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ABSTRACT 

We consider the possibility that muon number conservation is not 

a fundamental symmetry of nature. In simple SU(2) @ U(1) gauge 

theories with several scalar boson doublets, muon number will still 

automatically be conserved by the intermediate vector boson inter- 

actions, but not by effects of virtual scalar bosons. The branching 

ratio for p -L ey is estimated to be of order (a/~)~. Other p-e transi- 

tion processes are also discussed. 
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The stringent experimental upper limits on the rates of processes such as 

P- 3e, p+N- e+N, r - v,+P, v~+N-+ e+N, andKL- pe appear to estab- 

lish the separate conservation of muonic and electronic lepton numbers. ’ In 

this note we wish to explore the possibility that there is no such fundamental 

conservation law (or that it is spontaneously broken); that the above processes 

are automatically suppressed by the constraints imposed by a wide class of 

gauge theories; and that in fact these processes do occur, but at a level that is - 

naturally superweak. 
2 

In studying this problem, we work for definiteness in the familiar SU(2) @ U(1) 

. - 

unified gauge theory. As usual, the leptons are taken to form two left-handed 

doublets with charges (0 , -1)) and two right-handed singlets with charges -1. 3 

The only scalar fields that can couple to these leptons are then doublets with 

charges (+l, 0). For the moment, we impose no constraint on the numbers or 

coupling constants of these scalar doublets. 

The vacuum expectation values of the neutral scalar bosons break 

SU(2) @U(l), and generate a 2x2 mass matrix connecting the two negative leptons, 

which in general is neither real nor diagonal. However, by subjecting the left- 

and right-handed leptons to independent unitary transformations, we can always 

reduce the charged-lepton mass matrix to a real diagonal form, without 

changing the form of the kinematic part -dd 
P 

7~ of the Lagrangian or the associ- 

ated gauge interactions of leptons with photons and intermediate vector bosons. 4 

The two charged leptons in this mass basis are identified as the observed muon 

and electron, and the neutrinos associated with e and ~1 in the two doublets are 

identified as V, and v , respectively. 
P 

With these identifications, muon number 

is automatically conserved by all mass terms and gauge interaction terms in 

the Lagrangian. 
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The old analogy between muon number and strangeness is instructuve here. 

Strangeness is automatically conserved in the color gauge theory of strong inter- 

actions, for reasons much the same as applied above to muon number. Strange- 

ness is not conserved in weak interactions, because the unitary operators 

needed to diagonalize the mass matrix of the charge -l/3 and charge +2/3 quarks 

are not the same. If v e and vP are massless, then no unitary operator is needed 

to diagonalize their mass matrix, and the gauge interaction terms automatically 

conserve muon number. 

But muon number is not automatically conserved by the interaction of 

leptons with the scalar 

form 

bosons. In general, we can write these couplings in the 

where +i are linear combinations, not necessarily independent, of an unknown 

number of scalar fields of definite mass. (A subscript L or R denotes multi- 

plication with (l-y5)/2 or (l+y5)/2, respectively. 5, Our choice of the lepton 

basis dictates that these linear combinations must be chosen so that 

0 0 
g2e2> = g3e3> = 0 

0 
g4<G4> = me (2) 

If the $i are all multiples of one elementary doublet, then (2) requires that 

g2=g3=0 so that muon number is conserved. But with more than one independent 

doublet, there is no reason why this should be the case. We may want to enforce 

strict masslessness for the electron, trusting to effects of some as yet unobserved 
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weak interaction to produce the tiny electron mass. This requirement can be 

met guite naturally, by imposing some global symmetry which keeps either 

be, e-JL or ei from having interactions with scalar bosons, so that either 

g2=g4=0 or g3=g4=0. However, there is no reason why g2 and g3 should both 

vanish. If g2 or g3 does not vanish, and if there is a $y - +i or $y- $i mixing, 

(either because muon number is not conserved at all or because muon conserva- 

tion is spontaneously broken) then the effects of virtual scalar bosons will 

induce physical transitions between muons and electrons. 

Let us consider how the process ,u--+ e-+y would arise in such a theory. 

The invariant matrix element is in general of the form4 (a +b y5) Ld, PI, where 

q and E are the momentum and polarization four-vectors of the photon. The 

p + ey rate is (la 12+ lb12)mi/2a. (If g2=0 or g3=0, as suggested above, then 

a= +b or a= -b, and the angular distribution for p* - e* y is respectively 

l&?$P*ce/Ee or l~g~*F~e/E~. ) In order to estimate a and b, we make the 

following assumptions: (I) The @T and @p in Eq. (1) are linear combinations of 

a number of canonically normalized charged and neutral scalar fields of definite 

mass, with mixing coefficients that are all of order unity. Then <+y> is of 

-l/2 order GF , or 300 GeV. (II) The couplings g2 and/or g3 are of the same 

order as gI, i.e., m G l/2 
P F 

. (III) All gauge couplings are of order e, and all 

intermediate vector boson masses are of order m 
W 

z eG,1/2. (IV) The quartic 

scalar self-couplings are taken (somewhat arbitrarily) to be at most of order 

e2 , corresponding to scalar boson masses which are at most of order m W’ 

(V) Every loop in a Feynman diagram generates a factor of (2~4~~ times the 

area 27r2 of a four-dimensional sphere, or l/87r2. 

It might at first be thought that the leading contributions to the /J - e + y 

decay would be the one-loop diagrams of the sort shown in Fig. 1. However, 
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the scalar-boson couplings to leptons are so weak that these diagrams make a 

- relatively small contribution 

a=b M (87r2)-1 e (mPGi’2)2 mPmg2 (3) 

We find a larger contribution from two-loop graphs in which the scalar boson 

couples only once to leptons, the other coupling being to a heavy virtual particle- 

either a scalar boson or an intermediate vector boson. Typical graphs of this 

type are shown in Fig. 2. They all make a contribution of order 

a M b M (8~r~)-~ e3(mPGk’2) (e2Gi1’2) rn$ (4) 

except that if mH <<rnw then an extra factor of m2 / H n$ appears in some graphs, 

like Fig. 2c. The ratio of (3) and (4) is 

so two-loop terms dominate if mH> 3 GeV. The rate of ,U - e+ y estimated from 

(4) is cy3m5 G2 /267r6. 
P F 

This is to be compared with the rate mEGi/192r3 of 

p - e+v+ V; the branching ratio is roughly 3(01/7~)~ 2 4. 10e8, close to the present 

upper limit6 of 2.2 x 10w8. Of course our calculation has been exceedingly 

rough; in particular the mixing among the Higgs bosons is unlikely to be pre- 

cisely maximal, so the expected rate for p - ey should be less than estimated 

here. 

There are so many unknown parameters in the scalar masse-s and self- 

couplings that it does not seem worthwhile to attempt a detailed calculation of 

all the two-loop graphs. For illustration we consider only Fig. 2a, which 

dominates if mH <<mW andforatleastsome range of quartic self couplings. The 

W-loop can be approximated here by the amplitude7 for scalar boson decay into 
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82 C tzi<Xdfs ln mii 
i 

g1 c 5 . <x;>. i 11 

2 

(6) 

where Go is written as a sum of real canonically-normalized scalar fields xy 
j 

of definite mass m Hi, with coefficients t ji. (Note that -cc$~>~= x<2i<xp>o 

vanishes, so the numerator depends only on logarithms of mass ratios. ) The 

coefficient of (a/~)~ is of order unity, confirming our previous rough estimate 

of the branching ratio. 

What about other muon-nonconserving processes in this picture? The 

process p - en/ can be produced by graphs like Fig. 2a, in which the virtual 

photon is replaced by a second real one. However, this gives a rate which is 

less than the p - ey rate by a factor of order (7-r/a)(mP/mH)4,. so even if m H is 

as small as 4 GeV, we expect p -+eyy to be dominated by ordinary inner brems- 

trahlung. The process p - 3e can go by a simple Higgs-exchange tree diagram. 

This gives a rate which is less than the ,u --t ey rate by a factor of order 

(da) 3 mtmz/m4 H, so even with mH as small as 4 GeV, we expect p - 3e to be 

dominated by ordinary Dalitz pairs from p - ey. 

If the scalar fields 9; or +i couple to quarks, there could also be semi- 

leptonic muon-nonconserving processes, such as KL - pe or K - we. However, 

we must take care not to allow neutral scalar-boson exchange to induce too large 

aKL s -K mass difference or KL -. 2~ rate. It seems necessary to suppose8 

that only one scalar doublet couples to both $$4 dcjL and gR(u, dc)L; then 

neutral scalar couplings conserve strangeness, and KL - pe and K - npe are 

forbidden in lowest order. There will still be strangeness-conserving inter- 

actions-in particular, pN -) eN will have an effective Fermi coupling of order 
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m*m G /mi, 
NPF 

where m* N is that part of the nucleon mass which arises from 

“bare quark masses rather than from the spontaneous breakdown of chiral 

SU(2) @ SU(2). For a p- in a Bohr orbit around a nucleus &(A, Z), the coherent 

process ~J-~M + e-J.@ will be slower than the usual incoherent process 

P-a - v~l/? by a factor of order A21F12m2mr2/Zm~, 
P N 

with F the elastic 

nuclear form factor for momentum transfer m . 
P 

The quantity A21F12,/Z reaches 

a maximum value of about 30 for nuclei near copper, 
9 so if we (arbitrarily) set 

m&= 100 MeV and mH = 30 GeV, the ratio of p-3 - e-d to p-&’ -. v~’ 

would be of order 4x 10 -9 . The present upper limit 10 for this ratio in copper 

is 1.6x10 
-8 . A modest improvement in the precision of this experiment might 

yield interesting results. 

We thank B. Humpert for providing us with information on the SIN experi- 

ment, and K. Lane and other colleagues at SLAC and Stanford for useful dis- 

cussions. 
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FIGURE CAPTIONS - 

1. A one-loop graph for 1-1 - ey. 

2. Some two-loop graphs for 1-1 - ey. 
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Fig. 1 
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Fig. 2 


