SLAC PUB-1874
DECEMBER 1976

CURRENT ISSUES 1IN
. - *
THE ARCHITECTURE OF MICROPROCESSORS

+

Bernard L. Peuto
Zilog, Inc.

and

Leonard J. Shustek
Stanford Linear Accelerator Center
and
Computer Science Department
Stanford University

* Work supported in part by the Energy Eesearch and
Development Administration under contract E (043)515,

+ Work done while a Visiting Scientist at the Stanford Linear
Accelerator Center.

To Appear: COMPUTER (IEEE) Pekruary, 1977



INTRODUCTION

_Eespite the fact that microcomputers have existed
commercially for only five years, microcoaputer architecture
is not an entirely new field. 1t is, ‘ rather, the
application of .the general principles of computer
architecture to microcomputers. In "Planning a Computer
System", Frederick P. Brooks Jr. [1] defines computer
architecture as being, like other architecture, "the art of
determining the needs of the user of a structure and then
designing to meet those needs as effectively as possible

within economic and technological constraints".

In many ways the design and use of asicroprocessors is
identical to that of larger machines. In both cases there
are very high initial engineering and development costs
which have 1little influence on the final price of the
product. In both cases the fproducts which are most
successful are those which are general purpose. Perhaps the
most important similarity involves the issue cf software:
any other small differences Ltetween large and small machine
architectures are outweighed by the similar high cost in

program development.

Rather than expand on the similarities, this paper will
concentrate on the peculiar constraints which are unique to

current MOS microprocessors. The differences which confront



the architect are not sufficient to require a different
approach to the design, but they certainly influence the
Qeta;}s of the compromises made. We will first describe the
technological constraints and the special plight of a new
industry with a recently acquired knowledge of computers.
Then, using examéles from recent microprocessors, we will
examine some of the architectural features which have
resulted. Finally, we will illustrate our telief in the
unity of computer architecture by showing that the results
of instruction set measurements for a typical microprocessor

are quite similar to those for cther established computers.
TECHNOLOGICAL CONSTRAINTS

The overriding technical constaint on nicroprocessor
design is the size of the silicon die. Using an N-channel
MOS process, a die equivalent tc a square 200 ails on a side
produced on a 3-inch wafer can be manufactured with
acceptable yield (fraction of operating devices per wafer),
but under these conditions a 10% increase in die size can
result in as much as a 50% decrease in the the yield. Most
of the progress in manufacturing has come frcm better
control of defects and increase in the wafer size, which
results in higher total yield. Advances in manufacturing
can therefore either be applied to decreasing manufacturing
cost for a given size die, or to increasing ccaplexity by

increasing the die size. The architect, to be successful,



rmust develop ways to relate potential architectural features

to their space regquirements on a silicon die.

The 1limits imposed by the die size can also be
circumvented by changes in the details c¢f the process
(P=-channel vs N-channel, depletion lcad devices, etc) which
affect the gate density as well as the 1logic speed. For
example the ZILOG Z80, on an N~-channel depletion load 185
il square die, has more than three times as many components
as the older INTEL 4004, on a F-channel 136 il square die,
and the Z80 has a gate delay which is three times less than

the 4004 [2].

Unique to the microprocessor field is the requirement
to produce the device in a dual-in-line package with a small
number of pins. This seemingly trivial issue has an
enormous effect on the entire structure of the microcomputer
systen. In very large quantities the manufacturing cost of
the microprocessor is dominated Lty the cost of the package,
and users as well as package manufacturers have investments
in standard package sizes which make it difficult to freely
choose an appropriate package for the microprocessor. The
18-pin package for the INTEL 8008, which obliged the
designer to use time-multiplexed tusses, was primarily due
to the lack cf a larger standard package. As the INTEL 8080
was being designed, the 40-pin package then available
allowed more freedcm. 1In addition to pin count, the heat

dissipation of the device has an influence on the choice of



package material; the easily manufactured plastic packages
cannot dissipate more than 700 pillivatts. It is only with
the Success of N-channel depletion lcad logic that
microprocessors can use the plastic packages, which can be

up to 5 times less expensive than ceranmic.

The MCS microcomputers have so far been noticeably
slower than their minicomputer counterparts. The current
process allows clock frequencies of 2.5 to 3 Mhz for
standard parts, although fpart selection allous sufficient
yield for parts as fast as 4 Mhz, This <corresponds to an
average instruction execution time of approximately 2 to 3
microseconds. The slow speed is not due to fundamental
limits of MOS technology, but to the limited amount of power
which can be dissipated in ccmmercially available packages.
The design has to trade-off power dissipation for speed and
corplexity (number of gates). MCS technclogies with
improved speed-power products are being developed today and
one can expect that MOS clock rates as high as 6 MHz will be

reached in a few years .
THE KNOWLEDGE GAP

The first microcomputers were desiqgqned by the menmory
component designers, whose abkility to do so was a result
cf breakthroughs in acheiving greater memory density. Their
primary expertise was in circuit integration rather than

computer architecture, but thke limitaticns at the time were

-l



s0 severe that only the simplest machines could have been
designed. The current state of the art is such that most of
Vthe'féatures of larger machines could be incorporated in
microprocessors within the next few years, and the industry
has recognized that it is necessary to use architects with
previous experience 1in medium-tc-large computers. In both
hardvare and software these designers must learn scme of the
aspects of the component industry, but probably far 1less
than the component designers would have had to learn about

computer architecture.

The architecture of a new ccmputer is driven by the
market chosen for it, and Lty the requirements of the users
in that market. The dilemma for the microprocessor architect
is that the applications are nct yet defined; they are often
created by the existence and price of the product. More
microprocessor have been produced since 1972 than all other
computers combined, but the growth rate is such that this
number (currently 1 to 2 wmillion/year) is small compared
even to conservative estimates of future use. Most of those
future applications are unkncwn. It is even hard ¢to
characterize the <current use of microprocessors because of
the insufficient feedback from users to manufacturers. This
complicates the architect's task, since the processor must
be well matched to the intended software environment, about
which little is known for large systems and even 1less for

microprocessors. One of the nmost pressing needs in



ricrocomputer architecture is the measurement of the

characteristics of user software.

“As for 1large computers, softwvare development often
represents the 1largest investment in the production of a
computer system. Unlike the users of large systems, the
microcomputer programmer often has no prior experience in
programming or software system design. It is often the
digital engineers who must write the prcgrams for the
application, and although their sophistication is growing,
they still must be considered novices. As a consequence,
the tools being used are close to the hardware that the
users are familiar with and thus resemble the software tools
of the 1950's [3)]. In this ccntext, where the users are
introduced to computer concepts via the hardware interface,
assembly 1language ptogralling requires the least additional
knowledge <ccmpared to that required for higher-level
languages. Fortunately there is a large body of experience
with larger machines that can te directly applied to
microprocessors once the users have recognized the
advantages. This has promoted a large influx of software
engineers from large machine envirorments and it has, for
example, provided a new btocm in the compiler-writing

industry.
CURRENT ARCHITECTUEES

The focus of a discussion of current architectures

-f=



should be on the top-of-the-line processors like the INTEL
8080, MOTOROLA 6800, TI 9900, and ZILCG Z80. The user will
find,” as he did for TTL design, that it is better to use
only part of a ccmplex device tkan to build what is required
from more primitive components [4]. A ccmparison with older
processors, such as the INTEL 4004, would be unfair because
many of the technological <ccnstraints bhave since been
relaxed, and because the designers now have a better

understanding of the market needs.

Many microprocessors have some of the desirable
features which seen appropriate for the intended
applications, but none of them has a complete and comsistent
set. This fuels battles between nmanufacturers based on
architectural features which are hard to evaluate and
compare, and indeed, the takles which often accompany
comparisons of microprocessors are quite misleading because
of the simplifications which they Bust make. We illustrate
this point by considering the wcrdsize, number of registers,

addressing modes, and I/0 structure of microcomrputers.

Following in the footsteps cf the minicomputers of the
mriddle sixties, the microcomputer users have attempted to
group microcomputers based on wordsize. The wordsize of any
computer, however, is hard to define. T[oes the 8080 have a
16~bit wordsize because there is an instruction which adds
two 16-Lkit registers? Does the 1IBM 370 have a sordsize of 8

bits becanse the smallest addressakle data element is a

-7-



kyte? The width of the wmemory data path is probably a
tetter measure, but almost all machines =manipulate data
€lemehits which are both 1larger and smaller than the data
path, Most users would agree that the 360/370 series has a
32-bit word, but. some of the smaller implementations have
only an 8-bit internal data path. The kias toward calling
it a 32-bit computer comes from the large number and
regularity of the instructions which s=msanipulate 32-bit
quantities. Because the microrrocessors to date are very
irregular in their instructions for data manipulaticn, it is

even more difficult to characterize them by their wordsize.

It is even impossible to count the number of registers.
The SIGNETICS 2650 has seven 8-bit registers, btut only four
can be addressed at a time, The 8080 has seven 8-bit
registers, but cnly one is an 8-bit accumulator. 1The others
can be grouped in pairs and represent 16~tit registers, but
each of the pairs is distinguished in scme way by cperations

wvhich can be performed on it alcne. Again this lack of

regularity rakes architectural classification very
difficult,
Taken as a group, picroprccessors isplement

probably most of the addressing modes invented in the last
20 years of computer architecture. Taken individually, many
of them have particular omissicns or quirks that diminish
their power: only one index register (6800), certain

instructions without full nmemory addresses (8080), or

-8-



difficulty in manipulating data large enough to contain a

full memory address (many of thenm).

Reqularity does not only affect ccmparative evaluation;
it is also the key to programmakility. ‘ Both human
programmers and cblpileré are considerably hampered by an
architecture with a myriad of sgecial cases instead of a few
general rules. It has bLeen shown [5] that the fevest
mistakes are made when programming with a language which can

be described with a small set of rules.

In most existing computer systess and especially those
with wmicroprocessors, the CPU is a small part of the total
cost because of the complexity of the I/0 devices and their
interfaces. To open new markets where the use of a
microprocesscr will result ir scre than a marginal reduction
in system cost, there must ke I/C and peripteral interfaces
of similar integqgration and thus lov cost. A wide variety of
such intermediate peripheral chips are starting to becore
available, such as parallel 1I/0 interfaces, USARTs for
serial I/0, and DMA (Direct Memory Access) processors for
higher-speed devices. These <chips can Le quite coamplex
internally, but their communication with the CPU is through
a simple bus with few contrcl lines. The result is that
families of chips are produced which share a ccammon but
primitive communications protccol with tke CPU. As the
market evolves, one such protococl may eventually be adopted

as a de facto standard so that components cf different

-Q-



manufacturers could be used together. The existence of a
standard will also allow individual ccmponents to be
improved without requiring all sembers cf the family to be

redesigned.

MEASUREMENTS CF AN EXISTING MICRCPFOCESSOR

To better evaluate microprocessor architectures and
implementations, it is useful to make measurements of
current Pprocessors. The results of these measurements can
be used to identify deficiencies and indicate where

implementation efforts should be concentrated.

This section will descrite such measurements made for
the INTEL 8080, which represents the largest-share of the
8-bit microprocessor market today. The measurements are
those that display properties of the instruction set and its
implementation. Static opcode frequencies are useful to
examine how efficient the instruction encoding is with
respect to program size. CLynamic opcode frequencies,
combined with the execution times of the individual
instructions, help deteramine which instructions account for
most of the execution time. From this Lkasic data, other
useful information <can tLe derived, such as memnory

utilization per instruction and average instruction length.

An 8080 simulator running c¢cn a large ccomputer was

modified to rrovide information akout instruction execution.

-10=



The simulated 8080 was made to execute several different
programs in an attempt to obtain results that are not biased
by artifacts cf a specific program. Encugh information was
collected to allow the instruction timing formulas to be
evaluated. The methods used are a sisplification of those
that have been used to ccmpare two high-performance
computers in a previous study ([6]. The static opcode
distributions were obtained Ly directly ©frocessing the

source files.

The programs analyzed included two ltasic interpreters
(JBASIC and TINYEASIC), the software used in a scphisticated
text and graphics computer terminal (VGT) [{7], a realtime
music generation program (MUSIC), and a text editor
(EDITOR). The text editor was written in the high-level
language PL/M [8]; all others were in assesbly language.
Excerpts frcm the results of these measuresents appear in
tables 1 to 7. The opcode mnemcrics have been changed to a
form which should be more understandakle to readers not

familiar with the 8080.

Opcode_ Distribtution

It has been observed many times that very few opcodes
account for most of a program's execution. In the VGT (see
Table 1) only 7 dinstructions represents 53.7% of all
instructions executed, and 39 represent 99.2%. The most

common instruction (14.9%) is the conditional jump (JMP

-11=-



CC,xxx), fcllowed closely Lty the 8-bkit register to register
load (10D K,R). In EDITOR, the same two instruction are
important, but the rotate instruction (BOT) afppears in
second place because it 1is used in the inner lcop of the
multiply subroutine. For the VGT the rotate aprears only as
the 34th instruction, which indicates +that =scme generally
infrequent instructions are occasionally very impcrtant for
specific program. The jump, lcad, push (FUSH RR), and pop
(POP RR) instructions, however, appear to be universally

important for all prograas.

The opcodes which acccunt for 50% of ttke instructions
executed are not the same as those wkich acccunt for 50% of
the execution time. Instructions 1like <the wunccnditional
subroutine c¢all (CALL U,xxx), which are lengtﬁy btecause of
the stack references to nmemory, are more significant in
execution time than frequency (7.2% vs. 3.&% for VGT), but
simple instructions like LOL take 1less time than their
frequency would indicate (7.5% vs. 11.4%). The same effect
exists even to a much larger degree in comfputers like the
IBM 370 because for those machines [6], the ratic of the
longest to shortest instructicn execution time is ruch
larger than it is for microccmputers (300 for the 370/168

versus 4.5 for the 8080).

Dynamic opcode pair frequencies often <clearly reveal
the dominant 1loop of an executing program. In TIEASIC for

example (table 2), a string search constructed frow an index

-12=



register increment (INC HL), a character ccaparison (CMP
(HL)), and a conditional jump (JMP CC,xxXx) represents 9.3%
Vaf the program execution, and a slightly 1lcnger variation
ending with the same sequence represents an additicnal 4.9%.
This is valuable information for the ‘microprocessor
architect, who can thereby judge the importance of including
single instructions for perforring equivalent ofperations,
such as the compare increment and repeat (CPIR) of the Zilog

280.

The static opcode distribution (Takle 3) is often quite
different frcm the dynamic distributicn. Although loads and
jumps still predominate, lengthy tut infrequently executed
initialization code 1is represented ty the presence of the
load-immediate instructions (LCDI R,n for 8-bit data, LODI
BR,xxx for 16-bit data) in the top S50% grcup. The simple
byte movement instructions are statically ccamon, but the
dynamically important stack push and pofp instructions are
not. The static opcode frequencies are important in

choosing a space~efficient encoding for instructions.

The static opcode pair frequencies in tabkle 4 reflect
common code sequences. Some c¢f these sequences, like a
compare (CMPI n) or a test (IOR E) followed by a conditional
jump, are reasonable and wunsurprising. Many others are
indications of common sequences that, frcm an architectural
point of view, should be incorporated into a single

instruction. Rotates which follcw 1rctates show that



sultiple~bit rotation is indeed a ccmmon cperation; note
that a rotate 1is followed Lty ancther rotate twelve times
sore Trequently than would have been expected frcm a simple
count of its occurrences. Fairs of 8-bit register to
register loads are common because they are used tc simulate
the missing 16=bit register to register loads. The static
fFair distritution for +the ELITOR 1eflects the simple
code~generation schemes used Ly tke EL/M compiler.
Addressing 1is often done by lcading an address into the HL
register and referencing the variable in a subsequent
register-indirect instructicn since the available

full~address instructions are limited.

Memory References and Instructicn Speed

Statistics on instruction length, semcry references per
instruction and instruction speed are given in Table 5 for
all of the programs exasined. The 8080 has instructions
ranging from a single byte to three bytes. The first
kyte is always the opccde, which includes register
designators, and the followirg tytes are either immediate
data or memory addresses. The average instructicn length

varies from 1.4 to 1.8 bytes.

The number of data references per instructicn is useful
because many cf the microprocessors dc nct overlap memory
accesses with instruction executicn, =sc that operand

accesses must be directly added to the instruction execution

-1l=



time. Compared to the cost ¢f instuction fetch, however,
the operand accesses are much less important. The number of
operalid bytes read per instruction is typically 0.35, and
the number of bytes written is typically 0.2. 0Using a cost
of 4 cycles per byte of instruction fetched and 3 cycles per
byte of operand referenced, this implies that a typical
instruction of 1.6 bytes requires 6.4 cycles for instruction
fetch and execution, but only 1.6 cycles for the operand

references.

The table also gives the ipstructicn execution rate in
rillions of instructiors per second (MIES), which is often
used to compare computers. KRnowing that an IEM 37C/168 can
execute instructions at a rate of 2.5 MIES makes the value
of .25 MIPS for the 880 seesm quite gcod. But the MIPS rate
is a poor indicator of the time required to execute a
particular algorithm since it clearly depends cn the powver
of the individual instructions. A fprogram written for the
370 will almost always be much more than 10 times faster

than the equivalent program fcr the 8080.

Branch_and FExecution Distance Apalysis

The 8080 suffers from the absence cf jump instructions
which are relative to the prcogram ccunter; as indicated in
Table 7, about 80% of the successful tranches are made to
locations within 127 bytes of the Jjump dinstruction.

Considering the importance of jump instructicns, a sizeable

~-15=-



savings in program size and speed (tecause the Jump
instruction can be smaller) results frcer the introduction of

a relative jump.

Because cf the execution pipelines in larger computers,
the analysis of brinch instructicns has bLeen an important
source of information for their designers. No such
sophistication exists in current smicrocomputers, but as
tables 6 and 7 show, the fracticn of tranch instructions and
fraction of successful versus unsuccessful tLtranches are
strikingly similar to the same data for the 370. Even more
suprising is the fact that the average number of
instructions between sucessful tranches is just as low for
the 8080 as for the 370 (tyrically S to 10 instructions)

despite the difference in instructicn set sophiétication.

Measurement Summary

Despite large differences in scale and applications
tetween the 370 and the 8(08C, we have fcund striking
similarities. The measurements cf their instruction set
propertiass demcnstrate characteristics independent of the
size and type of the programs run. On reflection this seems
understandable inasmuch as bLkcth wmachines are register
oriented, use variable length instructions, and share basic
instructions types (register to register, full address, and
register indirect). This similarity illustrates how an

architect can benefit from the study cf existing computers

-16=



for the design of new microprocessors.

CONCLUSICN

Current technological constraints are sc¢ stringent that
the needs of the fabricator (IC manufacturer) have been at
least as important a consideraticn as the needs of the user,
In the future the user's needs will take precedence as the
component density increases enough to offset die size
limitations., Package limitaticns may still Lte a problen,
but circuit sophistication will @sake the architectural

effect less important.

Knowledge of computer architecture and the
technological ccnstraints enccuntered in the izplementation
are essential, Lkut in a ccmpetitive industry the human and
business factors cannot ke neglected. Much of the success
of an architecture group depends on such things as the
assessment cf user needs, corporate cocperation, and
sanagement understanding of ccmfuters and technical issues.
In that ccrporate context, the results of computer
architecture are judged primarily by market acceptance; a
successful architecture is one that sells. This is not to
say that an unsuccessful prcduct is architecturally
unsuccessful, Scme of the microprocessors currently
available would seem not to be afflicted with the

idiosyncracies and 1lack of regularity discussed in this



paper. Often, however, they suffer frcs cother disadvantages
that make them ccmmercially less successful, such as slow

speed, unusual packaging, cr late introduction.

Computer architecture is a ccmgarative field where much
of the knovledge comes from studying previous cceputers.
For the design of wmicrocomguters, this implies that a
computer architect can benefit frcm the study of large and
gini computers. The basic gfrocbleas c¢f implementing a
computer within the constaints of technolcgy may dictate
different solutions, but many of the same technigues are

applicable regardless of size.

ACKNOWLELGEMENIS

We wish to thank Federico Faggin and John EBanning for

their help in reviewing an early version of this paper.

- 18 -



FEFERENCES

(1]

2]

3]

fa]

(5]

{6]

(7]

[e]

F.P. Brocks, Jr., "Architectural Fhilcscphy" in
"Planning a Computer Systee - Project Stretch", Edited

by W. Buchholz, McGraw=-Hill, 19€2Z.

F. Faggin, "The Role of Technology in ~ Microccmputer
Design and Evolution®", Circuits and Systems, Vol 7, No

S, Feb 1975, pps u-13,

C. Bass, D. Brovwn, "A FEerspective on Microcomputer
Software", Proc. IEEE, Vecl. 64, No. 6, Jnne\1976,

pps. 9(5-909,

T. Blakeslee, "Digital Design with Standard MSI and

LSI", Wiley, New York, 197€%.

J.D. Gannon, J.J. Horning, "The 1Impact cf Language
Design <c¢f the Producticn cf Feliable Software®, Proc.
Intl., Conf. on Reliable Software, April 1975., pps.

10-22

B.L. Peutc, L.d. Shustek, "An Instructicn Timing
Model of CPU Performance"™, Proc. 4th Annual Computer

Architecture Symposium, March 1977 (tc appear).

F. Baskett, L.J. Shustek, "The Design of a Low=Cost
Video Graphics Terminal", Computer Graphics, Vol 10, No

2, July 1976, pps. 235-340

G.A, Kildall, "High-Llevel Language Simplifies
Microcomputer Programing", Electrcnics, June 27, 1974,
pps 103-109

- 19 -



Table 1 - DYNAMIC CECOLCE FREQUENCIES

SORTED BY OCCURENCE

Program: VGT

Opcode % Instr % Time
JMP CC, XXX 14,92 16.64
10D R,R 13.54. 7.55
EUSH RR 6.13 7.52
FOP RR 5.92 6.60
ANDI n 4,86 3.79
RET U 4,18 4.66
ID A,XXX 4,18 6.06

53.72 £2.82
Erogram: ELITICR

Opcode % Instr % Time
10D R,R 25.58 18.21
FOT 10.04 5.72
JMP CC,xxx 8.48 12.07
EOP RR 5.37 7.65
PUSH RR 5.37 8.41

S4,84 £2.05
Table 2 =

Programs: VGT

Opcode #1 Opcode #2
EUSH RR PUSH RR
ANDI n JMEF CC,xxX
JMF CC,xxXx LOD R,E
LOD BR,R ARLI n

POP RR PCP RR
Program: TEASIC

Opcode #1 Opcode #2
JMP CC,xxX IRC RR
CMPF (HL) JME CC,xxx
INC RR CHNP (HL)
CMEI n RET cC
CMFI n JMP CC,xxXx

SOFTEL EY EXECUTICN TIME

Cpccede

JMP CC,xxX
1ICD R,R
BEUSH ER
CALL U,xxx
ECP RR

LT A,xxXx

Ofcode

1CD B,E
JMF CC,xx
EFUSE RR
ECE EF
EC1I

% Instr % Time

14.92
13.54
6.13
3.80
5.92
4.18

48,48

Instr

25.58
8.48
5.37
5.37

10.04

54, 84

p3 DYNAMIC OFCODE FAIR FREQUENCIES

% Inst % Inst
Measured Expected
3.72 0.38
3.02 0.72
2.84 2.02
z2.84 0.66
2. 40 .35

% Irst % Inst
Measured FExpected
€.69 1.71
6.07 0.56
4.76 0.82
3.63 0.39
3,47 1.03

- 20 -

16.64
7.55
7.52
7.21
6.60
6.06

51.57

X Time

18.21
12.07
8.41
7.65
5.72

52.05

Ratio
Meas./Exp.

9.89
4.16
1. 41
4.31
6.85

Ratio
Meas./Exp.

3.91
6.30
5.83
9.36
3.35



Table 3 - STATIC OPCODE FRECUENCIES

Program: VGT

Cpcode % Instr

10D K,R 11.53
JMP CC,.xxX £.29
CALL U,xxx 6.07
10DI RR,xxx = S5.74
LODI R,n 5.56
ST A,xxX 5.09
1D A,xxx 3.91
JMP U,xxX 3.91

50.09

Frogra
Cpcode

LoD E,
10DI B
ICCI R
ST B, (
ICD F,
INC R

m: EDIT

(HL)
'n
F,xxx
BEL)

R

Table 4 - STATIC OPCODE EAIR FRECUENCIES

Programs: VGT

Cpcode #1 Opcode #2
10D R,R LOD R,R
CMEFI n JME CC,xxXx
FOT ROT

IOR B JMP CC
ICDI R,n ST A,xxx

Program: EDITOR

Opcode #1 Opcode #2
ST R, {HL) INC ER
INC RR ST R, (HL)
I10ODI RR,xxx LCD R, (HL)
INC R LCDI R,n
10D E, (HL) INC R

% Inst
Measured

2.59
1.74
1.69
1.22
1.08

% Inst
Measured

3.29
3.17
3.10
3.0¢
z.89

- 21 -

% Inst
Expected

1.33
0.18
0.14
0.10
0.28

% Inst
Expected

0.43
0.43
1. 24
0.74
0.72

OR
% Instr

12.92
11.65
9.63
7.66
7.07
6.39

55.33

Ratio
Meas./Exp.

1.95
3.71
12.26
11.89
3.83

Ratio
Meas./Exp.

7.73
7.41
2.49
4.09
4.00



Table 5 = INSTRUCTION STATISTICS

--===Instructicn Size~===~==- Avg. bytes

Erogram # Inst % 1-byte %X 2-Lyte % 3~byte per Inst
vVeT 85,798 52.50 11.24 36.26 1.838
1BASIC 177,486 6u4.90 13.37 21.73 1.568
MUSIC 168,768 70.30 19.63 10.07 1.398
JBASIC 226,826 76.61 4.03 19.36 1.428
EDITOR 187,330 - 73.51 - 10.57 15.92 1.424

Bytes Bytes

Read Written & Cyles MIPS at
Program per Inst per Inst per Inst 2 Mhz
VGT «350 .303 8.567 223
TBASIC . 343 . 204 7.851 . 255
MUSIC .178 « 165 6.771 « 295
JBASIC «226 .169 7.002 . 286
EDITOR «2CS . 160 7.C24 «285

Table 6 - EXECUTION DISTANCE EETWEEN SUCCESSFUL JUMES

Program Average Std. Dev. Average

(bytes) (instr)
VGT 9.5£26 6.771 S.184
TIBASIC 7.C98 6.629 4,26
MUSIC 10.547 11.770 7.546
JBASIC 12.685 10.287 8.886
EDITOR 15.879 13.888 11.150

Table 7 - TYPES OF JUMPS

===« Types Of JUEES ===- Branch Cistances

Jumps as RXUncond conditional ==« All Eranches --

Prog. % Inst % Succ % Unsucc 0 to 127 0 to =127
VGT 16,15 7.62 58.C08 34.30 65.36 27.69
TBASIC 17.64 19.43 33.55 47.02 25.13 64,83
MUSIC 4.67 26,172 38.92 34.36 37.58 56.59
JBASIC 8.94 13.63 41.81 44,5S 36.75 27.95
EDITOR 10.65 20.45 51.21 28.34 47.61 43.83

- 20 -



