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Summary 

dne of the maanisms which contribute to beam lifetime 
in electron storage rings is the quantum emission of ener- 
getic photons causing particles to be lost from the RF bucket. 
This quantum lifetime is among other things important in 
defining the required aperture in a storage ring. An approx- 
imate expression of quantum lifetime, predicted by a one- 
dimensional model which takes into account only the betatron 
motion, has been.used in most storage ring designs. If the 
beam is aperture-limited at a position with nonzero disper- 
sion, both the betatron and synchrotron motions have to be 
included and a two-dimensional model must be used. In this 
paper we offer an exact expression of quantum lifetime for 
the one-dimensional case and an approximate expression for 
the two-dimensional case. 

Introduction 

The stationary particle distribution in an ideal electron 
storage ring in the presence of radiation damping and quan- 
tum fluctuations is well-known to be gaussian with infinitely 
long beam lifetime. l* 2 This result has the limitation that 
the oscillation amplitude must not be limited. It is clear 
that in reality an aperture limit due to, for example, finite 
vacuum chamber size will truncate the gaussian distribution 
in the tail and modify the rest of the distribution accordingly. 
Furthermore, quantum fluctuations will increase the ampli- 
tude of particles until they hit the aperture and are lost so 
that the electron beam will have a finite quantum lifetime. 
The calculation of beam quantum lifetime is important for 
storage ring vacuum chamber designs. An approximate 
expression for the quantum lifetime in a one-dimensional 
case can be found in Refs . 1 and 2. 

If however, the electron beam is horizontally aperture- 
limited at a location with nonzero energy dispersion function 
so that the horizontal beam size at such a location contains 
both horizontal-betatron and synchrotron contributions, the 
one-dimensional treatment is not applicable. For this case 
it is necessary to perform a more complicated two- 
dimensional calculation of quantum lifetime with both the 
betatron and synchrotron motions taken into consideration. 

By using the Fokker-Planck equation19 3 and an appro- 
priate boundary condition, an exact expression for the quan- 
tum lifetime as well as the corresponding particle distribu- 
tion in the one-dimensional case has been found in Ref. 4. 
The main results obtained there are summarized in the 
following section. If the vacuum chamber size is larger than 
a few times the %aturalVV beam size, this more accurate 
expression of quantum lifetime reduces to the usual approxi- 
mate expression obtained in Refs. l-2. This approximate 
result is rederived in the third section by using the Fokker- 
Planck technique and some simplifying approximation. The 
method used in this derivation is then generalized to find an 
approximate quantum lifetime for the two-dimensional case 
in the last section. 

The One-Dimensional Calculation 

The Fokker-Planck diffusion equation for the particle 
di+ibution function $(a, t) can be written asI, 3~4 

(1) 
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whereI, 2 D is the diffusion constant, LY is the radiation 
damping rate and a is the oscillation amplitude. In the 
presence of an aperture limitation such as a<A, the particle 
distribution is described by 

$(a, t) = emt” $(a) (2) 

with r the quantum lifetime. It is the goal of this section to 
look for r and $(a). 

Substituting Eq. (2) into Eq. (l), we find that $ must 
satisfy 

The exact solution of this differential equation, in terms of a 
power series, is 

$(a) = $j e -sa2 [l+zl [(k-l)-&-][(k-2)-~]... 

. . . [I- &j(+$,Zj/Fp21 . (4) 

The quantum lifetime r is determined by the boundary condi- 
tion that at the aperture limit a=A, 

$(A) = 0 . (5) 

Although the problem is in principle solved by Eqs. (4) and 
(5), these equations are awkward to use in practice. To 
simplify, we let A be larger than a few times the beam size 
u of the %aturaltt gaussian distribution $. with infinite 
quantum lifetime: 

$,(a) = 1 e-a2/2u2 
2nc2 

(6) 

With 

a2 = D/2a! . 

Under this condition, the quantum lifetime is much longer 
than the radiation damping time and we can ignore ~/~CXT 
terms in Eq. (4) as compared to unity. It follows that 

(7) 

and 

(8) 

where we have defined a function h(x) by 

(9) 

Our final expressions (7) and (8) are much easier to use than 
Eqs. (4) and (5). For x>> 1, h(x) approaches the asymptotic 
form of ex/x. Thus Eq. (7) can be further reduced to 

T e 1 2 exp (A2/2u2) 
cx A2 

(10) 
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This result coincides with that obtained in Refs. 1 and 2. 
The difference between expressions (7) and (10) can be 
demonstrated by taking their ratio, yielding ye’311(y) with 
y=A2/2a2. The behavior of this function is shown in Fig. 1. 
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Fig. 1. The function ye-yh(y) vs. y. - 

It can be seen that the difference is less than 10% if A>5a 
(y>12.5). Plotted in Fig. 2 is the form factor l-h(a2/2a2)/ 
h(A2/2a2) which appeared in the distribution function $(a) of 
Eq. (8). This form factor describes the ratio of $(a) to the 
natural gaus_sian distribution qo, and it can be noticed from 
Fig. 2 that +(a) differs from Go only when a is very close to 
the aperture boundary A. 
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Fig. 2. The form factor l-h(a2/2u2)/h(A2/2c2) vs a/u 
for different values of A/u. 
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Simplified One-Dimensional Model 

If we are not interested in the particle distribution $(a) 
in the presence of the aperture limitation and only need an 
approximate expression of the quantum lifetime 7, a simpler 
derivation of Eq. (10) is possible. To show this we substi- 
tute Eq. (2) into Eq. (1) and integrate over Ssada from 0 to 
A. Adopting the normalization convention that 
JA2rah &a) = 1, we obtain 
0 

1 _-= 2cY + 27nY 7 P 
a2da $I + ?rD 

J 

A 
da(a$*), I 

0 0 

An integration by parts, together with the boundary condition 
$(A)=O, gives 

1 _-= rDAii?(A) . (11) 

In order to use this formula, so far exact, one needs to know 
g. However, if A>>o, Eq. (11) can be approximated by 
replacing 5 on the right-hand side by the natural gaussian 
distribution qo. Physically this means that the diffusion flux 
outward across the aperture boundary is approximately un- 
affected by the boundary. Under this approximation, Eq. (11) 
becomes Eq. (10). The simplicity of this method makes it 
possible to’ generalize to the two-dimensional case, as will 
be discussed in the following section. 

Two-Dimensional Model 

If the beam size is limited horizontally at a position with 
nonzero energy dispersion function, a two-dimensional cal- 
culation which includes both the horizontal-betatron and the 
synchrotron motions has to be considered. For simplicity, 
we ignore any coupling between the two dimensions. To find 
the corresponding beam lifetime 7, we follow similar pro- 
cedure as in the one-dimensional case and let the distribution 
function be 

$(a,, as, t) = e -t/7 - Naxvas) I 

where a, and as are the oscillation amplitudes in the hori- 
zontal betatron coordinate x and the synchrotron energy devi- 
ation 6 = AE/E, respectively. If we denote the allowed region 
in the (ax, as) space by 92 and the boundary of 92 by V, we 
demand 

and 

JJ ij 4n2axdax asks = 1 
9? 

(13) 
_ q(u) = 0 

as the normalization and boundary conditions. The Fokker- 
Planck equation in this case is 

3 = C rZmiq+Lyiai$ +z-$ ais’ L ( )I * (14) 
i=x, S . i i i i 

where ox 6 are the radiation damping rates and Dx 6 are the 
diffusion bonstants. l* 2 Following a similar method used in 
the previous section, i.e., substituting (12) into (14) and 
using (13) to integrate over W, we obtain 

1 Dx D6 - = +x+ d T 

with 

(15) 

(16) 

where [ 1 
V. 

g means the quantity is evaluated at the boundary 
We then make the assumption that the exact distribution 

ij in Eq. (16) can be approximated by the unperturbed gaus- 
Sian distribution 

Jlo(ax, as) = 
1 a: ai 

mew ---- 
( ) 

(17) 
X6 2lY; 2u; 

where 

2 Dx 
“x = T and 2 D6 

=6=2q * 



Equation (16) then becomes 

The case we are interested in is se- (the region 
ax+na6 <A) with ~7 the absolute value of the energy disper- 
sion function at the position where horizontal aperture Iimi- 
tation occurs. A straightforward calculation, using Eqs.. 
(15) and (18). gives 

where we have defined 

n = A/uT 

UT4q 
X 

x=qu/u 6 x 
(20) 

y=Jz 

It can be shown5 that the general expression (19) can be 
simplified in special cases: 

(i) if $>n >>x (valid for small TJ), Eq. (19) reduces to the 
one-dimensional result of Eq. (10) with (Y and u replaced 
by ax and ax, respectively. 

(ii) Similarly if x>>n >>i (valid for very large q), the syn- 
chrotron motion dominates and the problem again be- 
comes one-dimensional. 

(iii) If n >> x >>i (valid when ux and vu6 are comparable), 
the result IS particularIy interestmg:6 

1 fi! dyT n3 e-n2/2 x 2 .-a++(yx . 
r1 ( (1*x2)2 x 6 ) (21) 

In the following, we will assume cys = 2or,, which is 
valid for many practical cases. Figure 3 shows the ratio of 

Eq. (19) to Eq. (21) as a function of x for n=7 and 10. It is 
clear that Eq. (21) is an excellent approximation of Eq. (19) 
in the entire range n>x>+. 

It is also worthwhile to compare Eq. (19) with the pre- 
diction of the one-dimensional model. Unfortunately, Eq. 
(10) is ambiguous in whether a! and u should be given by the 
horizontal-betatron or synchrotron parameters. We will 
choose somewhat arbitrarily 

(22) 

The ratio 72/r is shown in Fig. 4 for n=5, 7 and 10. At x=0 
the beam. size contains only the betatron contribution and 
r2=r as expected. At x=do the motion is purely synchrotron 
and we find r as a consequence of choosing ax instead 

Around x=1, the one-dimensional model, 
a large factor =2n. Experimental veri- 

fication of this result would be very interesting. 
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Fig. 4. T 
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/T vs. x for n=5, ‘7 and 10, where r2 is given by 
q. (22), 7 is given by Eq. (19). The horizontal 

scale is uniform up to x=1 and logarithmic for x>l. 
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scale is uniform up to x=1 and logarithmic for x>l. 


