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INTRODUCTION 

Despite the fact that microcomputers have existed - 
commercially for only five years, microcomputer architecture 

is not an entirely new field. It is, rather, the 

application of the general principles of computer 

architecture to microcomputers. In nPlanning a Computer 

System", Frederick P. Brooks Jr. [l] defines computer 

architecture as being, like other architecture, "the art of 

deteraining the needs of the user of a structure and then 

designing to meet those needs as effectively as possible 

within economic and technological constraints". 

In many ways the design and use of microprocessors is 

identical to that of larger machines. In both cases there 
. 

are very high initial engineering and dE?VelOFment Costs 

which have little influence on the final price of the 

product. In both cases the FrOdUCtS uhich are most 

successful are those which are general purpose. Perhaps the 

most important similarity involves the issue cf software: 

any other small differences between large and small machine 

architectures are outweighed by the similar high cost in 

program development. 

Rather than expand on the similarities, this paper will 

concentrate on the peculiar constraints which are unique to 

current ROS microprocessors. The differences which confront 



the architect are not sufficient to require a different 

approach to the design, but they certainly influence the 

details of the compromises made. We will first describe the - 
technological constraints and the special Flight of a new 

industry with a recently acquired knowledge of computers. 

Then, using examples fro5 recent microprocessors, we will 

examine some of the architectural features which have 

resulted. Finally, we will illustrate our belief in the 

unity of computer architecture by showing that the results 

of instruction set aeasurements for a typical microprocessor 

are quite similar to those for ether established computers. 

TECHIOLOGICAL CONSTRAINTS 

_ The overriding technical constaint on microprocessor 

design is the size of the silicon die. Using an N-channel 

BOS process, a die equivalent tc a square 200 rils on a side 

produced on a 3-inch wafer can be manufactured with 

acceptable yield (fraction of operating devices per wafer), 

but under these conditions a 10% increase in die size can 

result in as much as a 50% decrease in the the yield. Most 

of the progress in manufacturing has come from better 

control of defects and increase in the wafer size, vhich 

results in higher total yield. Advances in manufacturing 

can therefore either be applied to decreasing manufacturing 

cost for a given size die, or to increasing complexity by 

increasing the die size. The architect, to be successful, 



must develop ways to relate potential architectural features 

to their space requirements on a silicon die. 

The limits imposed by the die size can also be 

circumvented by changes in the details of the process 

(P-channel vs N-channel, depletion load devices, etc) which 

affect the gate density as well as the logic speed. For 

example the ZILOG 280, on an N-channel depletion load 185 

mil square die, has more than three times as many components 

as the older INTEL 4004, on a F-channel 136 til square die, 

and the 280 has a gate delay which is three times less than 

the 4004 [2]. 

Unique to the microprocessor field is the requirement 

to produce the device in a dual-in-line package with a small 

< - number of pins. This seemingly trivial issue has an 

enormous effect on the entire structure of the xicrocomputer 

system. In very large quantities the manufacturing cost of 

the microprocessor is dominated by the cost of the package, 

and users as well as package manufacturers have investments 

in standard package sizes which make it difficult to freely 

choose an appropriate package for the microprocessor. The 

180pin package for the INTKL 8008, which obliged the 

designer to use time-multiplexed busses, was primarily due 

to the lack cf a larger standard package. As the INTEL 8080 

uas being designed, the 400Fin package then available 

allowed more freedom, In addition to pin count, the heat 

dissipation of the device has an influence on the choice of 
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package material: the easily manufactured plastic packages 

cannot dissipate more than 700 milliuatts, It is only with 

the success of N-channel lead that -h depletion logic 

microprocessors can use the Flastic packages, which can be 

up to 5 timesless expensive than ceramic. 

The HOS microcomputers have so far been noticeably 

slower than their minicomputer counterparts. The current 

process allows clock frequencies of 2.5 to 3 ?!hx for 

standard parts, although Fart selection allows sufficient 

yield for parts as fast as 4 Hhz. This COrreSFOndS to an 

average instruction execution time of approximately 2 to 3 

microseconds. The slow speed is not due to fundamental 

limits of HOS technology, but to the limited amount of power 

which can be dissipated in ccmaercially available packages. 
. - 

The design has to trade-off power dissipation for speed and 

complexity (number of gates). MS technologies with 

improved speed-power products are being developed today and 

one can expect that BOS clock rates as high as 6 MHz will be 

reached in a few years . 

THE KNOWLEDGE GAP 

The first microcomputers were designed by the memory 

component designers, whose ability to do so was a result 

of breakthroughs in acheiving greater memory density, Their 

primary expertise was in circuit integration rather than 

computer architecture, but the linitaticns at the time were 
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SO severe that only the simplest machines could have been 

designed. The current state of the art is such that most of 

the features of larger machines could be incorporated in 

microprocessors within the next few years, and the industry 

has recognized that it is necessary to use architects vith 

previous experience in medium-tc-large computers. In both 

hardware and software these designers must learn scme of the 

aspects of the component industry, but probably far less 

than the component designers would have had to learn about 

computer architecture. 

The architecture of a new computer is driven by the 

market chosen for it, and by the requirements of the users 

in that market. The dilemma for the microprocessor architect 

. - is that the applications are net yet defined; they are often 

created by the existence and price of the product. Elore 

microprocessor have been produced since 1972 than all other 

computers combined, but the growth rate is such that this 

number (currently 1 to 2 million/year) is small compared 

even to conservative estimates of future use. Host of those 

future applications are unknown. It is even hard to 

characterize the current use of microprocessors because of 

the insufficient feedback from users to manufacturers. This 

complicates the architect's task, since the processor must 

be well matched to the intended software environment, about 

which little is known for large systems and even less for 

microprocessors. One of the most pressing needs in 



ricrocomputer architecture is the measurement of the 

characteristics of user software. 

3s for large computers, software development often 

represents the largest investment in the Froduction of a 

computer systea. Unlike the users of large' systems, the 

microcomputer programmer often has no prior experience in 

programming or software system design. It is often the 

digital engineers who must write the programs for the 

application, and although their sophistication is growing, 

they still must be considered novices. As a consequence, 

the tools being used are close to the hardware that the 

users are familiar with and thu s resemble the software tools 

of the 1950’s [ 33. In this ccntext, where the users are 

introduced to computer concepts via the hardware interface, 
. - 

assembly language programming requires the least additional 

knowledge compared to that required for higher-level 

languages. Fortunately there is a large body of experience 

with larger machines that can be directly applied to 

microprocessors once the users have recognized the 

advantages. This has promoted a large influx of software 

engineers from large machine environments and it has, for 

example, provided a new boom in the compiler-writing 

industry. 

CURRENT ARCHITECTURES 

The focus of a discussion of current architectures 



should be on the top-of-the-line processors like the INTEL 

8080, BOTOBCLB 6800, TX 9900, and ZILCG 280. The user will 

find," as he did for TTL design, that it is better to use 

only part of a complex device than to build what is required 

from more prinitive coaponents [U]. -A ccmpari;son with older 

processors, such as the INTEL 4004, would be unfair because 

many of the technological ccnstraints have since been 

relaxed, and because the designers now have a better 

understanding of the market needs. 

Nany microprocessors have soae of the desirable 

features which seem appropriate for the intended 

applications, but none of thee has a complete and consistent 

set. This fuels battles between manufacturers based on 

architectural features uhich are hard to evaluate and 

coapare, and indeed, the tables uhich often accompany 

comparisons of microprocessors are quite misleading because 

of the simplifications which they must make. He illustrate 

this point by considering the wordsize, number of registers, 

addressing modes, and I/O structure of microcoaFuters. 

Folloving in the footsteps cf the minicomputers of the 

aiddle sixties, the microcomputer users have attempted to 

group microcomputers based on wordsize. The wordsize of any 

computer, houever, is hard to define. Coes the 8080 have a 

160bit wordsize because there is an instruction which adds 

two 160bit registers? Does the IBB 370 have a uordsixe of 8 

bits because the smallest addressable data element is a 



byte? The width of the memory data path is Frobably a 

better measure, but almost all machines manipulate data 

eleme%ts which are both larger and smaller than the data 

path. Host users would agree that the 360/370 series has a 

320bit word, but' some of the sralier implementations have 

only an a-bit internal data path. The bias toward calling 

it a 320bit computer comes from the large number and 

regularity of the instructions which manipulate 320bit 

quantities. Because the microprocessors to date are very 

irregular in their instructions for data manipulation, it is 

even more difficult to characterize them by their uordsize. 

It is even impossible to count the number of registers. 

The SIGNETICS 2650 has seven a-bit registers, but only four 

- can be addressed at a time. The 8080 has seven a-bit 

registers, but only one is an a-bit accumulator. The others 

can be grouped in pairs and represent 160bit registers, but 

each of the pairs is distinguished in scme way by operations 

which can be performed on it alone. Again this lack of 

regularity makes architectural classification very 

difficult. 

Taken as a grouPI microprccessors implement 

probably most of the addressing modes invented in the last 

20 years of computer architecture. Taken individually, many 

of them have particular omissions or quirks that diminish 

their power: only one index register (6800) v certain 

instructions without full memory addresses (8080), or 
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difficulty in manipulating data large enough to contain a 

full memory address (many of then). 

Regularity does not only affect comparative evaluation; 

it is also the key to programmability. Roth human 

programmers and compilers are considerably hampered by an 

architecture nith a myriad of special cases instead of a few 

general rules. It has been shown [S] that the fewest 

mistakes are made uhen programming with a language which can 

be described with a small set of rules. 

In most existing computer systems and especially those 

uith microprocessors, the CPU is a small part of the total 

cost because of the complexity of the I/O devices and their 

interfaces. To open new markets where tha use of a 

microprocessor will result in acre than a marginal reduction 

in system cost, there must be I/C and peripheral interfaces 

of similar integration and thus low cost. A uide variety of 

such intermediate peripheral chips are starting to become 

available, such as parallel I/O interfaces, USARTs for 

serial I/O, and D!4A (Direct flenory Access) processors for 

higher-speed devices. These chips can be quite complex 

internally, but their communication with the CPU is through 

a simple bus with few control lines. The result is that 

families of chips are produced which share a ccmmon but 

primitive communications protocol uith tbe CPU, As the 

market evolves, one such protocol may eventually be adopted 

as a de facto standard so that coxtponents of different 
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manufacturers could be used together. The existence of a 

standard will also allow individual ccaponents to be 

inpro"ved without requiring all members cf the family to be 

redesigned. 

HEASURERENTS OF AN EXISTING RICRCPROCESSOR 

To better evaluate microprocessor architectures and 

implementations, it is' useful to make measurements of 

current processors. The results of these measurements can 

be used to identify deficiencies and indicate where 

implementation efforts should be concentrated. 

This section will describe such measurerents made for 

~ - the INTEL 8080, which represents the largest-share of the 

a-bit microprocessor market today. The measurements are 

those that display properties of the instruction set and its 

implementation. Static opcode frequencies are useful to 

examine how efficient the instruction encoding is vith 

respect to program size. Cynamic opcode frequencies, 

combined with the execution times of the individual 

instructions, help determine which instructions account for 

most of the execution time. Prom this basic data, other 

useful information can be derived, such as memory 

utilization per instruction and average instruction length. 

An 8080 simulator running on a large computer was 

modified to provide information about instruction execution. 



The simulated 8080 uas made to execute several different 

programs in an attempt to obtain results that are not biased 

by ar'Fifacts cf a specific prograr. Encugh information was 

collected to alloif the instruction timing formulas to be 

evaluated. The methods used are a simplification of those 

that have been used to ccmpare tuo high-performance 

computers in a previous study Cd]. The static opcode 

distributions were obtained ty directly processing the 

source files. 

The programs analyzed included two tasic interpreters 

(JBASIC and TINYEASIC), the software used in a sophisticated 

text and graphics computer terminal (VGT) [7], a realtime 

music generation program (MUSIC), and a text editor 

. - (EDITOR). The text editor was written in the high-level 

language PL/R [S]; all others mere in assembly language. 

Excerpts from the results of these measurements appear in 

tables 1 to 7. The opcode mneaacics have been changed to a 

form which should be more understandable to readers not 

familiar with the 8080. 

&ode Distribution 

It has been observed many times that very few opcodes 

account for most of a program's execution. In the VGT (see 

Table 1) only 7 instructions represents 53.71 of all 

instructions executed, and 39 represent 99.2%. The most 

common instruction (14.9%) is the conditional jump (JMP 
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CC,xxx), fcllowed closely ty the 8-bit register to register 

load (LOD R,R). In EDITOR, the same two instruction are 

imporTant, but the rotate instruction WOT) appears in 

second place because it is used in the inner loop of the 

multiply subroutine.. For the VGT the rotate a@Fears only as 

the 34th instruction, which indicates that scme generally 

infrequent instructions are occasionally very important for 

specific program. The jump, load, Fush (FUSH RR), and pop 

(POP RR) instructions, however, appear to be universally 

important for all programs. 

The opcodes which account for 501X of the instructions 

executed are not the same as those which acccunt for 50% of 

the execution time. Instructions like the unccnditional 

subroutine call (CALL U,xxx), which are lengthy because of 

the stack references‘to memory, are more significant in 

execution tire than frequency (7.2% vs. 3.8% for VGT), but 

simple instructions like LOD take less time than their 

frequency would indicate (7.5% vs. 11.4%). The same effect 

exists even to a much larger degree in computers like the 

IBH 370 because for those machines [a], the ratio of the 

longest to shortest instructicn execution time is much 

larger than it is for microcomputers (300 for the 370/168 

versus 4.5 for the 8080). 

Dynamic opcode pair frequencies often clearly reveal 

the dominant loop of an executing program, In TEASIC for 

example (table 2), a string search constructed from an index 
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register increment (INC FiL), a character ccaparison (CtlP 

WI) I and a conditional jump (JMP CC,xxx) represents 9.3% 

of tb% program execution, and a slightly lcnger variation 

ending with the same sequence represents an additional 4.9%. 

This is valuable information for the 'microprocessor 

architect, who can thereby judge tbe importance of including 

single instructions for performing equivalent operations, 

such as the compare increment and repeat (CPIR) of the Zilog 

280. 

The static opcode distribution (Takle 3) is often quite 

different frcm the dynamic distribution. Although loads and 

jumps still predominate, lengthy tut infrequently executed 

initialization code is represented by the presence of the 

load-immediate instructions (LGDI R,n for 8-bit' data, LODI 

RR,xxx for 160bit data) in the top 50X grcup, The simple 

byte movement instructions are statically ccamon, but the 

dynamically important stack push and pop instructions are 

not. The static opcode frequencies are important in 

choosing a space-efficient encoding for instructions. 

The static opcode pair frequencies in table 4 reflect 

common code sequences. Some cf tbese sequences, like a 

compare (CIlPI n) or a test (IOR R) followed by a conditional 

jump, are reasonable and unsurprising. f¶any others are 

indications of common sequences that, from an architectural 

point of view, should be incorporated into a single 

instruction. Rotates which follcw rotates show that 
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multiple-bit rotation is indeed a ccmmon operation; note 

that a rotate is followed ky another rotate twelve times 

iorerrequently than would have been expected frcm a simple 

count of its occurrences. Fairs of 8-bit register to 

register loads are common because they are us'ed to simulate 

the missing 16-bit register to register loads. The static 

yair distribution for the ECITOR reflects the simple 

code-generation schemes used by the FL/U compiler. 

Addressing is often done by leading an address into the HL 

register and referencing the variable in a subsequent 

register-indirect instruction since the available 

full-address instructions are limited. 

IjeeReferences and InstructJueed ---- -a 

Statistics on instruction length, memory references per 

instruction and instruction sFeed are given in Table 5 for 

all of the prograns examined. Tbe 8880 has instructions 

ranging from a single byte to three bytes. The first 

byte is always the opccde, which includes register 

designators, and the followirg bytes are either immediate 

data or memory addresses. Ihe average instruction length 

varies from 1.4 to 1.8 bytes. 

The number of data references Fer instructicn is useful 

because many of the microprocessors dc not overlap memory 

accesses with instruction execution, so that operand 

accesses must be directly added to the instruction execution 
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time. Compared to the cost cf instuction fetch, however, 

the operand accesses are much less important. The number of 

opera%d bytes read per instruction is typically 0.35, and 

the number of bytes uritten is typically 0.2. Using a cost 

of 4 cycles per byte of instruction fetched ar;d 3 cycles per 

byte of operand referenced, this implies that a typical 

instruction of 1.6 bytes requires 6.4 cycles for instruction 

fetch and execution, but only 1.6 cycles for the operand 

references. 

The table also gives the instructicn execution rate in 

millions of instructions per second (BIB), which is often 

used to compare computers. Knowing that an IEA 37C/168 can 

execute instructions at a rate of 2.5 ?lIFS makes the value 

I - of .25 MIPS for the 8080 seem quite good. But the HIPS rate 

is a poor indicator of the time required to execute a 

particular algorithm since it clearly depends cn the power 

of the individual instructions. A program uritten for the 

370 will almost always be much more than 10 times faster 

than the equivalent program fcr the 8080. 

Branch 2nd Execution Distance Analysis --w----u 

The 8080 suffers from the absence cf jump instructions 

which are relative to the program ccunter; as indicated in 

Table 7, about 80% of the successful tranches are made to 

locations within 127 bytes of the jusp instruction. 

Considering the importance of jury instructions, a sizeable 
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savings in program size and speed (because the jump 

instruction can be smaller) results from the introduction of 

a rel"ative jump. 

Because cf the execution FiFelines in larger computers, 

the analysis of branch instructicns has been an important 

source of information for their designers. No such 

sophistication exists in current sicrocomFuters, but as 

tables 6 and 7 show, the fraction of tranch instructions and 

fraction of successful versus unsuccessful branches are 

strikingly similar to the same data for the 370. Even more 

suprising is the fact that the average number of 

instructions between sucessful trancbes is just as low for 

the 8080 as for the 370 (typically 5 to 10 instructions) 

I - despite the difference in instruction set Sophistication, 

Beasuresent Summary 

Despite large differences in scale and applications 

between the 370 and the 8080, WE have found striking 

similarities. The measurements cf their instruction set 

properties demonstrate characteristics independent of the 

size and type of the programs run. On reflection this seems 

understandable inasmuch as bcth rachines are register 

oriented, use variable length instructions, and share basic 

instructions types (register to register, full address, and 

register indirect). This similarity illustrates how an 

architect can benefit from the study cf existir,g computers 
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for the design of nev aicroprocessors. 

Current tochnologicalconstrainfs are SC stringent that 

the needs of the fabricator (IC manufacturer) have been at 

least as important a consideraticn as the needs of the user. 

In the future the user's needs vi11 take precedence as the 

component density increases enough to offset die size 

limitations. Package liaitaticns may still te a problem, 

but circuit sophistication will make the architectural 

effect less important. 

Knowledge of computer architecture and the 

~ - technological ccnstraints enccuntered in the irpleeentation 

are essential, hut in a ccmpetitive industry the human and 

business factors cannot he neglected, rluch of the success 

of an architecture group depends on such things as the 

assessment of user needs, corporate cooperation, and 

management understanding of ccmFuters and technical issues. 

In that ccrporate context, the results of computer 

architecture are judged primarily by market acceptance; a 

successful architecture is one that sells. This is not to 

say that an unsuccessful prcduct is architecturally 

unsuccessful. Scme of the microprocessors currently 

available would seem not to be afflicted with the 

idiosyncracies and lack of regularity discussed in this 
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paper. Often, however, they suffer from other disadvantages 

that make them ccmrercially less successful, such as slou 

- - s-peed z UUUSUal packaging, cr late introduction. 

Computer architecture is a comFaratire field where much 

of the knowledge comes from studyin-g previous ccmputers. 

Por the design of 8icrocomFuters, this irElies that a 

computer architect can benefit from the study of large and 

mini computers. The basic FrOblemS of imFlementi.ng a 

computer within the constaints of technology may dictate 

different solutions, but many of the same technigues are 

applicable regardless of size. 
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Table 1 - DYNAMIC CECOCE FREQUENCIES 

SORTED BY OCCURENCE 

Program: VGT 4 
Opcode % Xnstr W Time 

JXP CC,XXX 14.92 16.64 
LOD R,R 13.54. 7.55 
EUSH RR 6.13 7.52 
POP RR 5.92 6.60 
AND1 A 4.86 3.79 
RET U 4.18 4.66 
LD A,XXX 4.18 6.06 

------ -----I 
53.72 52.82 

Erogram: ECXTCR 

Opcode % Instr I Time 

LOD 3,R 25.58 18.21 
KOT 10.04 5.72 
JBE cc,xxx 8.48 12.07 
EOP RR 5.37 7.65 
PUSH RR 5.37 8.41 

------ ------ 
54.84 52.05 

SORTED EY EXECUTION TIHE 

OFCOde % Instr % Time 

JfiP CCcxxx 14.92 16.64 
LCD RIB 13;54 7.55 
PUSH RR 6.13 7.52 
CALL 0,x:)(x 3.80 7.21 
POP RR 5.92 6.60 
LC A,xxx 4.18 6.06 

-----o o-o-- 
48.48 51.57 

Opcode % fnstr X Time 

LOD R,R 25.58 18.21 
JBE CC,xx 8.48 12.07 
EUSH RR 5.37 8.41 
ECE RR 5.37 7.65 
KC!I 10.04 5.72 

----*- ------ 
54.i4 52.05 

Table 2 - DYNAHIC OPCODE PAIR FKECUENCIES 

Program: VGT 

X Inst f Inst Ratio 
Opcode Xl Opcode t2 Heasured Expected Fleas./Exp. 

EUSH RR PUSH RR 3.72 0.38 9.89 
AND1 A J?lE CC,xxx 3.02 0.72 4.16 
JHP CC,xxx LOD R,R 2.84 2.02 1.41 
LOD E,E ANEI n 4.84 0.66 4.31 
POP RR POP RR 2.40 0.35 6.85 

Program: TEASIC 

x lnst % IASt Ratio 
Opcode tl Opcode t2 Heasured Expected Heas./Exp* 

Jf!P CC,xxx INC RR 6.69 1.71 3.91 
Cf!lP (HL) JHE CC,xxx 6.07 0.96 6.30 
INC RR CtlP (HL) 4.76 0.82 5.83 
CHEI n RET CC 3.63 0.39 9.36 
CHPI n JMP CC,rxx 3.47 1.03 3.35 
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Table 3 - STATIC OPCODE FRBCUENCIES 

Program: VGT Erograr: EDITOR 

Opcode % Instr 

LOD R",R 11.53 
JHP CC,xxx 6.29 
CALL U,xxx 6.07 
LODI RR,xxx 5.54 
LODI R,A 5.56 
ST A,XXX 5.09 
LD A,xxx 3.91 
JMP U,xxx 3.91 

-O---O 
50.09 

Gpcode % Instr 

LOD R,(HL) 12.92 
LODI 3,n 11.65 
LOCI RR,XXX 9.63 
ST R,(RL) 7.66 
LCD.R,R 7.07 
INC R 6.39 

------ 
55.33 

Table 4 - STATIC OPCODE EAIB FRECUENCIES 

Program: VGT 

% IASt % IASt Ratio 
Cpcode #I Opcode t2 neasured Expected Heas./Exp, 

LOD R,R LOD R,R 2.59 1.33 1.95 
. - I CUE1 n JHE CC,xxx 1.74 0.18 9.71 

FOT ROT 1.69 0.14 12.26 
IOR E JfiP CC 1.22 0.10 11.89 
IODI R,n ST A,xxx 1.08 0.28 3.83 

Program: EDITOR 

% IASt % Inst Ratio 
Opcode I1 Opcode t2 Heasured Expected EIeas./Exp. 

ST R,(HL) INC RR r. ' 29 0.43 7.73 
INC RR ST R,(HL) 3.17 0.43 7.41 
LODI RR,xxx LCD R,(HL) 3,lO 1.24 2.49 
INC R LCD1 R,n 3.05 0.74 4.09 
LOD R, (AL) INC R 2.89 0.72 4.00 
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Table 5 - INSTRUCTION STATISTICS 

-----Instruction Size------ Avg. bytes 
Erogram t IASt % l-byte % 2-byte % 3-byte per Inst 

VGT - 85,798 52.50 11.24 36.26 1.838 
TBASIC 177,486 64.90 13.37 21.73 1.568 
RUSIC 168,768 70.30 19.63 10.07 1.398 
JBASIC 226,826 76.61 4.03 19.36 1.428 
EDITOR 197,330 73.51 10.57 15.92 1.424 

Bytes Bytes 
Read Written t Cyles !¶IPS at 

Program per Inst per Inst per Inst 2 nhz 

VGT .350 .303 8.567 ,223 
TBASIC .343 ,204 7.851 255 
nusxc .178 ,165 6.771 :295 
JBASIC .226 .169 7.CG2 .286 
EDITOR ,209 ,160 7.c24 .285 

Table 6 - EXECUTION DISTANCE EETWEEN SUCCESSFUL JU!¶ES 

Program Average Std. Dev. Average 
(bytes1 (instr) 

VGT 9.526 6.771 5.184 
TBASIC 7.C98 6.629 4 .S26 
wus1c 10.547 11.770 7.546 
JBASIC 12.685 10.287 8.886 
EDITOR 15.879 13.888 11.150 

Table 7 - TYPES OF JUHPS 

---- Types of Jumps ---- Branch Distances 
Jumps as XUncond conditional --- All Eranches -- 

Prog. X Inst X Succ % Unsucc 0 to 127 0 to -127 

VGT 16.15 7.62 58.08 34.30 65.36 27.69 
TBASIC 17.64 19.43 33.55 47.02 25.13 64.83 
MUSIC 4.67 26.72 38.92 34.36 37.58 56.59 
JBASIC a.94 13.63 41.81 44.55 36.75 27.95 
EDITOR 10.65 20.45 51 .21 28.34 47.61 43.83 
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