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ABSTRACT 

A relativistic three-body theory of the NN7r system is applied to 

predict 7rD elastic scattering. Phase shifts and inelastic parameters 

are compared with those of a multiple scattering calculation. 
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In principle, the 7rD system can play a unique role in our efforts to better 

underStand nuclear dynamics. Thus, by confronting t1exact7’ three-body calcu- 

lations with experiment, one may probe the fundamental nN interaction (taken 

as input), and resolve (possibly crucial) formal puestions regarding the proper 

inclusion of relativistic effects. One may also test and improve more approxi- 

mate methods, such as multiple scattering (MS) techniques, for applications to 

heavier nuclei. In fact, calculations reported to date [l] look quite promising, 

and have already yielded valuable information with respect to optimizing the 

MS approach [ 21. Ultimately, however, such a program will clearly be limited 

by the inherent sensitivity of the system. In this article we focus on two aspects 

of this problem. We show that differential cross sections for TD elastic scat- 

tering may (1) be accurately predicted in a model-independent way by fitting 

parameters to other, more sensitive, experiments, and (2) may be generated 

with equal success by three-body and MS techniques, despite quite different 

physical assumptions and resulting nD phase parameters. 

The considerations noted above have stimulated a number of three-body 

calculations of 7rD scattering, based either on the nonrelativistic Faddeev theory 

[ 11, or its relativistic generalizations [31. The latter are clearly to be preferred, 

and permit one (in principle) to correctly account for absorption, as well as 

purely kinematical effects . However, the equations themselves are far from 

unambiguous, and have not been notably successful in a number of previous 

applications [4]. Also, all Faddeev-like calculations to date share a common 

defect in that they are based on separable off-shell amplitudes (a highly question- 

able assumption). In this work, we have instead chosen to characterize these 

uncertainties in terms of free parameters fitted to other types of experimental 

data. In this way, we have generated 7rD phase shifts and absorption parameters 
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for comparison both with the elastic data, and with specific dynamical models 

-(as we shall show, the actual data are not wholly suitable for this purpose). 

In order to achieve the flexibility demanded by this program, we have 

employed the covariant boundary condition formalism (BCF).developed by one 

of us [4]. As in the Faddeev approach, this requires one to solve a set of one- 

variable integral equations which couple the various asymptotic channels. How- 

ever, the BCF differs in that the kernel is written K=KS+A, where KS is a 

specified singular operator uniquely determined by the phase shifts (TN, NN), 

and A is a smooth residual operator characterizing everything else (off-shell 

structure, three-body forces, relativistic effects). Since A may be varied 

tieely, this method is highly efficient for exploring the full range of specifically 

three-body effects, and has been successfully applied to a wide variety of three- 

body problems, including the relativistic 37r system [4,5J . Details, earlier 

references, and the particular A parametrization employed here are given in a 

recent article concerning other aspects of this calculation [6]. Here we note 

that the nN phases used in the BCF were taken from [7], and that the principal 

omission was the absence of an explicit deuteron d-state (included in the MS 

calculation). However, the effect of missing channels is largely compensated 

by the energy-dependent parametrization of A [6]. 

Applying the BCF to the NNr system, we calculated the full set of physical 

amplitudes for the reactions NN - NN, NNr, nD (TL~ 800 MeV), and 

QTD - rD,- NNT, NN (TL ( 256 MeV), in the Jp states (l-, O’, l’, 2+) correspond- 

ing to the ?TD s- and p-waves. The A parameters were chosen so as to provide 

an excellent fit to NN elastic scattering below 400 MeV in the associated partial- 

waves (lSo, 3p1, IL D2), and to cr(pp -) ,‘D) in the range 400-800 MeV [6]. 

Predictions were thus generated for the TD elastic amplitudes; results for the 
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6, v parameters are illustrated in fig. 1. The value of the dominant 2+ wave at 

47.7 MeV (6’) agrees precisely with the result of A. W. Thomas [l], while the 

other (small) waves are in reasonable qualitative agreement. However, it 

should be noted that at such low energies the nD-phases are extremely sensitive 

to the input TN phases. As a general feature of these results, we observe the 

rapid variation and change of sign of all waves, except 0 + , in the region of the 

P88 resonance. This is associated with a rapid decrease in 7, corresponding 

to the absorption mechanism ~TD - NA. 

In Table I we compare the values of the phase shifts (6) and reflection 

coefficients (n) for these partial-waves with those obtained in a MS calculation 

reported earlier 121; the latter corresponds to a Faddeev-like prescription for 

single and double scattering, butwith simpler off-shell behavior. In this table, 

the incident pion energy ranges from 85 to 256 MeV, and corresponds to 

experiments made on nD elastic differential cross sections. It is interesting 

to observe how strongly the two 6, 7 sets differ, although they produce cross 

sections which are remarkably similar (cf., fig. 2). Specifically, we note the 

following regarding these phases: (1) the O+ wave is extremely weak in the BCF 

calculation, while in the MS calculation it is the strongest, also showing strong 

inelasticity. This curious result agrees with earlier work [8], in which it was 

shown that the series generated by iterating the three-body equation does not 

converge in this state. (2) For the other two p-waves (l+, 2*), the two methods 

agree qualitatively at 85 and 142 MeV, but disagree remarkably in the region 

of the P88 resonance. It is interesting that in the BCF calculation, with a 

slight change in the A parameters, it is possible to shift the 2+ phase to a form 

which rises sharply through 90’ near 200 MeV (instead of falling through 0’). 

This is related to the fact that 77 = 0 at that energy. The 90’ type of phase 



-5 - 

behavior was found to be correlated with larger back-angle differential cross 

sectims at 182 MeV. (3) For increasing energies above the resonance, the 

methods tend to converge in all of the states shown; this trend is also apparent 

in the differential cross.sections. 

The MS approach possesses a great practical advantage, in that it explicitly 

sums the many partial waves required to successfully describe 7rD scattering at 

several hundred MeV. ‘On the other hand, our calculation (and previous work 

[ 11) has shown that it is inadequate in the small angular momentum states, where 

the pion may penetrate sufficiently to interact simultaneously with both nucleons. 

Thus, it would seem most efficient to utilize the full three-body approach in 

calculating the s- and p-waves, and to describe the peripheral scattering by MS 

techniques. We have adopted this method in computing the differential cross 

sections at 85, 142, 182, 224 and 234.4 MeV. Representative.results at 85 and 

182 MeV are shown in fig. 2, where tie pure MS cross section is also shown 

for comparison. In general, except at the extreme backward angles at 182 (and 

234.4) MeV, one would need much better data to distinguish the two. 

It would thus appear quite difficult to judge dynamical models (or computa- 

tional techniques) on the basis of the elastic data alone. Indeed, the BCF result 

suggests that improved inelastic data would prove much more valuable for that 

purpose. A noteworthy exception to this rule is the situation above 200 MeV, 

where both of our methods converge and fail to reproduce the apparent flattening 

of the cross sections for BL 2 90’. As yet we can offer no explanation of this 

phenomenon. 
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Fig. 1 
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Fig. 2 


