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ABSTRACT 

A relativistic theory of the inclusive scattering of nuclei is given. 

The theory is applicable to meson production reactions as well as to the 

yields of light nuclei. A characterization of the relativistic nuclear 

wave function is given and its connection to the standard wave function 

is explicitly shown. Counting rules are derived that allow one to 

simply characterize the behavior of the reaction cross sections in 

terms of the short range behavior of the nucleon-nucleon force. Good 

agreement with experiment is achieved if the force is assumed to be 

due to the exchange of vector mesons with monopole form factors at 

each vertex. The predictions are successfully compared to several 

reactions. 
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1. INTRODUCTION 

Recent experiments l-5 using very high energy heavy ion beams have created 

considerable theoretical interest. 6-10 A relativistic, yet simple, theory for these 

reactions would be extremely useful. In this paper we shall .develop a conven- 

ient theory for this type of reaction, make predictions based on various models 

of the nucleon-nucleon force, and compare with the experimental data. 

Our discussion will be based on a generalization of the relativistic hard- 

collision models of composite hadrons. 11 In the application of this picture to 

interactions of nuclei, the constituents (“partons”) are nucleons, whose char- 

acteristics are well known. One suspects that this type of model must work 

with sufficiently general wave functions and interactions, and the main question 

is one of relative simplicity. In a restricted sense, this application can serve 

as a test case for the ideas and interpretations presently used in the hadron- 

quark models of strong interactions. However, in its own right, it can be used 

to extend the theory of the scattering of composite systems to the relativistic 

domain, and to extract important properties of the nuclear force. 

We shall for the most part concentrate on the kinematic regime that explores 

the short distance behavor of the nuclear wave functions. This is only a small 

fraction of the total reaction cross section, but perhaps it is the most interesting 

part because it is unexplored. One can easily extend the range of applicability 

of our predictions by making a more complicated ansatz for the nuclear wave 

functions to match on to the nonrelativistic regime, where it is best known, but 

this will not be done here. This extension deserves further study. 

The effects of shadowing and rescattering will also be neglected in our 

treatment. Hence the treatment given here should be most applicable to light 

nuclei. A careful study of this phenomenon in the present case could be very 
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interesting in trying to understand the anomalous nuclear effects observed in 

large $ransver se momentum events. 12 

The recent availability of excellent data on heavy ion reactions at high 

energies, l-5 which necessitates a relativistic description of. the process, moti- 

vated the present investigation. We hope to show that this type of data explores 

new aspects of the nuclear wave function which have a very simple interpretation 

in terms of the basic interactions between nucleons in the nucleus. The large 

q2 behavior of the nuclear electromagnetic form factor explores a similar 

regime. 13 

This paper is organized as follows. In Section II the model is presented, 

using convenient parametrizations for the momenta and defining the distribution 

functions of nucleons in the nucleus G(x,r+. As we will see, these distribution 

functions are explicitly measured in the experiments we are considering. 

Section III discusses in detail the nonrelativistic limit of these functions, which 

gives us useful information about their behavior and parametrization. In order 

to incorporate characteristics that are essentially relativistic, we develop in 

Section IV convenient “counting rules” for different theories of the nucleon- 

nucleon interaction that can be used to characterize our predictions. We then 

get a form for G that has the correct nonrelativistic limit, and at the same time 

expresses in a simple way the basic short range interaction between the consti- 

tuents. In order to have simple predictions that can easily be compared with 

experiments, a high energy approximation is developed in Section V. We get 

in this limit, several results that are stated in Sections VI and VII for 7r- and p 

production. A more accurate kinematic treatment is given and the above simple 

results are shown to have a rather wide validity. Quasi-elastic scattering is 

also discussed in some detail. Explicit comparison with experiment is made for 
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several cases. A discussion of the results is presented in Section VIII, empha- 

sizing the generality and simplicity of our approach. 

II. HARD SCATTERING MODEL 

In a general inclusive reaction involving nuclei, the detected particles with 

momenta (either longitudinal or transverse) substantially different from the 

initial beam or target are assumed to arise from a direct internal interaction 

of constituents. These constituents may be nucleons or composite states that 

are virtually present in the nucleus, such as deuterons, alpha particles, etc. 

The fundamental diagram to be considered here for the process A+B ---) C+ X is 

given in Fig. 1. Shadowing and rescattering have obviously been neglected. 

Here MO is the amplitude for the basic process a+b -c C+d, where the incident 

states a and b are off-shell. The simplest type of basic process is quasi-elastic 

scattering, n+n -c n+n, where n means either a proton or neutron (we shall not 

differentiate between them in our notation or treatment), and perhaps the next 

simplest is n+ n -+ r+X. 

Our procedure will be to take MO from experiment, where it is given only 

on-shell, and to make an extrapolation according to a prescription to be given 

later (this extrapolation has very little effect on our predictions). Another more 

fundamental way to proceed would be to go one step further and predict MO in 

terms of the interactions of the constituents of the hadrons. This will not be 

done because it is a more difficult task. However, it is interesting to point out 

that all our fitted behavior of the various MO’s are consistent with the behavior 

expected in constituent models. Finally, the effects of spin will be neglected 

here. Its inclusion would allow interesting polarization effects and the spin 

structure of the short range nuclear force to be studied. 
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For the analysis of the diagram of Fig. 1, it is convenient to parametrize 

the different momenta using W&lite momentum frame” variables as follows: 

A= .,+f$, a,, pl--$) ( 

where a particle’s name and four-momentum are denoted by the same symbol 

except for the 

general set of 

is selected by 

defined by the 

off-shell particles a and b. A and B have been defined in a 

frames along the interaction axis. A specific frame in this set 

relating P1 and P2. For example, the center-of-mass frame is 

conditions 

A2 B2 
p1-4p, =P2-4p, 

and 
9 3 

J&P&- B’ 

1 +p2+3 * 

This rather cumbersome set of variables will greatly simplify our later discus- 

sion. Also we define the other momenta that are on-shell as 

02+k2 
-‘;LT, (l-x) P - T 1 4(1-x)P1 

(2) 
2 2 

-& -(l-Y) ‘2 + 4;1-;;; 
2 > 

Note that with these parametrizations, the phase space integrals are of the form 

d4, = d2kT, da2 (3) 
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The off-shell momenta are calculated by momentum conservation: 

k2+k2 T XT, xP1 - - 4xP 1 

where 

k2 = - XCY 2 - k;)/(l-x) 

(4) 

(5) 

Q2 = (y(l-y)B2 - y/S2 - Q;)/(l-y) . 

Note that with these parametrizations, 

which is the usual light-cone variable. 

Using the Feynman rules, it is a simple matter to evaluate the diagram of 

Fig. 1. After squaring and integrating over the final state phase space of d and 

a! and ,LI (which can have a mass spectrum and does not need to be a definite 

state-this only generalizes the definition of the G function defined below), the 

inclusive cross section 

do 
EC-&=RC 

achieves the form 

RC= c j-bd2kT dYd2QT Ga,~fx,I;T) Gb,+d$) 
a& 

r(s’, s,x,y) (a+b --c C+ d;st, t’, ul) 1 
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where 

45 r = h(s’,k2,Q2) 

xyA(s, A2, B2) 

and where the x and y integrals run only from zero to one. The variables s’, V, 

u1 are those that describe the internal basic process and defined in terms of a, 

b, and C. The G functions will be defined below. The ratio r of the h factors is 

the ratio of the corresponding phase space factors in the cross sections, and 

A2k,y,z]= x2+y2+z 2 - 2(xy+yz+zx) . 

One finds that throughout the range of variables we are interested in, rel. 

A precise definition of the variables will be made later, but the interpreta- 

tion of the various factors in Eq. (6) is clear. The factor G a/Atx9 kT) is the 

probability of finding a constituent of type a in nucleus A with fractional 

ffmomentum~~x and transverse momenta kT. A similar interpretation holds for 

Gb/B’ The basic cross section factor that actually produces the detected particle 

C also has a clear probabilistic meaning. 

The probability functions are defined as 

(7) 

where Z/J is the bound state Bethe-Salpeter wave function with one leg (a) on-shell. 

It is related to the vertex function $ by 

$tx,‘-T, = k2@a2 . (8) 

One can also derive an equation for the electromagnetic form factor of the state 

A in terms of # and the result is 

FA(qt) = & /‘E d2kT JI*(x,K$ $(x,‘;T-(l-x)<T) (9) 
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Let us now turn to a more detailed discussion of the probability functions and 

their interpretation. 

III. THE NONRELATIVISTIC LIMIT 

In order to have a clear understanding of the G functions; and how they are 

expected to behave, it is instructive to make a nonrelativistic approximation. 

This should also allow us to explore the way in which masses enter into the 

analysis. The G function must be very closely related to the square of the non- 

relativistic wave function but the peculiar variables x and kT do not seem to be 

closely related to the familiar c of Schrcedinger theory. Their interpretation 

is quite simple, however. 

Consider the factor of (k2-a2) that occurs in $ and define 

M2(x) E ( 1-x)(a2-k2) - kk 

= (l-x)a2 + xa! 2 - x(1-x)A2 . 

This function minimizes at x=x0, where 

A2+a2-o2 
xo = 2A2 

and this suggests writing 

kZ 
x=x0+x . 

One then finds 

, (l-x)(a2-k2)= ae+r2 , 

(10) 

(11) 

where it has been assumed that the binding energy per nucleon E of the states A 

and c1! are the same. In this case one finds x0- a/A, i.e., each nucleon carries 

the same fraction of the total momentum of the nucleus at the peak of the wave 
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function. The G function becomes in this limit of small k : 
Z 

where 
2 

%R N x0(1-x0)$2 . 

The Schrcedinger equation in momentum space is of the form 

so that the vertex function eNH expresses more or less directly the behavior of 

the potential V. The falloff of $I is related to the softness (or hardness) of the 

potential. As a simple example, consider a general Hulthen model of the 

nuclear wave function: 

?&= 
-2 -1 (ael+b;2)+? . (.ae+k ) 

A relativistic version of this wave function can be achieved by writing 

where N(x) is slowly varying for x near 1 and defining 

M:(x) = (l-x) (a: - ky) -kc 

E (1-x)a 2 2 
1 fxcz 1 - x( l-x)A2 , 

(13) 

(14) 

with a2=a2+62 1 , ogY2+62. Proceeding as before, one finds for small kT and kZ: 

G 2 C(X,) ae+k [ +“I-” [acl+T;2]1-g (15) 
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where 

h C(x) = x(1-x)~ N2(x) , 

M;(x) = M2(x) + 82 , 

and 

(16) 

For the familiar Hulthen deuteron case, one usually chooses g=3 and ~~“36~. 

Thus d2 -35,ae, and the second factor is much flatter in r2 than the first. 

The form factor for this type of wave function is easily seen to fall as 

for large qi. Thus the falloff of the form factor and the behavior of G for large 

ki are closely related and also we see that the behavior of G for x-l is also 

closely related to the form factor falloff. This latter relation is the Drell-Yan- 

West relation. 14 

For general x, the relativistic G function can then be written as 

G(x,E,) = N2(x) x(1-x)~ [M2(x) + k;]-2 [M;(x) + k;]l-g . (17) 

For xwxo, the denominator factors are rapidly varying and as has been discussed, 

this reduces to a familiar nonrelativistic Hulthen form. For x >>xo, the numer- 

ator factors control the behavior of G, and 

G(x, XT) - (l-~)~ 

. 

In this paper, the behavior of G for x >> x0 will be especially important. - 

Note that this is new information not directly contained in the nonrelativistic 

wave function. We shall also discuss quasi-elastic scattering which explores 

the G function for x wxo as well. Let us now turn to a discussion of the calcu- 

lation of the power g in selected theories of the nucleon-nucleon interaction. 
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IV. COUNTING RULES 

Inthis section, the choice of appropriate wave functions will be discussed. 

This is not a trivial matter since one would like to have wave functions that 

reduce to familiar forms in the nonrelativistic limit but yet reflect the correct 

relativistic behavior (for large kT and for x -1) arising from a specific theory 

of the nucleon-nucleon interaction. Once the wave function is given, our main 

contact with experimental data is through the structure functions G(x, kT). A 

helpful tool for expressing the predictions of specific theories is in terms of 

“counting rules”. These allow one to characterize the asymptotic behavior of G 

in terms of the number of constituents and the basic interactions of the theory. 

The procedure here is to extract the leading behavior from the lowest order 

diagram in perturbation theory. For “soft” theories, one can show that the 

higher orders either are small compared to the leading term or have the same 

behavior. Consider the wave function (or structure function) diagram given in 

Fig. 2, where k is the momentum of particle a and is defined by Eq. (4). We 

shall assume scalar particles for simplicity. Note that A now also means the 

atomic number of particle A. 

A - 

For a renormalizable interaction between the constituents, such as hG4, 

(vector exchange also is in this category) the falloff of the vertex function arises 

solely from the constituent propagators. One finds 

where the masses in kl (see Eq. (14)) depend on detailed properties of the force. 

The wave function is 

q m(k2-a2)-l (kf-at)l+ . (18) 
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Comparison with Eq. (13) immediately tells us that 

h g=2A-3 (1% 

This is the usual dimensional counting prediction for the structure function15 

where one counts nucleons (assumed to be structureless point particles). 

B - 

For a superrenormalizable theory, such as q2x (scalar exchange), the 

vertex function behaves as 

where the additional factor arises from the falloff of the gluon propagators. The 

masses in ki are to be chosen appropriately. The prediction for g is 

g=4A-5 , (21) 

which reflects the increased softness of the potential. 

c 

As a final and perhaps most relevant example, consider a nucleon-nucleon 

interaction mediated by the exchange of vector mesons, such as rhos or omegas, 

with a monopole form factor at each vertex (vector dominance would assume 

such a behavior to fit the dipole nucleon form factor). One finds 

+ N (k: - afjl+ (ki - ai)-2n (22) 

where the masses in the form factors and/or gluon propagators are chosen to be 

the same for simplicity. The final result is 

g=6A-7 . (23) 

This is the same result as found in a A$4 theory with a dipole form factor at each 

four-point vertex, and also is exactly the same result one would get by counting 

quarks. While one might expect that the quark degrees of freedom become 

relevant at ultra high energies where they can be excited, we see that one gets 

the same prediction for g in this theory when the nucleon form factor effects 
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play a role . These, of course, may in turn be due to internal structure, but 

theseknternal degrees of freedom need not be fully excited. 

D 

For more general structure functions G where the state a is a bound a/A’ 
state of a nucleons, a similar analysis can be carried through. One finds in 

this case 

g = 2T(A-a) - 1 (24) 

where T=l, 2, or 3 depending upon the theory as discussed earlier. 

E 

Now that it is clear that one can differentiate between theories of the nucleon 

force by extracting values of g from the data, let us turn to a more detailed dis- 

cussion of the probability functions. 16 The G’s that will be considered here are 

all of the form (see Eq. (17)) 

where N(x) is a slowly varying function of x, and 

M2(x) = (1-x)a2 + xa2 - x(1-x)A2 

M;(x) = M2(x) + 62 . 

For large values of A, g is large, and the second term in the denominator 

controls the falloff in kc. For small kt , G becomes 

- -i2k2 
Gcce T 

where 
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For x-x0, one expects R-A l/3 , the normal nucleon radius, and hence 

2 l/3 Ml(xoJ’wA - This is then a restriction on the behavior of the parameter d2 

introduced before. In any case one can fit it directly from the above relation. 

The general form for G that we have adopted, Eq. (24), .has several prop- 

erties that are worth noting: 

G is peaked at kT=O and the transverse momentum distribution falls 

more and more rapidly as A increases. 

G is peaked at x-a/A. The most likely momentum configuration is 

that one in which the nucleons share equally the total momentum of 

the nucleus. 

The power g which controls both x-l and large kT is very simple to 

characterize in terms of the basic binding interaction and the number 

of constituents. 

The shape of G in the nonrelativistic limit does not restrict the 

behavior for x-l for general models (although they are strongly 

correlated in our simple models). A measurement of G for x-l is 

new information that is not accessible to conventional nuclear theory. 

V. HIGH ENERGY LIMIT 

In order to get simple predictions that can easily be compared with experi- 

ment without extensive numerical calculation, we will first analyze the situation 

in which the energy per nucleon is large compared to the nucleon mass. The 

kinematics for this regime is quite simple: 

s’ = xys 

t.’ = yt 
(26) 

u’ = xu 

d2 = xys + yt -t xu 
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and 

(3 =ut 
T s 

The condition d2 > 0 restricts the range of x and y that contribute for fixed values 

of s, t, u. 

Projectile fragmentation region. When t is fixed (and s, u large), one finds 

and 

l-x;,=l+- 
XYS 

and hence x$ zxF/y. Th e condition d2 > 0 becomes y >xF . In this regime for- 

mula (6) becomes 

l 2 dxd kTGa/A”,rT)/-l dyd2QTGb,I&y 
XF 

(28) 

All inclusive basic processes of interest to us here will be parametrized as 

pc $$=E(d) (l- IXFIjH 8-r2kg (2% 

and exclusive processes as 

p$j-$= E(s’)d[(k+Q-C)2-di]e-r2k2 (30) 

where k$= CT-kT-Q, and E(s’) is assumed rather slowly varying. H will be 

assumed to be constant, but a dependence on transverse momentum can easily 

be included. 

Since the exponentials are strongly peaked in k$, we can approximate the 

kT and IT integrals by replacing kc and Qc in the G’s by the mean value K2 which 

should be of the order of Ct. The inclusive cross section is then proportional 
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to 

(31) 

Note that the distribution for the target G 
a/A 

has integrated out in this limit, 

and that R depends on A through its normalization only. 
2, 2 If CT > Ml(xO), and if xE is not small compared to x o, then the main vari- 

ation in the integrand is from the factors of (l-y) and (1+/y). The first factor 

cuts off the integrand near y=l and the other near y=xF. If only their variation 

is retained, and the denominators taken constant, we have 
1 

RK / Ml-y) gB 
‘FF 

(1 -xF/y)H 

gB+H+l 
. (32) 

A more accurate treatment is possible but the above will suffice for our purposes. 

In the target fragmentation region, where u is fixed and s, t large, the above 

arguments can be repeated with the result that 

gA+H+ 1 
, (33) 

where gA is the power behavior of the target distribution function G a/A’ This 

’ result could also have been achieved by simply interchanging the target and 

beam particles in the previous result. These predictions will be compared to 

data in a later section. 

One can estimate the range of validity in xF of the above formulas by a 

simple argument. The momentum fraction xF must be large enough so that the 

particle is out of the t’quasi-elasticlY peak where the denominator factors in 

Eq. (31) are rapidly varying. The average momentum fraction xB of particle B 
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is <xB>= l/B. The average x retained by the detected particle of Eq. (29) is 

.rougMy N l/(H+2). Therefore, the behavior given by Eq. (32) should hold rea- 

sonably well for xF 7 l/B(H+2). For exSlmple, for the process deuterons -+ r-, 

this limit is xE 5’1/2 x 5.~ l/10, and most of the .x.E range is ‘covered. 

For an exclusive basic process, which yields a familiar quasi-elastic reac- 

tion, the calculation is also quite simple. Using Eq. (30) and expanding the 

arguments of the delta function for the case b+ n -C+ n, where b and C are 

nucleons, one finds that a reasonable approximation is: 

p -$/J = E(s’) ~~[x(s-A~-B~)(~-A-~)I e-R2k’ 

where the shift A has to be calculated using more exact kinematics. At high 

energies A-, 0. 

Again the x integral is not restricted and the full inclusive cross section is 

(34) 

the quasi-elastic peak should occur at xE = C/B + A. This is slightly larger than 

the naive expectation C/B, the most likely momentum in the state B. This shift 

will be included in all our numerical calculations. Equation (34) can be inter- 

preted as a relativistic generalization of the Glauber approximation but with a 

more precise definition of the covariant wave function. 

Although for simplicity we have discussed in detail the kinematics of the 

high energy region only, it can be shown that our results should be quite accurate 

at lower energies. For example, one important conclusion of our analysis was 

that the lower limit of the y-integral is equal to xE. This comes from the con- 

dition (k+Q-C)2 > d2. We have calculated this equation more exactly, assuming 

small transverse momenta and <x>=d/A, and found that the corrections are 
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small for the range of energies of the experiments we want to analyze here 

(kinetic energies per nucleon wl or 2 GeV ). At the quasi-elastic peak, for 

example, we find 

a= .07 .(dC - pX) 

A= .05 (CC - Px) (35) 

A= .075 (CC - Hex) 

and these shifts show clearly in the experimental data (see Figs. ‘7 and 8). The 

values were calculated assuming a specific internal process. For example, in 

the case CC --L Hex, the internal process was Hep --L Hex. Another possibility 

could have been He+ He -He+X, but this gives a shift at the quasi-elastic peak 

that does not agree with the experimental data. The position of the quasi-elastic 

peak is determined by the nature of the fragment b arising from the beam. The 

kinematical shift A then determines the fragment, a, arising from the target. 

Additional subsidiary peaks or shoulders in the data could be due to more than 

one basic process being important. These can be identified using the above 

procedure even if the dominant ones change with angle. 

VI. PION PRODUCTION 

As the first application of the model, we shall consider 7r- production in 

several different reactions. The data in Fig. 3, taken from J. Papp et al., 2 

clearly supports a prediction of the model that the cross section does not depend 

upon the target except for an overall factor (which goes as A l/3 due to the 

circumferential nature of the scattering) except very near threshold. 

A proper treatment of these kinematic effects is necessary in certain 

kinematic regions, For example, one expects that in the fragmentation region 

of processes such as p+A + T-+X, the cross section will be the same as for 

p+p --c T-+X. This is not so at the lower energies because of a kinematic 
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effect that is essentially the same for all targets (A12) and which changes the 

shapehof the cross section. The point is that near threshold, the integration 

over x (the target longitudinal momentum variable) does not go from zero to one 

and actually the allowed. interval shrinks to a point for xF -I. Now k2 is 

negative for most values of x, and for xFwl some of the energy for the reaction 

must be extracted from the Fermi motion in the target. 

The basic reaction p+p - T-+X will be parametrized as 

(36) R’ = Ro(l-xj..J e 
-4% e-l5k; 

. 

This is a reasonable representation to the data of Akerlof et al. 17 and E. -- 

Gellert . 18 We will treat neutrons and protons the same in order to keep the 

treatment simple. 

pC -, K-: Using the R’ given above, and calculating numerically using 

exact kinematics, we get the result shown in Fig. 4. We have not computed 

the normalization (this would require a careful treatment of absorption) and 

have normalized our calculation to the data. 2 For energies in the range of 

interest, one finds that R scales (for different energies) and for fixed (small) 

t, that 

R oc (l-~~)~ , (37) 

which is not very different from Eq. (36) except near xF=l. Note that a change 

in the power by 1 is a factor of two difference at xF=O. 6 if normalized at 

~~0.2. This form does not depend upon the specific target distribution function 

and hence is the same for all the different counting rules. The properties of 

the target wave function do not enter except in the overall normalization constant. 
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For backward scattering, i.e., u-fixed, the result depends strongly on the 

theofl of the target wave function. We find (A=12) 

R N (l+xF)b 

where b =23, 45, 67 for the three possible theories (A, B, C, respectively) of 

the previous section. 

DC - 7~ -: From the analysis of the previous section, we know that H=3. 

The prediction for R should now depend upon the deuteron wave function. For 

t-fixed, we find 

R - (~GF)~ (39) 

where f=5, 7, and 9 for the three theories. If we compare with experiment, 2 

Fig. 5, the value 9 is clearly favored. Recall that this is the theory of vector 

meson exchange (omegas or rhos) with monopole form factors. These counting 

rules are the same as quark counting, i.e., T=3. 

For backward scattering, u-fixed, one finds 

R - (l+xF)b 

where b=25, 47, 69 for the respective theories. 

HeC - 7r -: This reaction clearly shows, see Fig. 6, the effects of strong 

correlation in the initial wave function since pions are observed with one-half 

of the incident alpha particle momentum. The predictions are 

R - (l-y )f (39) - 

where f =9, 15, and 21. The data2 of Fig. 4 shows that f is definitely between 

17 and 25, and 21 is a good fit. This data again favors model C, T=3. 

In the backward direction, we find 

R - (l+xF)b 

where b = 25, 47, and 69. 
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We have also compared our predictions for forward scattering from beryl- 

limnd the agreement with the data of Ref. 4 is quite satisfactory. 

VII. PROTON PRODUCTION 

Now let us consider inclusive proton production. First, some examples 

will be discussed outside the quasi-elastic peak, that is , x-+/B. Then quasi- 

elastic scattering will be treated. As we have stressed before, this is a test 

of the wave function in the relativistic regime, whereas the quasi-elastic peak 

depends upon the most likely nucleon configuration which can be adequately 

described by a nonrelativistic wave function. 

As explained before, the effective internal cross section should include 

some kinematical effects arising from the target due to the low energy but this 

will be neglected here. From pp - pX data, we conclude that Heff III -1 (recall 

Eqs. (29) and (30)). 

DC + P: For this case, the prediction follows just as in the pion case and 

one finds in the forward direction 

R N (~GF)~ (46) 

where f = 1, ,3, or 5 for the three theories. The data does not extend very far 

above the quasi-elastic peak. In Fig. 7 the prediction for f=5 is graphed. The 
n 

data” seems to indicate that f is between 4 and 5. This is again consistent with 

theory C. The full curve in Fig. 7 will be discussed shortly. 

For backward scattering, the prediction is 

R N (l+xF)b 

where b = 21, 43, and 65. 

CC -c P: Just to see how far our model can be pushed, consider this reac- 

tion. Obviously, the predicted powers are going to be very large but nevertheless 
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are susceptible to analysis. The consistency of this model can at least be 

-test& and its trend as the nucleon number increases. In this case, the forward 

and backward predictions are the same and one finds 

R‘- (I- lxFI)f (41) 

where f = 21, 43, or 65. The data from Ref. 3 in Fig. 8 seems to indicate a 

large value of f, with 65 being a quite acceptable fit, but more data is needed 

for a definitive test. 

cc -. He4: The predictions for f are 15, 31, or 47 if the intermediate 

state b is an alpha particle. In Fig. 8 the curve for f=47 is consistent with 

dab3 The other possibilities are nowhere near the experimental curve. 

the 

Quasi-elastic: We have computed quasi-elastic scattering for one sample 

process, DC -. pX. The deuteron wave function was chosen from model C, so 

that g=5 and in order to get a reasonable rms radius, S2=200 ae. Setting 

K”=z2I, in Eq. (34), one gets the curve shown in Fig. 7. The agreement is quite 

good throughout the peak region and above. The excess rate at low xF must be 

due to multiple scattering in the nucleus which we have made no attempt to 

calculate. 

We have compared predictions of the above type for beryllium target data4 

and the fit is satisfactory. 

VIII. CONCLUSIONS 

The model we have presented here is quite general and can be applied to 

many different types of reactions. Although in our presentation we have analyzed 

only the case of strong interactions, applications to deep inelastic electromag- 

netic and weak interactions in nuclei are also possible. 
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The effects of absorption were completely neglected in the present treat- 

men& and this is a very important omission that must be remedied if one 

wishes to compute the absolute normalization of the reactions discussed here. 

In conclusion, we feel that the general approach used here to describe the 

high energy scattering of heavy ions has many advantages over the conventional 

approach using Schrcedinger wave functions and standard scattering theory. 

Some aspects of our model that are worth mentioning are: 

(1) We have presented a fully relativistic formulation of the scattering of 

bound states. The formalism has a very simple physical interpretation. The 

relativistic wave functions are shown to be simply related to familiar nonrela- 

tivistic choices. The relativistic situation is described in terms of distribution 

functions G(x,cT), which can be explicitly measured, and which have a simple 

probabilistic interpretation. 

(2) We have developed counting rules that allow one to predict in a simple 

way the general behavior of the reaction cross sections. These counting rules 

are expressed in terms of the basic short range behavior of the nucleon-nucleon 

force. 

(3) Good agreement with several experiments is attained for one simple 

model. This model has as its basic force the exchange of vector mesons with 

monopole form factors at each vertex. The agreement with experiment holds 

for both meson production and proton inclusive processes. Once the force is 

given, there are no parameters (except for normalization) outside the quasi- - 

elastic peak, and even this needs 62 only. It is important to add that we have 

checked several other reactions not included here, and all are consistent with 

the prediction of the counting rules for the same simple model. 
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(4) The force model that fits experiment is shown to have the same counting 

rulesas the quark-dimensional counting model discussed by Brodsky and 

Chertok. l3 Since the reactions discussed here are certainly at too low an 

energy to fully excite the quark degrees of freedom, the agreement between the 

quark model and the elastic deuteron data can perhaps be more easily understood 

in terms of our model. Evidently, the theory is much smoother than one would 

expect a priori in its connection between very high energies (excitation of quark -- 

degrees of freedom) and the range of energies we have discussed here. 

(5) Our results scale in the sense of being a function only of xP, independent 

of the energy. This is clearly shown in the data. It is interesting to note that 

this is true even when all the effects of masses are included, as we checked 

explicitly by computing the cross section for the case (p+ C - r-+X) numerically. 

(6) The model used here provides a simple yet relativistic description of 

quasi-elastic scattering. It contains the standard Glauber theory and the standard 

impulse approximation in the low energy limit. 

(7) Predictions are easily made and are given for as yet unmeasured 

processes which can serve as a more severe test of our model (backward scat- 

tering for example). 

(8) The model allows one to simply describe a region of the wave function 

that cannot be described sensibly in the nonrelativistic approach. The experi- 

mental data is thus exploring a new regime of nuclear physics and providing new 

tests of nuclear theory. 
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FIGURE CAPTIONS 

Tke basic hard scattering model diagram with the notation used in the text. 

The wave function diagram used to compute the probability functions. 

Scattering from sele,cted targets according to Ref. 2 to illustrate A inde- 

pendence of the shape of the x spectrum. 

The xF spectrum compared to the carbon data illustrating scaling. 

The prediction for T=3 compared to the data of Ref. 2 for a deuteron beam. 

The prediction for T=3 compared to the data of Ref. 2 for an alpha particle 

beam. 

The prediction for inclusive protons from a deuteron beam for T=3. The 

full curve is a fit to the quasi-elastic peak using the theory in the text. 

Two inclusive processes for a carbon beam illustrating the counting rules 

and the positions of the quasi-elastic peaks. 
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