
SLAC-PUB-1872 
January 19 77 

A DISPERSION THEORETIC STUDY 
OF PION FORM FACTOR* 

Namik K. Pak 

Stanford Linear Accelerator Center 
Stanford,University, Stanford, California 94305 

ABSTRACT 

We show that the pion electromagnetic form factor satisfies a 

nonsubtracted dispersion relation, if one of the pions is taken to be 

massless. We point out that by quantizing the theory on the light- 

cone the mass extrapolation ambiguity due to one of the pions being 

massless can be overcome, We then use this result to establish an 

upper bound on the pion’s charge radius. 
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1. Introduction 

The asymptotic dependence of the elastic form factors of hadrons plays a 

critical role in theories of large-angle scattering [ 11. Physically the elastic 

form factor is the. probability amplitude for a hadron to remain a single hadron 

after the transfer of momentum. Thus, in several models [ 21, the falloff of 

the exclusive scattering amplitude at large momentum transfer is controlled by 

the same physics that controls the falloff of the form factors. 

The pion form factor, to which we will restrict ourselves in this work, is 

not that well known experimentally. But both timelike data (from the e+e- - 

7r’n- experiment L3], Fig. 1) and spacelike data (from the ep - e7rp experiment 

[ 41, Fig. 2) are consistent with a falloff, F,(t) CC t-l, or slightly faster. A 

previous important work [ 51, using a rigorous data analysis technique, shows 

that, if the asymptotic falloff is FT.(t) = tn, on the average, for it I > 2 GeV2, 

then n < 1.2 f 0.3, Thus the pion form factor cannot fall asymptotically faster 

than t-3’2a 

There have been several attempts to understand the asymptotic behavior of 

the form factor [ 6,7]. Of course to have an understanding of this an exact 

knowledge of the short distance structure of the hadrons is needed. Assuming 

the constituent form factor to be pointlike, Brodsky et al. [ 61 predict F(t) - 

tl-n t----LOO 
-for the asymptotic dependence of the hadron form factor containing n ele- 

mentary constituents. Physically this rule allows a factor t -1 for each addi- 

tional quark line, which changes direction from along p to along ptq, where t = 

q20 This model predicts Fn(q2) N q-20 Polyakov and Migdal [ 71 also get FK(q2) 

-2 
“cl within a conformally invariant field theoretic scheme. 

This work is yet another attempt to understand the asymptotic behavior of 

the pion form factor in a model-independent way. The price we pay is that our 
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prediction is not as detailed as that of Ref, [ 61, for example, but certainly 

consi&ent. 

2. Dispersion Relation for F,&t) 

The pion electromagnetic form factor nonrelativistically can be thought of 

as the Fourier transform of the radial charge distribution, Therefore the be- 

havior of the form factor at q2 -- co corresponds to the charge structure around 

z= 0 (deep inside) 0 In the dispersion theoretic analysis it is the asymptotic 

behavior which determines the number of subtractions needed. By definition 

the electromagnetic form factor is proportional to the matrix element of the 

electromagnetic current between the vacuum and a r+‘ir- state, restricted by 

Lorentz invariance: 

(2.1) F,(q2, k;, k!) = <7;t(k+), 7r-(k-) I J;m(0) I O> 

~.2 2 2 
,= F-(q ) k+* k-‘Pp + F+(q’, kt, kf)qP 

where q = k+ + k- and p = k+ - k- 0 Due to electric charge conservation, F, 

and F are not independent but related as 

Thus the pion electromagnetic form factor which satisfies Lorentz invariance 

and gauge invariance properties can be written in the general form 

(2.2) F,&q2,k;,k:) = (pP - qq,J F(q2,kf,kf) 
q 

If the form factor under consideration is physical, i,e., if both pions are on 

the mass-shell, then qop = kf - kf = 0, and we get back the familiar result, 

Now let us assume that F(t, kf,kT), thought of as a function of q2 = t, sat- 

isfies a once-subtracted dispersion relation. Choosing the subtraction point 
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at t = 0, and using the charge renormalization relation, F(0) = 1, we can write 

-c, co 

(2.3) F(t,k:,k2) = 1 + ; 
/ 

dt’ 
ImF(t’,kf,ky) 

4P2 
t’(t’ - t + ie) 

In writing (2.3) we used the well-known [S] fact that 

(a) FT(t) is an analytic function of t, in the complex t-plane, .,with a cut on the 

positive real axis from 4p2 to QO Q.A is the pion mass), and 

(b) F,(t) is real on the negative real axis, due to the hermiticity of the elec- 

tromagnetic current. 

Next we shall show that, by assuming one of the pions, say r-, massless, 

ccl 

I= $ 
i- 

dt’ 
Im F(t’, k:, k2) 

4t2 
t’ , 

~~~- -- ~_~- -.~ -- 

thus F(t,p2, 0) satisfies a nonsubtracted dispersion relation. Later we shall give 

arguments in support of the fact that extrapolation from the unphysical point 

k2 = 0 to physical point k2 = p2 = 0.02 GeV2 d oes not change the behavior of the 

form factor significantly. 

Since we have Lorentz invariance, we can pick any frame which is most 

convenient for computational purposes. We shall choose the frame in which ?r’ 

is at rest: k, = (p, O,O,O). Since r- is massless, then k- = (E, 0,0, -E). The 

relevant physical quantities are 

(2.4) 

= (k+ + kJ2 = /.A~ + 2p.E 

qop = k; -kf = p2 

Multiplying both sides of Eq. (2.1) by k-, we get 
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(2.5) c, EF0+3 = FE W,Cr2, 0) 

or 

(2.6) FW2, 0) L Fo+3(k~2,0) . 
t>;p2 lJ 

Since F(t) has an imaginary part only in the timelike region t 3 +2, the con- 

dition t>zp2 is satisfied, to a very good approximation, along the physical cut, 

and we can write 

(20 7) F(t,p2, 0) = ; <T+(k+), r-(k-) I J;y3 10 > . 

Now let us reduce massless 7r- in (2 0 1), by using the standard LSZ-reduc- 

tion technique 0 

ik ‘X 
(2.8) Fp = i I d4x e - (o+p2)<*+(k+) IT@-(x)J;~(o)) lo> . 

Using PCAC-theorem, we can relate the pion interpolating field to the diver- 

gence of an axial vector current: 

(2.9) FC1 = 
iE(xo+x3) 

<7:lT(a,AV(x)J;m(0)) IO> 0 

The imaginary part of Fp effectively comes from the 8(x0) term: 

(2.10) Im Fp(t,p2, 0) = iiKp2(d4x e 
iE (x0+x3) 

or+ I [8,AV (x) J;m(0)] IO > a 

From (2.6) and (2,lO) it is clear that light-cone (LC) coordinates [9] are most 

suitable for carrying out this discussion further: 

A’ = l ;TZ (A0 * A3) 

(2.11) Ai = (A1,A2) s XL 

A2 z 2A+A- - Tii” 0 
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It is not only computational advantage that suggests the use of LC coordinates. 

It is cl??ar from the beautiful analysis of Ref. 10 that LC quantization is espe- 

cially useful for the soft-pion problems, which involve mass extrapolations. 

Their most important result relevant to our analysis is that “When quantized on 

light-like hyperplanes, fields with different masses become unitarily equivalent 

(whereas they are inequivalent on space-like planes)“. This statement means 

that our results would not depend on r- being massless. So there is not any ex- 

trapolation ambiguity involved in our results. In LC coordinates, (2,lO) be- 

comes 

(2,12) ImFP(t,p2, 0) = i”1”2/d2xk dr dz e ia ET<lr+ I [aVA” (x), J;m(0)] IO > 

Here 

(2.11’) T =-$-(x0+x3), andz=J2x0 -x3) 4 
. - 

and 

(2.12’) 

It is only the first term in (2.12’) which contributes after partial integration; the 

second term vanishes after partial integration, and the third term vanishes as a 

result of the two-dimensional Gauss theorem. 

After these partial integrations we get 

(2.13) Im F(t,p2, 0) = ~ImFo+3(t,~2, 0) 

=-@ I d2x1 d7 dz e i&ET 
42 

ar+l [A+(~,z,q),J+(o)l IO> , 

where we have dropped the internal indices, which are (l-i2) on A, and (em) on 

J. dt dE Multiplying both sides of (2,13) by 7 = E and integrating (and recalling that 

J em is purely vector), we get 
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(2.14) /$ ImF(t,p2,0) = K~T-~x~ d7 dz =+r’I [A+(O,z,xI),V+(0)] IO> D 

‘The c^ommutator in the right-hand side is computed in several models [ 111. It 

is the simplest commutator which is independent of the details of the models, 

and, up to Schwinger terms (putting in the right internal indices), is ‘given by 

Substituting (2.15) in (2.14), we get 

(2.16) /F Im F(t,p2,0) = K~~IIII+IA~I-~~)(O) IO> = ?TKfR2 ., 

Pl.lttiIlg in K = I/fR2, we finally obtain the desired result: 

(2.17) / 
FIm F(t,p2,p2) = 7r . 

In the last step we made the extrapolation back to k2 = p2 without further ado, 

in the light of the arguments given above [lo] ., 

So we have proven that the pion form factor does not need any subtraction. 

The most immediate mathematical implication of this result is 

(2018) IIm F(t) I -+ 0 0 
ItI -Qo 

That we do not get a more detailed prediction than this is understandable in 

view of the fact that no explicit model is used in getting our main result (2.17), 

other than some very general field theoretic theorems. Of course our result 

(2.17) or (2.18) is consistent with that of Brodsky et al. [ 61, which predicts 

F,(t) N l/t. Especially their very transparent physical arguments make it 

clear that only integer powers in F(t) N tWn make sense. Therefore we can 

claim without further reservation that our result (2.17) means F.,,(t) - t-l, 

which is supported beautifully by the data. (See Figs. 1 and 2. ) 
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3. An Upper Bound for Pion’s Charge Radius 

The absolute bounds on strong interaction amplitudes are usually derived 

from the nonlinear character of the unitarity relations [ 12]., Weak and electro- 

magnetic amplitudes are also subjec.t to unitarity-constraints. To first order in 

perturbation theory, the unitarity relation is linear, and hence provides no ab- 

solute bounds on the amplitudes. Because unitarity provides no absolute bounds 

to the first order weak or electromagnetic processes, one can find relative 

bounds in terms of other processes to first order in coupling [ 131 0 Obviously 

this method does not have comparable rigor to the absolute bounds already ex- 

isting in the literature [ 141. It may only be thought of as an amusing elementary 

application of the results obtained in the previous section to get a rough order of 

magnitude estimate. 

We shall find an upper bound for pion charge radius in terms of the e+e- an- 

nihilation total cross section, a phenomenon which became the focus of high en- 

ergy physics recently, after the very exciting discoveries of the $ family and 

charmed mesons 1151 0 

Let us recall that the photon spectral function is defined as 1161 

(3.1) Jpv = c (2a)3a4(pn-q) <OIJ~m(0)In><nlJ~m(O)lO~- -gpV 
n 

( f YJtrla). 

J(q2) is by definition a positive definite function, and therefore J(q2) > J(2r)(q2) 

for example. Calculating the contribution of the 2r-state, we get 

(q2) = 
;1 2 

-q21Fn(q2)12 q -2 
2 3/2 

(3.2) Jw) 6a2 I 1 fl (q2-4 P2) 
4q 

J(q2) is always greater than this; therefore 

(3.3) ]FK(t) I2 ( 67r 
3’2 J+ . 
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Now let us employ the result of the previous section and write a dispersion 

relation for F,(t) without any subtraction. From (3.3) it is clear that 

(3.4) IIm F(t) I ( I F(t) I (& 

We wish to compute our bounds in the spacelike region; therefore we shall 

understand that t < 0 in the following. From (2,17) and (3.4) 

(3.5) lF(t)I ( + 

There exists a famous relation 1151 between the total ese- annihilation cross 

section (in the one photon exchange approximation) and the spectral function: 

(3.6) a,(t) = 27re’ y o 

Substituting this in the right-hand side of (3.5), we get 

(3.7) I F(t) I 
t<o 

Before proceeding further, let us make a mathematical consistency check of this 

inequality. That F,(t) satisfies a nonsubtracted dispersion relation means 

F,(t) ---f 0. Also, since the potentially divergent region of the integration is 
ItI -uJ 

t’ r 4p2, we can take the limit It I -+ 03 under the integral sign and get 

(308) $ 
,tlka 

0, 

or, since the coefficient of the -L term should be finite, we should have ItI 

(3.9) 
3/4 

JCqqLl. 
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For scale invariant theories [ 171, 

(3010) - taT(t) -+ const, 
t--Y 

Thus the integral in (3.9) diverges logarithmically, and this inequality is triv- 

ially satisfied, A slight decrease like tom(t) ,, t-e (where E> 0 is an arbi- 

trarily small number), which cannot be ruled out by the present 

would render this integral finite, and, to satisfy this inequality, 

justment of the parameters is needed. 

data 1151, 

a careful ad- 

In the nonrelativistic interpretation, the pion’s average charge radius is 

given by <rf> = - qp) 
I t=o 

, in the normalization F,JO) = 1. Taking the deriv- 

ative of (3 D 7), we get 

(3ell) 

. - which can be fitted by the present e + - data to get a rough estimate for <ri> 0 e 

We are not going to follow this route, since there are already very rigorous ab- 

solute bounds on <rX> [ 121 0 Or we can look at (3,ll) as a sum rule for tcJT(t) 

by putting the best experimental value for <rf> in the left-hand side. 

4, Discussion 

The weakest point in the above very general field theoretic arguments prob- 

ably was taking one of the pions massless. Though this made it possible to use 

PCAC theorem without hesitation, it also brought up the usual headache of mass 

extrapolation from k2 F 0 to k2 = 0.02 GeV2, Fortunately, due to a very im- 

portant theorem that “different mass theories are unitarily equivalent, when 

quantized on light-like slabs, If this is not a problem at all, and our result that 

the dispersion relation for pion form factor does not need a subtraction is free 

from extrapolation ambiguities. 
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Figure Captions 

1. The pion form factor in the timelike region. (From Ref. 3) 

2. The pion form factor multiplied by t in the spacelike region. (From Ref. 4) 
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