the vacuum energy of a system consisting of two free particles. 

For a free particle of mass ~~ the vacuum energy is given by summing Fig. 4 
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with bare vertices’ 

2 
2ln%-1 . 

K 1 (34) 

Thus 

(35) 

which is a continuation of Eq. (12). Hence we see that the theory softens its 

short-distance behavior by generating a dynamical fermion tachyon which then 

cancels off the leading divergence of the input fermion. 

We must also specify how the above-mentioned continuation is to be made. 

Noting that the poles of Eq. (32) are all located in the upper left and lower right 

quadrants in the p, plane we may make a Wick rotation to obtain 

22 
eV(m)=q A4 

167r 
22 

(-m v -ie) 
(36) 

The ie prescription now tells how to determine the value of the logarithm as we 

continue v2 into ~1~. This then gives the purely real form of Eq. (12) on the first 

sheet with a negative imaginary part -2n zi(m2p2/167r2) after continuation through 

the cuts. Further this also fixes the sign of the imaginary part in Eq. (33) to be 

negative. Thus the vacuum decays by tachyon emission. 

Having discussed the consequences of the existence of the tachyon we must 

of course also examine its physical implications, since we start with one fermion 

and finish with two. < First of all we believe that we have uncovered a possibly 

general phenomenon in field theory. Our basic requirement is that the mass be 

self-generating, which means that Z(p2) must be a nontrivial function of p2. 

Consequently the spectrum of the interacting propagator, i. e., p2=Z2(p2), would 

in general be expected to possess more than one solution unless of course there 
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are shielding effects due to branch cuts. Given our calculation in which the cut 

structure is completely determined by conformal invariance we do in fact find a 

set of poles. Further if y,(a) were any value other than -1 the poles would be 

distributed on a c-ircle in the complex p2 plane, -and thus the. critical value of -1 

emerges as the only value for which all the poles can be put on the real axis. 

Moreover the theory only needs to generate one new state in order to cancel the 

quadratic divergence, and thus it may be a general property that leptons appear 

in pairs and cancel each other’s divergences at short distances. 

Throughout this work we have been referring to the minimum of the real 

part of e(m) as the vacuum since it has the property that it lies lower than the 

massless vacuum. However we now see that the state 1% in which the propa- 

gator is given by Eq. (5) is still not the ultimate ground state of the theory since 

it can itself decay by tachyon emission. For the moment we have no way of 

discovering the resulting state to which IS> decays; nor do we know whether such 

a state even exists. Should such a state exist we may then expect it to be a 

vacuum in which there is a spontaneous breakdown of the new symmetry obtained 

by mixing the particle and the tachyon; this would then move the tachyon into the 

physical region. If this additional symmetry is continuous the tachyon would be 

related to the muon 12 and if it is discrete the tachyon would be related to the 

electron neutrino. However a lot more work will have to go into studying this 

tachyon difficulty to see whether or not it is a desirable feature of the theory. 
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FIGURE CAPTIONS 

1. The translation invariant positive and negative energy plane wave basis 

used to describe the vacuum IS>. 

2. The lowest positive energy localized wave bound in the potential due to 

the order parameter m(x). The structure is spherically symmetric with 

m(x) tending to M asymptotically in all radial directions. 

3. The distorted positive and negative energy wave basis used to describe 

the coherent state IC>. We assume only one localized positive and negative 

energy level. 

4. The loop summation of e(m) for the interacting theory. The shaded blob 

vertex represents the complete dressed scalar vertex. The propagators 

are massless. 

5. The tadpole graph for the scalar fermion composite. The vertex is dressed 

and the propagator is massive. 

6. The double-well F(m) obtained when ye (Q) = -1. 

7. The lowest nontrivial order in g contribution to the 4 fermion scattering 

amplitude dressed to all orders with electromagnetism. 
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