
SLAC ~~~-1874
DECEMBER 1976

h

CURRENT ISSUES IN
'*

THE ARCHITECTURE OF FIICROPROCESSORS

t
Bernard L. Peuto

Zilog, Inc.

and

Leonard J. Shustek
Stanford Linear Accelerator Center

and
Computer Science Department

Stanford University

* Uork supported in part by the Energy Research and
Development Administration under contract E(O43)515.

+ Work done uhile a Visiting Scientist at the Stanford Linear
Accelerator Center.

To Appear: COMPUTER (IEEE) February, 1977

INTRODUCTION

Despite the fact that microcomputers have existed -
commercially for only five years, microcomputer architecture

is not an entirely new field. It is, rather, the

application of the general principles of computer

architecture to microcomputers. In nPlanning a Computer

System", Frederick P. Brooks Jr. [l] defines computer

architecture as being, like other architecture, "the art of

deteraining the needs of the user of a structure and then

designing to meet those needs as effectively as possible

within economic and technological constraints".

In many ways the design and use of microprocessors is

identical to that of larger machines. In both cases there
.

are very high initial engineering and dE?VelOFment Costs

which have little influence on the final price of the

product. In both cases the FrOdUCtS uhich are most

successful are those which are general purpose. Perhaps the

most important similarity involves the issue cf software:

any other small differences between large and small machine

architectures are outweighed by the similar high cost in

program development.

Rather than expand on the similarities, this paper will

concentrate on the peculiar constraints which are unique to

current ROS microprocessors. The differences which confront

the architect are not sufficient to require a different

approach to the design, but they certainly influence the

details of the compromises made. We will first describe the -
technological constraints and the special Flight of a new

industry with a recently acquired knowledge of computers.

Then, using examples fro5 recent microprocessors, we will

examine some of the architectural features which have

resulted. Finally, we will illustrate our belief in the

unity of computer architecture by showing that the results

of instruction set aeasurements for a typical microprocessor

are quite similar to those for ether established computers.

TECHIOLOGICAL CONSTRAINTS

_ The overriding technical constaint on microprocessor

design is the size of the silicon die. Using an N-channel

BOS process, a die equivalent tc a square 200 rils on a side

produced on a 3-inch wafer can be manufactured with

acceptable yield (fraction of operating devices per wafer),

but under these conditions a 10% increase in die size can

result in as much as a 50% decrease in the the yield. Most

of the progress in manufacturing has come from better

control of defects and increase in the wafer size, vhich

results in higher total yield. Advances in manufacturing

can therefore either be applied to decreasing manufacturing

cost for a given size die, or to increasing complexity by

increasing the die size. The architect, to be successful,

must develop ways to relate potential architectural features

to their space requirements on a silicon die.

The limits imposed by the die size can also be

circumvented by changes in the details of the process

(P-channel vs N-channel, depletion load devices, etc) which

affect the gate density as well as the logic speed. For

example the ZILOG 280, on an N-channel depletion load 185

mil square die, has more than three times as many components

as the older INTEL 4004, on a F-channel 136 til square die,

and the 280 has a gate delay which is three times less than

the 4004 [2].

Unique to the microprocessor field is the requirement

to produce the device in a dual-in-line package with a small

< - number of pins. This seemingly trivial issue has an

enormous effect on the entire structure of the xicrocomputer

system. In very large quantities the manufacturing cost of

the microprocessor is dominated by the cost of the package,

and users as well as package manufacturers have investments

in standard package sizes which make it difficult to freely

choose an appropriate package for the microprocessor. The

180pin package for the INTKL 8008, which obliged the

designer to use time-multiplexed busses, was primarily due

to the lack cf a larger standard package. As the INTEL 8080

uas being designed, the 400Fin package then available

allowed more freedom, In addition to pin count, the heat

dissipation of the device has an influence on the choice of

-3-

package material: the easily manufactured plastic packages

cannot dissipate more than 700 milliuatts, It is only with

the success of N-channel lead that -h depletion logic

microprocessors can use the Flastic packages, which can be

up to 5 timesless expensive than ceramic.

The HOS microcomputers have so far been noticeably

slower than their minicomputer counterparts. The current

process allows clock frequencies of 2.5 to 3 ?!hx for

standard parts, although Fart selection allows sufficient

yield for parts as fast as 4 Hhz. This COrreSFOndS to an

average instruction execution time of approximately 2 to 3

microseconds. The slow speed is not due to fundamental

limits of HOS technology, but to the limited amount of power

which can be dissipated in ccmaercially available packages.
. -

The design has to trade-off power dissipation for speed and

complexity (number of gates). MS technologies with

improved speed-power products are being developed today and

one can expect that BOS clock rates as high as 6 MHz will be

reached in a few years .

THE KNOWLEDGE GAP

The first microcomputers were designed by the memory

component designers, whose ability to do so was a result

of breakthroughs in acheiving greater memory density, Their

primary expertise was in circuit integration rather than

computer architecture, but the linitaticns at the time were

-4-

SO severe that only the simplest machines could have been

designed. The current state of the art is such that most of

the features of larger machines could be incorporated in

microprocessors within the next few years, and the industry

has recognized that it is necessary to use architects vith

previous experience in medium-tc-large computers. In both

hardware and software these designers must learn scme of the

aspects of the component industry, but probably far less

than the component designers would have had to learn about

computer architecture.

The architecture of a new computer is driven by the

market chosen for it, and by the requirements of the users

in that market. The dilemma for the microprocessor architect

. - is that the applications are net yet defined; they are often

created by the existence and price of the product. Elore

microprocessor have been produced since 1972 than all other

computers combined, but the growth rate is such that this

number (currently 1 to 2 million/year) is small compared

even to conservative estimates of future use. Host of those

future applications are unknown. It is even hard to

characterize the current use of microprocessors because of

the insufficient feedback from users to manufacturers. This

complicates the architect's task, since the processor must

be well matched to the intended software environment, about

which little is known for large systems and even less for

microprocessors. One of the most pressing needs in

ricrocomputer architecture is the measurement of the

characteristics of user software.

3s for large computers, software development often

represents the largest investment in the Froduction of a

computer systea. Unlike the users of large' systems, the

microcomputer programmer often has no prior experience in

programming or software system design. It is often the

digital engineers who must write the programs for the

application, and although their sophistication is growing,

they still must be considered novices. As a consequence,

the tools being used are close to the hardware that the

users are familiar with and thu s resemble the software tools

of the 1950’s [33. In this ccntext, where the users are

introduced to computer concepts via the hardware interface,
. -

assembly language programming requires the least additional

knowledge compared to that required for higher-level

languages. Fortunately there is a large body of experience

with larger machines that can be directly applied to

microprocessors once the users have recognized the

advantages. This has promoted a large influx of software

engineers from large machine environments and it has, for

example, provided a new boom in the compiler-writing

industry.

CURRENT ARCHITECTURES

The focus of a discussion of current architectures

should be on the top-of-the-line processors like the INTEL

8080, BOTOBCLB 6800, TX 9900, and ZILCG 280. The user will

find," as he did for TTL design, that it is better to use

only part of a complex device than to build what is required

from more prinitive coaponents [U]. -A ccmpari;son with older

processors, such as the INTEL 4004, would be unfair because

many of the technological ccnstraints have since been

relaxed, and because the designers now have a better

understanding of the market needs.

Nany microprocessors have soae of the desirable

features which seem appropriate for the intended

applications, but none of thee has a complete and consistent

set. This fuels battles between manufacturers based on

architectural features uhich are hard to evaluate and

coapare, and indeed, the tables uhich often accompany

comparisons of microprocessors are quite misleading because

of the simplifications which they must make. He illustrate

this point by considering the wordsize, number of registers,

addressing modes, and I/O structure of microcoaFuters.

Folloving in the footsteps cf the minicomputers of the

aiddle sixties, the microcomputer users have attempted to

group microcomputers based on wordsize. The wordsize of any

computer, houever, is hard to define. Coes the 8080 have a

160bit wordsize because there is an instruction which adds

two 160bit registers? Does the IBB 370 have a uordsixe of 8

bits because the smallest addressable data element is a

byte? The width of the memory data path is Frobably a

better measure, but almost all machines manipulate data

eleme%ts which are both larger and smaller than the data

path. Host users would agree that the 360/370 series has a

320bit word, but' some of the sralier implementations have

only an a-bit internal data path. The bias toward calling

it a 320bit computer comes from the large number and

regularity of the instructions which manipulate 320bit

quantities. Because the microprocessors to date are very

irregular in their instructions for data manipulation, it is

even more difficult to characterize them by their uordsize.

It is even impossible to count the number of registers.

The SIGNETICS 2650 has seven a-bit registers, but only four

- can be addressed at a time. The 8080 has seven a-bit

registers, but only one is an a-bit accumulator. The others

can be grouped in pairs and represent 160bit registers, but

each of the pairs is distinguished in scme way by operations

which can be performed on it alone. Again this lack of

regularity makes architectural classification very

difficult.

Taken as a grouPI microprccessors implement

probably most of the addressing modes invented in the last

20 years of computer architecture. Taken individually, many

of them have particular omissions or quirks that diminish

their power: only one index register (6800) v certain

instructions without full memory addresses (8080), or

-8-

difficulty in manipulating data large enough to contain a

full memory address (many of then).

Regularity does not only affect comparative evaluation;

it is also the key to programmability. Roth human

programmers and compilers are considerably hampered by an

architecture nith a myriad of special cases instead of a few

general rules. It has been shown [S] that the fewest

mistakes are made uhen programming with a language which can

be described with a small set of rules.

In most existing computer systems and especially those

uith microprocessors, the CPU is a small part of the total

cost because of the complexity of the I/O devices and their

interfaces. To open new markets where tha use of a

microprocessor will result in acre than a marginal reduction

in system cost, there must be I/C and peripheral interfaces

of similar integration and thus low cost. A uide variety of

such intermediate peripheral chips are starting to become

available, such as parallel I/O interfaces, USARTs for

serial I/O, and D!4A (Direct flenory Access) processors for

higher-speed devices. These chips can be quite complex

internally, but their communication with the CPU is through

a simple bus with few control lines. The result is that

families of chips are produced which share a ccmmon but

primitive communications protocol uith tbe CPU, As the

market evolves, one such protocol may eventually be adopted

as a de facto standard so that coxtponents of different

-9-

manufacturers could be used together. The existence of a

standard will also allow individual ccaponents to be

inpro"ved without requiring all members cf the family to be

redesigned.

HEASURERENTS OF AN EXISTING RICRCPROCESSOR

To better evaluate microprocessor architectures and

implementations, it is' useful to make measurements of

current processors. The results of these measurements can

be used to identify deficiencies and indicate where

implementation efforts should be concentrated.

This section will describe such measurerents made for

~ - the INTEL 8080, which represents the largest-share of the

a-bit microprocessor market today. The measurements are

those that display properties of the instruction set and its

implementation. Static opcode frequencies are useful to

examine how efficient the instruction encoding is vith

respect to program size. Cynamic opcode frequencies,

combined with the execution times of the individual

instructions, help determine which instructions account for

most of the execution time. Prom this basic data, other

useful information can be derived, such as memory

utilization per instruction and average instruction length.

An 8080 simulator running on a large computer was

modified to provide information about instruction execution.

The simulated 8080 uas made to execute several different

programs in an attempt to obtain results that are not biased

by ar'Fifacts cf a specific prograr. Encugh information was

collected to alloif the instruction timing formulas to be

evaluated. The methods used are a simplification of those

that have been used to ccmpare tuo high-performance

computers in a previous study Cd]. The static opcode

distributions were obtained ty directly processing the

source files.

The programs analyzed included two tasic interpreters

(JBASIC and TINYEASIC), the software used in a sophisticated

text and graphics computer terminal (VGT) [7], a realtime

music generation program (MUSIC), and a text editor

. - (EDITOR). The text editor was written in the high-level

language PL/R [S]; all others mere in assembly language.

Excerpts from the results of these measurements appear in

tables 1 to 7. The opcode mneaacics have been changed to a

form which should be more understandable to readers not

familiar with the 8080.

&ode Distribution

It has been observed many times that very few opcodes

account for most of a program's execution. In the VGT (see

Table 1) only 7 instructions represents 53.71 of all

instructions executed, and 39 represent 99.2%. The most

common instruction (14.9%) is the conditional jump (JMP

-ll-

CC,xxx), fcllowed closely ty the 8-bit register to register

load (LOD R,R). In EDITOR, the same two instruction are

imporTant, but the rotate instruction WOT) appears in

second place because it is used in the inner loop of the

multiply subroutine.. For the VGT the rotate a@Fears only as

the 34th instruction, which indicates that scme generally

infrequent instructions are occasionally very important for

specific program. The jump, load, Fush (FUSH RR), and pop

(POP RR) instructions, however, appear to be universally

important for all programs.

The opcodes which account for 501X of the instructions

executed are not the same as those which acccunt for 50% of

the execution time. Instructions like the unccnditional

subroutine call (CALL U,xxx), which are lengthy because of

the stack references‘to memory, are more significant in

execution tire than frequency (7.2% vs. 3.8% for VGT), but

simple instructions like LOD take less time than their

frequency would indicate (7.5% vs. 11.4%). The same effect

exists even to a much larger degree in computers like the

IBH 370 because for those machines [a], the ratio of the

longest to shortest instructicn execution time is much

larger than it is for microcomputers (300 for the 370/168

versus 4.5 for the 8080).

Dynamic opcode pair frequencies often clearly reveal

the dominant loop of an executing program, In TEASIC for

example (table 2), a string search constructed from an index

-120

register increment (INC FiL), a character ccaparison (CtlP

WI) I and a conditional jump (JMP CC,xxx) represents 9.3%

of tb% program execution, and a slightly lcnger variation

ending with the same sequence represents an additional 4.9%.

This is valuable information for the 'microprocessor

architect, who can thereby judge tbe importance of including

single instructions for performing equivalent operations,

such as the compare increment and repeat (CPIR) of the Zilog

280.

The static opcode distribution (Takle 3) is often quite

different frcm the dynamic distribution. Although loads and

jumps still predominate, lengthy tut infrequently executed

initialization code is represented by the presence of the

load-immediate instructions (LGDI R,n for 8-bit' data, LODI

RR,xxx for 160bit data) in the top 50X grcup, The simple

byte movement instructions are statically ccamon, but the

dynamically important stack push and pop instructions are

not. The static opcode frequencies are important in

choosing a space-efficient encoding for instructions.

The static opcode pair frequencies in table 4 reflect

common code sequences. Some cf tbese sequences, like a

compare (CIlPI n) or a test (IOR R) followed by a conditional

jump, are reasonable and unsurprising. f¶any others are

indications of common sequences that, from an architectural

point of view, should be incorporated into a single

instruction. Rotates which follcw rotates show that

-13-

multiple-bit rotation is indeed a ccmmon operation; note

that a rotate is followed ky another rotate twelve times

iorerrequently than would have been expected frcm a simple

count of its occurrences. Fairs of 8-bit register to

register loads are common because they are us'ed to simulate

the missing 16-bit register to register loads. The static

yair distribution for the ECITOR reflects the simple

code-generation schemes used by the FL/U compiler.

Addressing is often done by leading an address into the HL

register and referencing the variable in a subsequent

register-indirect instruction since the available

full-address instructions are limited.

IjeeReferences and InstructJueed ---- -a

Statistics on instruction length, memory references per

instruction and instruction sFeed are given in Table 5 for

all of the prograns examined. Tbe 8880 has instructions

ranging from a single byte to three bytes. The first

byte is always the opccde, which includes register

designators, and the followirg bytes are either immediate

data or memory addresses. Ihe average instruction length

varies from 1.4 to 1.8 bytes.

The number of data references Fer instructicn is useful

because many of the microprocessors dc not overlap memory

accesses with instruction execution, so that operand

accesses must be directly added to the instruction execution

-149

time. Compared to the cost cf instuction fetch, however,

the operand accesses are much less important. The number of

opera%d bytes read per instruction is typically 0.35, and

the number of bytes uritten is typically 0.2. Using a cost

of 4 cycles per byte of instruction fetched ar;d 3 cycles per

byte of operand referenced, this implies that a typical

instruction of 1.6 bytes requires 6.4 cycles for instruction

fetch and execution, but only 1.6 cycles for the operand

references.

The table also gives the instructicn execution rate in

millions of instructions per second (BIB), which is often

used to compare computers. Knowing that an IEA 37C/168 can

execute instructions at a rate of 2.5 ?lIFS makes the value

I - of .25 MIPS for the 8080 seem quite good. But the HIPS rate

is a poor indicator of the time required to execute a

particular algorithm since it clearly depends cn the power

of the individual instructions. A program uritten for the

370 will almost always be much more than 10 times faster

than the equivalent program fcr the 8080.

Branch 2nd Execution Distance Analysis --w----u

The 8080 suffers from the absence cf jump instructions

which are relative to the program ccunter; as indicated in

Table 7, about 80% of the successful tranches are made to

locations within 127 bytes of the jusp instruction.

Considering the importance of jury instructions, a sizeable

-15-

savings in program size and speed (because the jump

instruction can be smaller) results from the introduction of

a rel"ative jump.

Because cf the execution FiFelines in larger computers,

the analysis of branch instructicns has been an important

source of information for their designers. No such

sophistication exists in current sicrocomFuters, but as

tables 6 and 7 show, the fraction of tranch instructions and

fraction of successful versus unsuccessful branches are

strikingly similar to the same data for the 370. Even more

suprising is the fact that the average number of

instructions between sucessful trancbes is just as low for

the 8080 as for the 370 (typically 5 to 10 instructions)

I - despite the difference in instruction set Sophistication,

Beasuresent Summary

Despite large differences in scale and applications

between the 370 and the 8080, WE have found striking

similarities. The measurements cf their instruction set

properties demonstrate characteristics independent of the

size and type of the programs run. On reflection this seems

understandable inasmuch as bcth rachines are register

oriented, use variable length instructions, and share basic

instructions types (register to register, full address, and

register indirect). This similarity illustrates how an

architect can benefit from the study cf existir,g computers

-169

for the design of nev aicroprocessors.

Current tochnologicalconstrainfs are SC stringent that

the needs of the fabricator (IC manufacturer) have been at

least as important a consideraticn as the needs of the user.

In the future the user's needs vi11 take precedence as the

component density increases enough to offset die size

limitations. Package liaitaticns may still te a problem,

but circuit sophistication will make the architectural

effect less important.

Knowledge of computer architecture and the

~ - technological ccnstraints enccuntered in the irpleeentation

are essential, hut in a ccmpetitive industry the human and

business factors cannot he neglected, rluch of the success

of an architecture group depends on such things as the

assessment of user needs, corporate cooperation, and

management understanding of ccmFuters and technical issues.

In that ccrporate context, the results of computer

architecture are judged primarily by market acceptance; a

successful architecture is one that sells. This is not to

say that an unsuccessful prcduct is architecturally

unsuccessful. Scme of the microprocessors currently

available would seem not to be afflicted with the

idiosyncracies and lack of regularity discussed in this

-17-

paper. Often, however, they suffer from other disadvantages

that make them ccmrercially less successful, such as slou

- - s-peed z UUUSUal packaging, cr late introduction.

Computer architecture is a comFaratire field where much

of the knowledge comes from studyin-g previous ccmputers.

Por the design of 8icrocomFuters, this irElies that a

computer architect can benefit from the study of large and

mini computers. The basic FrOblemS of imFlementi.ng a

computer within the constaints of technology may dictate

different solutions, but many of the same technigues are

applicable regardless of size.

ACKNOYLECGEIMNTS

We wish to thank Pederico Faggin and John Eanning for

their help in reviewing an early version of this paper.

- 18 -

EEFBRENCES

Cl] F.P. Erooks. Jr,, "Architectural Philcsophyfl in

"Planning a Computer System - Praject Stretch", Edited -
by U. Euchholz, McGraw-Hill, 1962.

[2] F. Faggin, "The Role of Technology in fiicroccsputer

Design and Evolution", Circuits and Systems, Vol 7, lo

5, Feb 1975, pps 4-13.

[33 C. Bass, D. Brown, nA Eerspective on Bicrocomputer

Software", Proc. XEEE, Vcl. 64, No. 6, June ‘1976,

PPS* 9c5-969,

(41 T* Blakeslee, "Digital Design with Standard i!SI and

LSI", Uiley, New York, 1975.

I - (5) J.D. Gannon, J.J. Horning, @'The Impact 'cf Language

Design cf the Production cf Reliable Software", Proc.

Intl. Conf. OA Reliable Software, April 1975.. PPS-

10-22

[6] B.L. Peuto, L.J. Shustek, *An Instructicn Timing

Hodel of CPU Performance", Proc. 4th Annual Computer

Architecture Symposium, Harch 1977 (to appear).

c71 F* Baskett, L.J. Shustek, #'The Design of a- Low-Cost

Video Graphics Terminal", Computer Graphics, Vol 10, No

2, July 1976, pps. 235-340

[a] G.A. Rildall, "High-Level Language Simplifies

Bicrocomputer Programing", Electrcnics, JUAe 27, 1974,

PPS 103-109

- 19 -

Table 1 - DYNAMIC CECOCE FREQUENCIES

SORTED BY OCCURENCE

Program: VGT 4
Opcode % Xnstr W Time

JXP CC,XXX 14.92 16.64
LOD R,R 13.54. 7.55
EUSH RR 6.13 7.52
POP RR 5.92 6.60
AND1 A 4.86 3.79
RET U 4.18 4.66
LD A,XXX 4.18 6.06

------ -----I
53.72 52.82

Erogram: ECXTCR

Opcode % Instr I Time

LOD 3,R 25.58 18.21
KOT 10.04 5.72
JBE cc,xxx 8.48 12.07
EOP RR 5.37 7.65
PUSH RR 5.37 8.41

------ ------
54.84 52.05

SORTED EY EXECUTION TIHE

OFCOde % Instr % Time

JfiP CCcxxx 14.92 16.64
LCD RIB 13;54 7.55
PUSH RR 6.13 7.52
CALL 0,x:)(x 3.80 7.21
POP RR 5.92 6.60
LC A,xxx 4.18 6.06

-----o o-o--
48.48 51.57

Opcode % fnstr X Time

LOD R,R 25.58 18.21
JBE CC,xx 8.48 12.07
EUSH RR 5.37 8.41
ECE RR 5.37 7.65
KC!I 10.04 5.72

----*- ------
54.i4 52.05

Table 2 - DYNAHIC OPCODE PAIR FKECUENCIES

Program: VGT

X Inst f Inst Ratio
Opcode Xl Opcode t2 Heasured Expected Fleas./Exp.

EUSH RR PUSH RR 3.72 0.38 9.89
AND1 A J?lE CC,xxx 3.02 0.72 4.16
JHP CC,xxx LOD R,R 2.84 2.02 1.41
LOD E,E ANEI n 4.84 0.66 4.31
POP RR POP RR 2.40 0.35 6.85

Program: TEASIC

x lnst % IASt Ratio
Opcode tl Opcode t2 Heasured Expected Heas./Exp*

Jf!P CC,xxx INC RR 6.69 1.71 3.91
Cf!lP (HL) JHE CC,xxx 6.07 0.96 6.30
INC RR CtlP (HL) 4.76 0.82 5.83
CHEI n RET CC 3.63 0.39 9.36
CHPI n JMP CC,rxx 3.47 1.03 3.35

- 20 -

Table 3 - STATIC OPCODE FRBCUENCIES

Program: VGT Erograr: EDITOR

Opcode % Instr

LOD R",R 11.53
JHP CC,xxx 6.29
CALL U,xxx 6.07
LODI RR,xxx 5.54
LODI R,A 5.56
ST A,XXX 5.09
LD A,xxx 3.91
JMP U,xxx 3.91

-O---O
50.09

Gpcode % Instr

LOD R,(HL) 12.92
LODI 3,n 11.65
LOCI RR,XXX 9.63
ST R,(RL) 7.66
LCD.R,R 7.07
INC R 6.39

55.33

Table 4 - STATIC OPCODE EAIB FRECUENCIES

Program: VGT

% IASt % IASt Ratio
Cpcode #I Opcode t2 neasured Expected Heas./Exp,

LOD R,R LOD R,R 2.59 1.33 1.95
. - I CUE1 n JHE CC,xxx 1.74 0.18 9.71

FOT ROT 1.69 0.14 12.26
IOR E JfiP CC 1.22 0.10 11.89
IODI R,n ST A,xxx 1.08 0.28 3.83

Program: EDITOR

% IASt % Inst Ratio
Opcode I1 Opcode t2 Heasured Expected EIeas./Exp.

ST R,(HL) INC RR r. ' 29 0.43 7.73
INC RR ST R,(HL) 3.17 0.43 7.41
LODI RR,xxx LCD R,(HL) 3,lO 1.24 2.49
INC R LCD1 R,n 3.05 0.74 4.09
LOD R, (AL) INC R 2.89 0.72 4.00

- 21 -

Table 5 - INSTRUCTION STATISTICS

-----Instruction Size------ Avg. bytes
Erogram t IASt % l-byte % 2-byte % 3-byte per Inst

VGT - 85,798 52.50 11.24 36.26 1.838
TBASIC 177,486 64.90 13.37 21.73 1.568
RUSIC 168,768 70.30 19.63 10.07 1.398
JBASIC 226,826 76.61 4.03 19.36 1.428
EDITOR 197,330 73.51 10.57 15.92 1.424

Bytes Bytes
Read Written t Cyles !¶IPS at

Program per Inst per Inst per Inst 2 nhz

VGT .350 .303 8.567 ,223
TBASIC .343 ,204 7.851 255
nusxc .178 ,165 6.771 :295
JBASIC .226 .169 7.CG2 .286
EDITOR ,209 ,160 7.c24 .285

Table 6 - EXECUTION DISTANCE EETWEEN SUCCESSFUL JU!¶ES

Program Average Std. Dev. Average
(bytes1 (instr)

VGT 9.526 6.771 5.184
TBASIC 7.C98 6.629 4 .S26
wus1c 10.547 11.770 7.546
JBASIC 12.685 10.287 8.886
EDITOR 15.879 13.888 11.150

Table 7 - TYPES OF JUHPS

---- Types of Jumps ---- Branch Distances
Jumps as XUncond conditional --- All Eranches --

Prog. X Inst X Succ % Unsucc 0 to 127 0 to -127

VGT 16.15 7.62 58.08 34.30 65.36 27.69
TBASIC 17.64 19.43 33.55 47.02 25.13 64.83
MUSIC 4.67 26.72 38.92 34.36 37.58 56.59
JBASIC a.94 13.63 41.81 44.55 36.75 27.95
EDITOR 10.65 20.45 51 .21 28.34 47.61 43.83

- 22 -

