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ABSTRACT 

In a previous work we introduced a simple model to describe gravi- 

tational radiation from supernova explosions; the model consists of a 

point mass exploding into two point ejecta of equal mass moving back- 

to-back. In this work we study a variety of motions of the ejecta, cor- 

responding to various scenarios for the supernova explosion, e.g. , a 

single explosion, double explosion, implosion followed by explosion, etc. 

Our purpose is to illustrate the qualitative nature of the gravitational 

radiation field and the energy emitted as gravitational radiation. 

(Submitted to Phys. Rev. D Comments and Addenda. ) 

*Work supported in part by the Energy Research and Development Administration. 
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I. INTRODUCTION 

In a previous work’ we introduced a simple model to describe the gravi- 
-h 

tational radiation emitted in the most violent initial phase of a supernova explo- 

sion: a point mass explodes into two equal mass ejecta moving back-to-back 

with final velocity v. 2 We may summarize the results as follows, for nonrela- 

tivistic ejecta; with the linear motion of the ejecta described by 5 (t) the gravi- 

tational radiation field h is lc+” polarized, 3 
/JV 

with 

other h 
PV 

equal to 0 

hll = 
-2 Gy sin2 0 $ (52) , 

The total energy emitted as a function of time is 

(1.1) 

(1.2) 

and the energy spectrum is 

dE Gm 
2 4 

TimTo= sin ew2 If( , 
47r2 

(1.3) 
d2 f(w) = Fourier transform of 2 (5 2, . 
dt 

(We use units in which c=l.) Definitions of the various symbols are as follows: 

G is the gravitational constant, m is the mass of a single ejectum, r is the 

distance of the supernova from the observer on earth, 8 is the angle between the 

line of motion of the ejecta and the earth-supernova line, and w is the frequency 

of the radiation. 

One example of an analytic function 5 describing a single pulse explosion 

was discussed in Ref. 1, and the quantities in Eqs. (1.1) to (1.3) evaluated 

analytically. Functions that lend themselves to such an analytic calculation are 

difficult to find, and do not allow one to study readily a variety of types of 
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explosion, e. g. , double pulse explosions, implosion-explosion pulses, etc. 

Thus we have developed a numerical procedure to study the qualitative features 
- 

of more diverse types of explosion. Our procedure involves expressing the 

acceleration of the supernova ejecta, d2[/dt2, as a sum of 3 Gaussians of 

arbitrary amplitude, width, and position in time. The quantities in Eqs. (1.1) 

to (1.3) are then evaluated numerically and presented as graphs. 4 Clearly such 

a sum of Gaussians can qualitatively represent rather a large variety of ejecta 

motions. 

II. CALCULATION 

For convenience the Eqs. (1.1) to (1.3) can be recast with a dimensionless 

motion function t and dimensionless time variable T by a simple resealing: 

t- t/to=7, t(t) - do t (~1, d5 (Wt - vd5 (T)/dT , with to being the characteristic 

time scale of the explosion, and v the final ejecta velocity. Then 

h -2Gm sin20 v2 
11= r 

dE Gm2 sin4 8 v4 m= 47rt; 

dE= Gm2 sin4 ,9 v4 
dQdw 

4772 
w2 If( 

(2.1) 

(2.2) 

(2.3) 

With this resealing the final dimensionless velocity is @(r)/dr - 1; w is defined 

as tow, and it is easy to show that the asymptotic value of d2([(r)2)/dr2 is 2, and 

the limit of w2 If(w) I2 for w -0 is 4. The input acceleration function is written 

explicitly as 

$=cA.e 
-(T-Ti)2/‘~ 

dT i=l IL 
(2.4) 
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In Figs. la and lb the accelerations we have chosen are plotted. We have 

chosen in Fig. la a single pulse explosion (case l), a double pulse explosion 

(case 2)) and an implosion-explosion (case 3). In Fig. lb we have chosen a 

sharper implosion-explosion (case 4), a broad and smooth triple explosion pulse 

(case 5)) and finally an implosion-double explosion pulse (case 6). 

In Figs, 2a and 2b the functions d2(t2)/dr2, which are proportional to hll 

in (2. l), are shown for the accelerations given in Figs. la and lb. These are 

qualitatively similar, beginning at zero and ultimately rising to the asymptotic 

value 2. When an initial implosion is present (negative acceleration) a dip occurs 

before the final rise. 

In Figs. 3a and 3b the functions d (t )/dr [” 2 “3”, proportional to the energy 

output in (2.2) are shown. The energy is typically emitted in several pulses 

with one being much larger than the others. The number of dips to zero in each 

case is equal to the number of maxima and minima in h 11’ 

In Figs. 4a and 4b the functions w2 lf(w)12, proportional to the energy 

spectrum in (2.3) are shown. All begin at a value 4 for w=O, and of course go 

to zero asymptotically. In general the more complex the acceleration the more 

wiggles and structure in the energy spectrum. In particular case 6 in Fig. 4b 

contains a surprising amount of structure in comparison to the others. In all 

cases the spectrum is broadband and extends to some characteristic frequency 

of order t 0’ as discussed in Refs. 1 and 5. It should be emphasized that the 

absolute value of the energy for the various cases has no significance since only 

the final velocity is normalized and not the characteristic explosion time to. 

The area under the curves in time and frequency differ by a factor of X, as is 

evident in (2.2) and (2.3). 
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FIGURE CAPTIONS 

1. a) The acceleration of an ejecturn- expressed as a sum of Gaussians as in 

(T. 4). Case 1 ( -) is a single Gaussian with Al=l, T1”5, s l=l. Case 2 

t -. -) is a sum of two Gaussians with Al=l, ~1’3, sl=l, A2=1, T2’5, s2=l. 

Case 3 (.....) is a sum of 2 Gaussians with Al=-1, ~1~4, sl=l, A2=3, ~~‘6, 

s2=l. b) The same as a) but with different parameters. Case 4 (-) is 

a sum of 2 Gaussians with Al=-1, 71’3, sl=.5, A2=2, 7 2=6, s2=1. Case 

5 (- l -) is a sum of 3 Gaussians with Al=l, 71’3, sl=1.5, A2=1, T2’5, 

sg1.5, A3=1, ~~“7, s3=l. 5. Case 6 (..a a .) is a sum of 3 Gaussians with 

Al=-1, 71’3, sl=.5, A2=2, T2=5, S2=. 5, A3=2, T3=7, S3=. 5. 

2. a) The functions (t2)“= d2t2(r)/dT2, proportional to the gravitational radiation 

field hll in (2.1). The asymptotic values are 2. The cases 1 to 3 corre- 

spond to the accelerations shown in Fig. la. b) Same as a) but with cases 

4 to 6 corresponding to the accelerations shown in Fig. lb. 

3. a) The functions (5 ) [ 2 ft,lz = [d3t2(r)/dr312, proportional to the energy out- 

put in Eq. (2.2). The cases are labeled as in Figs. la and 2a. b) Same 

as a), but with the 3 cases as shown in Figs. lb and 2b. 

4. a) The functions w2 f(w) , proportional to the energy spectrum in (2.3). 

The curves are labeled as in previous figures. b) Same as a) but for the 

cases 4 to 6. 
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Fig. 2 
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Fig. 3 
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Fig. 4 


