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I. INTRODUCTION 

Recently we have seen a marked increase of interest in the problem of 

finding classical and semiclassical solutinns to relativistic field theories. The 

reasons for this renewal of interest in classical problems are quite varied. For 

some1 the interest in semiclassical solutions to field theories lies in the hope 

that they can provide a calculational procedure for discussing relativistic bound 

state problems. In particular the “holy grail” pursued by these people is the 

goal of being able to convincingly reconcile the apparent successes of the naive 

quark model with the fact that one has not yet been able to identify quarks as 

final states in any physical process. (One example of this sort of thinking was 

the original SIAC bag model. 2, For others, the interest in semiclassical solu- 

tions to field equations lies in the fact that they indicate one has only begun to 

catalogue the bestiary of peculiar objects which can exist in a theory by virtue of 

the existence of topological conservation laws. Whatever one’s reasons as a 

result of this work we have begun to appreciate that more phenomena can (and 

probably do) occur in a quantum field theory, than are ever dreamed of in 

perturbation theory. ’ 

Because of our desire to understand questions raised by the study of semi- 

classical solutions to field equations and our desire to calculate the spectrum of 

states belonging to any given non-Abelian color gauge theory of strong interac- 

tions, people have begun to seriously attack the task of developing new-all 

*Work supported by the Energy Research and Development Administration. 
(Extracted from Proceedings of the Summer Institute on Particle Physics, 
SLAC Report No. 198, November 1976. ) 
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coupling constant methods-for computing the properties of quantum field theory. 

It is my goal in these lectures to present a simple exposition of the approach to 

this problem which has been developed here at SLAC by Sid Drell, Shimon 

?ankiGowicz3 and myself. 

Since I would like my discussion to be understandable to anyone familiar 

with elementary quantum mechanics some coverage of background material will 

be necessary. Moreover, in order to be able to discuss the ideas I want to 

develop, in an arena uncluttered by infinite numbers of fields and indices, I will 

never discuss-except in my “smooth talk” at the end-a field theory which has 

any hope of having something to do with particle physics; instead my discussion 

will be limited to a Toytl theory defined in one-space one-time dimension. I 

will show you, however, that this theory has a rich structure and can serve both 

as a useful framework on which to hang our discussion of nonperturbative calcu- 

. - 

lational techniques, and as a model which should enable you to understand, in 

simple terms, what afficianados of the sport mean when they talk about 

(i) phase transitions and critical behavior, 

(ii) l’semiclassicalfT or rlquantum’l kinks-or solitons, and 

(iii) lattice theories and their connection to continuum field theories. 

Hopefully, as an added cultural benefit, our discussion of nonperturbative 

calculational techniques should leave you with an idea as to one way in which 

“renormalization groupT1 ideas can be useful in discussing a field theory. 

Unfortunately, the way in which these concepts, developed by Wilson and Kadanoff4 

within the context of path-integral language (and the ideas developed in the 

Hamiltonian discussions of Kogut and Susskind’) relate to our use of these ideas 

is not at all clear. For this reason, I don’t know how transferable the material 

developed in my lectures will be to other contexts-but, that is your problem. 

At least, the general words will look the same, and so you can fool yourself into 

thinking you understand them when you hear them again. 
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By way of giving credit where credit is due, I would like to say that the 

naive treatment to the “toy” model I will discuss in detail, was worked out inde- 

pendently by us, Stoeckly and Scalapino’ and R. B. Pearson. 7 Moreover, as I 

will e;lain later, Bob Pearson made a very important contribution to the 

development of the more sophisticated calculational techniques which form the 

backbone of our approach. 

II. OUTLINE 

Since our discussion will be somewhat lengthy and will be divided into 

separate topics I will try to follow the dictum of “first telling you what I am about 

to do, then doing it, and finally telling you what I did! *’ To begin, let me give 

you some idea as to how these talks will proceed. To do this I will now present 

an outline of the material I will cover in the order in which I will cover it. This 

outline will be of immense benefit to the readers of the written version of this 

talk since it will enable them to decide what sections they do not wish to read. 

Unfortunately, it will be somewhat less useful to you, since I am going to discuss 

all of the material-but you could of course make a deal with your neighbor and 

have him wake you up for the interesting parts. 

The general plan of these lectures will be the following: 

A. Heuristics. Since most of the nonperturbative properties of the “toy” 

model I will discuss are quantum field theory analogues of what happens in more 

familiar physical systems, I will begin by discussing the ideas to be developed 

in later sections by talking about the way these ideas relate to a ferromagnet. 

My purpose in this discussion is to give a semiconcrete and intuitive explanation 

of what I will mean by the terminology I will use for the rest of my lectures. 

B. Classical Field Theory Analogue. Following this brief discussion, I 

will spend a short time discussing a classical relativistic field theory which has 

properties analogous to-though not exactly the same as-a ferromagnetic system. 



-4- 

This will be the model we will quantize and reduce to our “toyl’ model. My goals 

in this discussion will be to 

(i) identify the critical coupling constant in this model, 4 
(ii) discuss the degeneracy properties or long range order of the ground 

state for different values of the coupling constants, and 

(iii) show that the classical theory possesses “soliton” or “kink” states of 

significant interest. 

C. The Connection Between Cutoff Field Theories and Lattice Models. 

Having presented the classical version of this field theory I will turn to the 

general question of quantization. The purpose of the discussion in this section 

is to explain the problems encountered if one proceeds in familiar ways, and to 

explain why we reformulate our problem as a, lattice theory. The discussion 

presented here will lay down a general framework, but specific detailed examples 

of what I am talking about will not be given in my talk. A more detailed discus- 

sion of some points will appear in appendices to the written version of this talk. 

D. A Lattice Analogue of Continuum $ 4 Theory. Building upon the remarks 

of the preceding discussion, I will write down a quantum mechanical lattice ver- 

sion of the classical $4 theory. My principle purpose at this point is to present 

a brief, heuristic, discussion of why we can simplify this model-to the “toy” 

model I referred to-without losing any important physics. 

E. Analysis of Toy Model I. In this section we turn to a serious study of 

the properties of our “toy” theory. We begin with a statement of exact results 

known for this model. Then we discuss within the framework of perturbation 

theory how some of these exact results can be understood (the real proof is based 

upon methods which are very special to this model and devoid of any physical 

insight). 
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F. Analysis of Toy Model II: Nonperturbative Methods. This is the key 

section of my lectures. It is the place I will explain our variational approach 

and the way in which it leads us to 9enormalization group” transformations. h 

This discussion will be developed in two states: first, I will set forth the general 

idea and give a simple implementation of this idea. Second I will present a more 

sophisticated and more powerful way of implementing the same idea. The com- 

parison of approximate and exact results for the model in question will be 

discussed. 

G. Smooth Talk. This section summarizes the discussion of the previous 

section and extends the notion to other more relevant models, 

III. HE URISTICS 

Before plunging into a discussion of abstract field theories let.us try and see 

how the concepts I will focus on apply to a discussion of a real physical system, 

namely, a ferromagnet at zero temperature, a system which exhibits spontaneous 

magnetization. One typically says that since the direction of the average mag- 

netization of this system at any point in space is the same as at any other point, 

this system has a ground state which exhibits “long range order. I’ The magni- 

tude of the magnetization is referred to as the “order parameter. t1 

One aspect of this system can be appreciated without knowing anything about 

the detailed dynamics of the system. This is the fact that the basic Hamiltonian 

of the system is rotationally invariant, and so the energy of the ground state of 

the magnet cannot depend upon the direction in which the magnetization points. 

Hence, we say that the ground state of the system is infinitely degenerate. The 

general idea to be gleaned from this observation is that if there is a state of a 

system which has the lowest possible energy, and if in this state the expectation 

value of some operator-like the magnetization-is nonvanishing, then because 

the magnetization rotates under symmetry transformations of the theory 
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(i.e. , transformations which leave the Hamiltonian unchanged) this state must 

have degenerate partners. Whenever, during these talks, I refer to a system 

being inan ordered phase I will mean that it has a degenerate (either infinitely or 4 
finitely degenerate) ground state. 

To understand what I mean when I discuss critical coupling constants for a 

theory let us discuss some of the microscopic physics of a ferromagnet. (Please 

be warned that this is by way of analogy and my discussion of a ferromagnet is 

by no means complete or even necessarily really correct.) At any rate, the 

point is that in a ferromagnet there are two competing effects taking place. 

Presuming that the bulk magnetization is due to an aligning of atomic electron 

spins, there is the magnetic moment-magnetic moment interaction which tends 

to align these spins antiparallel to one another-and “exchange forces” which tend 

to make the atomic electron spins align parallel to one another. Whenever the 

strength of the exchange terms dominate the magnetic interactions the system is 

ferromagnetic, i. e., its ground state is degenerate and exhibits long range order. 

Clearly, if we adjust the strength of the “exchange terms” relative to magnetic 

terms we eventually reach a point beyond which there is no “spontaneous mag- 

netization” (i. e. , the order parameter goes to zero) and so the ground state 

becomes unique. The value of “coupling constant” or “exchange term strength” 

at which the ground state changes from being degenerate to unique is what we 

refer to as the critical coupling constant. As we go through this point we say 

that the system undergoes a Ehase transition from an ordered to a disordered 

phase. 

Finally, let us note that the analogue of the ever popular tfkinkt’ or llsoliton 

state” in this system is the magnetic domain wall, i. e. , that small transition 

region between two larger regions whose bulk magnetization points in different 

directions. 
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IV. A CLASSICAL FIELD THEORY ANALOGUE 

To sharpen our definitions and to make more precise statements about 

“solito2” or “kink” states, let us turn to a discussion of a classical relativistic 

field theory which has properties quite similar to the ferromagnetic system. 

The specific features I want to focus your attention upon are: 

(i) as one varies a “coupling constant” in this system the ground state 

goes from being degenerate to nondegenerate, and that at the same 

time the system goes from an flordered’f to “disordered” state, 

(ii) for those values of coupling constant which correspond to having a 

unique ground state the only elementary excitations of the system 

are tlsmall vibrations, I1 However, when the system has a doubly 

degenerate ground state, there are two types of elementary excita- 

tions-small vibrations and solitons. Furthermore, near the critical 

point the soliton becomes the more important excitation. 

The theory I will consider is defined either by the Lagrangian density 

(4.1) 

where p=O, 1, or equivalently by the Hamiltonian 

H= (4.2) 

where 

II(x) dEf do@(X) and V@(x) dgf 8,ql(x) . 

If we observe that H is a sum of positive terms we see that the field configura- 

tion, $,, having the lowest possible energy must correspond to ~o~o=Ii=O and 

V$,=O, i.e., Go must be both time independent and independent of lx’. Inspec- 

tion of the term h($2-f)2 shows that the nature of the groundstate is quite different 

depending upon whether f is greater or less than zero. If f 5 0 then the lowest 

possible value h($2+ lfl)2 can take is Alf12, and this is achieved for @,=O. 
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Hence the lowest state of the system for ft0 is unique and is invariant under the 

transformation C$ (x) --f -G(x) , which is an invariance of H. If, however, f > 0 then 

the lowest value h($2-f)2 can take is zero, and this occurs for either of two 4 

possibilities: namely $. = %Jf. Hence for f > 0 the ground state of this clas- 

sical system is doubled. This is consistent with the fact that the +Jf configura- 

tion gets mapped into the -,ff configuration by the symmetry + --+. Recalling 

our ferromagnetic analogy we say that the system undergoes a phase transition 

at a critical value of the coupling constant f, namely fc=O. 

Note that for the classical theory the value of 9~’ is irrelevant insofar as the 

degeneracy properties of the ground state are concerned, and so a natural ques- 

tion to ask is “what role, if any does A play in determining the structure of the 

theory?” The answer, of course, is that h is involved in determining the “mass 

of small vibrations about the ground state. I* To see this most easily for the 

case fL0 assume that we are examining a small disturbance at t=O, i.e., 6$(x, 0). 

It is easy to show that this vibration is stable, in that if the initial disturbance 

at t=O is small enough it stays small. Thus, one need only keep the linear terms 

in the equation of motion as a first approximation to the time development of the 

system. In this way one finds small vibration solutions of frequency squared 

w (k)2=k2+m2, where the k=O mass is m= (Af) m . Similarly, for the case f > 0 

one can ask what the mass of small vibrations about either one of the states, 

G0(f)=35Jf, is. As before linearizing the equations of motion tells us that 

l/2 m=(8Af) . In either of these cases one can proceed to analyze the problem of 

finding the true time dependent response to a small displacement by constructing 

a perturbation series built upon these plane waves. It is in this sense that one 

refers to the small vibrations of mass, m= (8hf) l/2 , as the fundamental excita- 

tions of the system. 

Having said all this let us now note that the f < 0 case is distinguished from 

the f > 0 case in an important way. That is, for f > 0 there are also exact solutions 
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to the time independent equations of motion different from +. =+ Jf, i. e. , there 

are solutions to 

-V2$(x)+4h$(x) ($2(x)-f) = 0 , (4.3) -cI 

which are not found in the perturbation expansion, and which have an energy 

which differs from the ground state energy by a finite amount. These are the 

so-called “kinks” or ‘lsolitonsll and are of the general form 

@kink = &Jf tanh (JZZ (x-x0)) . (4.4) 
(antikink) 

Since this function corresponds to the field configuration shown in Fig. 1, we see 

that it is just a region of “finite width” joining two “ground state configurations. ” 

That this is the direct analogue of a domain wall in the ferromagnet is obvious if 

we think of $J =+Jf as magnetization pointing up and 4 = - df as magnetization 

pointing down. 

The really important observation which I would like to make about the “kink” 

state is that direct substitution of (4.4) into (4.2) yields an energy for the kink 

which is Ekink +f3)1/2 . Comparing this to the plane wave of k=O we see that 

Ekink ‘m( small =f; hence, for f <<cl, the kink becomes a much lower energy vib) - 

excitation of the system than the so-called “small vibration. I1 This means, of 

course, that for f <<cl the perturbation analysis, in terms of plane wave “small 

vibrations” about @o = rt Jf, breaks down because the effects of forming 

“kink-antikinlP states, such as that shown in Fig. 2, must be taken into account. 

To summarize, we have learned that our classical analogue 

(i) exhibits phase transitions from an ordered to disordered phase at a 

critical coupling f c=O; 

(ii) in the ordered state this theory has both “plane wave” or llsmall 

3 I/2. vibratiorQ’ excitations of mass me (hf ) , 
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(a) 

x=x0 

“antikink” 
/ . 

3072Al 

Fig. 1 
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“small vi bration” 

3072A2 

Fig. 2 



- 12 - 

(iii) the kink state cannot be found from the “perturbation” or “small 

vibration analysis”; 

(iv) in the limit f << 1, when m kink /m << 1 the usual perturbation analysis 
45 

breaks down completely because rlkinks” and “antikinksl’ become the 

lowest lying excitations. 

Obviously we could take the Hamiltonian of (4.2) and impose the commuta- 

tion relations [H(x), $(yjJ = -is(x-y) in order to quantize the theory. However, 

our classical discussion already warns us that in the interesting region f <<l the 

usual perturbation methods must fail. 

V. ON THE CONNECTION BETWEEN FIELD THEORIES AND LATTICE MODELS 

Having argued that we will need to go beyond perturbation theory to study the 

region f <cl, we are immediately confronted by the problem of renormalization. 

We all know that if one adopts the usual perturbation theory approach to dealing 

with a formal continuum Hamiltonian one does not obtain finite answers unless 

one resorts to the trick of multiplicative renormalization. Unfortunately, while 

the infinities encountered in perturbation theory are there whether or not one is 

dealing with the perturbation expansion, the only well developed method for 

removing them is tied inextricably to the perturbative approach. Moreover, 

except for a few special cases no convincing nonperturbative ways for removing 

these divergences have been put forth. In order to develop a nonperturbative way 

of computing in a theory free of divergences we find it necessary to abandon-at 

least temporarily-one or another of our cherished ideas. Our approach will be 

to abandon manifest (but not practical) Poincare invariance and avoid ultraviolet 

divergences by establishing a finite momentum space cutoff. Moreover, since 

we shall be interested in studying phase transitions and other properties which 

are associated with subtleties of taking infinite volume limits, we will initially 

define each theory in a box in position space and study the infinite volume limit 
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afterwards. Actually, what we will really do is study a theory defined on a 

lattice. Of course, logical completeness requires that I prove to you that study- 

ing theories with fixed momentum and spatial cutoffs are equivalent to lattice 

theori&; unfortunately, finiteness of time militates against my doing so. Any- 

way, as amusing as this correspondence is, my real aim is to tell you what one 

does with a lattice theory once one has it and not how one goes about finding 

that lattice theory (or class of lattice theories) which can be shown to be uni- 

tarily equivalent to a given cutoff continuum field theory. Hopefully, you will 

allow me to assure you that such a correspondence can be made and let it go at 

that for now (in Appendices I and II the way one constructs such an equivalence 

is described for both free scalar and free fermion field theories, and the way 

one carries out the same program for interacting theories is clearly indicated). 

Establishing this correspondence in detail will be irrelevant to this talk anyhow, 

. - 

since for simplicity’s sake I will not discuss the theory which is the true unitary 

equivalent of cutoff +4 theory at all. Instead I will write down a lattice q4 theory 

which at the classical level has properties which are essentially the same as the 

continuum model we have been discussing, and quantize it. Clearly, even if we 

make this simplification we still must answer the question, What do you do with 

a lattice theory once you have it?“, since at first blush strong and intermediate 

coupling lattice theories are no easier to solve than their continuum counterparts. 

VI. A LATTICE ANALOGUE OF CONTINUUM G4 THEORY 

A. The Model. In the sections to follow we shall discuss a simple version 

of lattice +4 theory, which will be based upon a nearest neighbor definition of the 

gradient of a field 4(j), i.e., (V+)(j) dgf (@(j+l) - Cp(j)). For those of you who are 

aware of the fact that in general our SLAC collaboration spends its time singing 

the praises of a different definition of the gradient, let me hasten to assure you 

that we have not changed our affections. However, since both definitions are 
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equally simple to work with, and since for scalar fields-as opposed to fermion 

fields-there is no crucial difference between the two definitions, I adopt the 

more familiar one so as to minimize the number of new ideas I will ask you to get 
h 

used to in a short time. I want to emphasize, however, that the methods I will 

use to study the lattice e4 theory can be applied to either the theory I will write 

down, the one using our favorite definition of the gradient or the lattice model 

truly equivalent to cutoff continuum $4 theory with roughly equal simplicity, and 

with roughly the same results, 

The theory we will study is defined by 

H = n *s 7 

j=-N 

-fJ2 =+ &$(j+l~ - Q(jH2] , (6-l) 

where lI(j) = a,+(j). We can look upon this as a classical theory of a field defined 

as a function of a discrete set of points, instead of as a function of a continuum 

variable Ix’. As in the continuum case we note that H is a sum of positive terms 

and so the field configurations of lowest energy correspond to II(j)=0 and 

(@(j+l) -$(j)) =0 (i.e., q(j) is a constant). Therefore, the analysis of the struc- 

ture of the ground state of this theory for f 50 and f > 0 is the same as the analysis 

of the continuum theory. In fact the only significant difference between (6.1) and 

the continuum version of the model is that, for convenience, all fields and coup- 

ling constants have been resealed by dividing by the appropriate powe of inverse 

def lattice spacing A E l/a, so as to make them dimensionless. In this way all of 

the dimensions of H come from the single explicit factor of mass, A, which 

appears in front of the sum. With this definition one quantizes this model by 

specifying the equal time commutation relations 

EX,), #4,;l = -i6j,, j, - (6.2) 

Assuming, without further ado, that the classical physics of this model is 

essentially equivalent to the physics of the continuum model, what I will now 
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attempt to do is convince you that (at least for some range of A and f) this model 

can be still further simplified without losing the physics we are interested in. 

The resulting “toyff model will be the one we will study in detail. In order to 
-h 

formulate this argument it becomes convenient to divide H into two terms, 

+ Q2(j)+U@2(j) -fj2 1 , 
and 

ix2 = A C [-4b (3 W-l>3 - 
j 

(6.3) 

(6.4) 

Having done this we then observe that H1 is a sum of commuting terms, Hi(j). 

Thus, the problem of diagonalizing H1 reduces to the problem of finding the 

eigenstates of Hi(j), 

Since, [W, Nj>3 = -i, it is obvious that in the basis in which q(j) is diagonal 

II(j) can be written as 1 a - - and so, solving the eigenvalue problem specified by 
i W(j) 

each Hi(j) is equivalent to solving the Schroxlinger equation . 

1 - -L + +4*(&2f)+2+f2 
w2 ,I 

*,(a = EnJqp) (6.5) 

this is just the same as solving the elementary quantum mechanical problem of 

a particle of mass, m=l, in a double potential well. 

I will now try and convince you that so long as we require (hf 3 1’2>>> ) 

(h f ) l/2 >> 1, then one can for the purpose of discussing the low lying eigenstates 

of this theory replace our e4 theory by a model having only two levels at a site. 

In order to see why this is so let us consider Fig. 3 which shows that the height 

of the potential barrier at $=O is Af2 and that the minima of the potential occurs 

at +min = +dm, where V($ min) =; (1 - 1/4X). Now the double well problem 

should be familiar to you from elementary quantum mechanics, where it was 

studied as a first example of tunneling. For our purposes in this discussion it 
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+S-iE 3072A3 

Fig. 3 
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suffices to recall a few basic facts about this problem, namely: 

(i) The eigenstates of the problem can be divided into states which are 

even or odd under the transformation Qn(@) - *h(+$) = %n(-@). 

(ii; The first even and odd states are split in energy by an amount pro- 

portional to exp {-(height of barrier) x (width of barrier)} which is 

on the order of exp - hf3 
{ 1 

3 l/2 . Hence for (hf ) >> 1 the two lowest 

states of our single-site Schrcedinger problem are nearly degenerate. 

(iii) When the first two levels are nearly degenerate one can use naive 

harmonic oscillator wave functions centered about either minimum 

to estimate the energy gap to the next level. This argument tells 

us that the energy of the next level will be essentially (hf) u2 so 

long as hf2 >> @f) l/2 -or equivalently, so long as (hf 3 l/2 ) >>l. In 

other words, so long as we satisfy this inequality, the gap between 

the first two nearly degenerate levels and the next eigenstate of the 

system can be made as large as desired. 

Assuming that we restrict attention to the case @f 3 l/2 ) >> 1 and (hf) l/2 >> 1, 

let us try and see what we expect the groundstate of H=H1+H2 to be like. In this 

case the groundstate of H1 is simply given as the product over all j’s of the lowest 

state for each Hi(j). Clearly, by far the most important effect of 

HZ= -c $(j) $(j+l) is to mix this state with states of the same form except 

having Add parity levels at two adjacent sites “j” and rrj+lfr. Since the lowest 

even and odd levels are essentially degenerate and since these mixing effects 

stay finite no matter how large we make @f 3 l/2 ) , for sufficiently small 

splittings, it behooves us to restrict attention to the two lowest states at each 

site and to replace H = - c $(j) @(j-!-l) by a product of matrices defined for sites 2 
j 

“j” and ffj+lff which mix these two nearly degenerate levels. 
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B. A Final Simplification. The previous argument tells us that for large 

(Af 3, U2 we can replace H=Hl+H2 by an analogue theory of the form 

dgf HttoY) + HttoY) 
1 2 (6.6) 

In case the passage from what we have said up to now to (6.6) was too rapid let 

me explain the analogue in greater detail. The term 

H(toY) = n~ 
1 

(j) 
j 

F-7) 

is the replacement for H1 in (6.3). It merely says that in our analogue system 

we assume that we have two states or spins, IL(j)> and I T(j)>, at each site- 

corresponding to the even and odd parity states of our original theory-and that 

in the absence of H2 these states are split in energy by an amount rf~ff (of course 

E is some complicated function of A and f which will not need to be further speci- 

fied). In other words H(;coy) is a transcription of the single-site part of H into a 

theory of spins on a lattice. Obviously, 

(6.8) 

is just a transcription of H2 to this spin language. To see why it must have this 

particular form we need only recall that the operator G(j) is odd under the trans- 

formation 43 4-G. Hence matrix elements of G(j) taken between two even states, 

or two odd states, must vanish identically. If we restrict attention to the two 

nearly degenerate eigenstates of HI(j) then the only matrix element c$(j) has 

between these states is <even I$(j)lodd> = <odd I$(j)leven> A m . (Note that since 

only two states are involved one can always choose the relative phase of Iodd> 
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and /even> so this matrix element is real, ) Therefore, if we think of the two 

states as I l(j)> and I T(j)>, c$(j) can be replaced by A 112 times the matrix which 

flips spin down to spin up and vice versa, i. e. , - gxtj) = (“, 0’) (j). Thus we are 

led to study the theory defined by (6.6)) with E and A chosen arbitrarily. 

VII. ANALYSIS OF THE TOY MODEL: I 

A. Exact Results. Having specified the “toy” model we wish to study in 

detail, the question arises as to whether or not we have oversimplified our 

original problem and lost all of the interesting nonperturbative phenomena we 

were out to find. Let me hasten to reassure you that this is not so. This model 

can be solved exactly and one can show that it has all sorts of interesting proper- 

ties. Before listing the facts which we know to be true, let me address a ques- 

tion which comes up when one discusses properties of solvable models. ‘Why 

study an exactly solvable model in one-space onetime dimension, when we all 

know the methods for solving these models exactly never work anywhere else?” 

This is a good question-fortunately (I think) I have a good answer. I couldn’t 

care less about the way in which one goes about solving this model exactly! As 

I am sure you suspected, the method of obtaining an exact solution to this model 

involves performing a Pauli-Jordan transformation followed by a Bogoliubov 

. 

transformation and this method does not generalize to higher dimensions. Even 

worse, so far as I am concerned, while it allows you to study the properties of 

this model exactly it leaves you with no ‘nuts and bolts” feeling for what is going 

on. However, it is not the model that I care about, but rather the approximate 

techniques I will use to discuss it. Unlike the techniques used to solve this model 

exactly, our methods are easily generalizable to any model in any number of 

space dimensions, and perhaps even more importantly they do give you a feeling 

for the nuts and bolts of the theory. The only drawback to these methods is that 

although they seem intuitively reasonable they are after all only approximate 
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calculations. Therefore, it is enormously important to begin by trying them 

out on a theory for which an exact solution is known in order to see whether or 

not they really work. With this comment in mind let us list some interesting 

properties of the theory defined in (6.6). 

(i) The theory defined in (6.6) exhibits a phase transition at the point 

E= ZA. One can rigorously show that for E < 2A the ground&ate-or 

lowest energy eigenvalue- of H is twofold degenerate, whereas for 

E > 2A the groundstate is unique. 

(ii) Since the overall scale of H plays no role in the detailed physics only 

the ratio e/Aef y matters, and so y,=2 is the critical coupling con- 

stant of this theory. In effect y, plays the role of “f” in the classical 

e4 model. 

(iii) The transformation 
/ 

U = exp 
t ) 
9 C c,(j) 

j 
= n Wz 0)) 

j 
(7-l) 

is the unitary transformation which plays the role, in this quantum 

theory, of the classical transformation r$ -+-$. (This is so since we 

have seen that ox(j) = (“1 0’) (j) is the toy theory equivalent to the 

operator e(j) and it is easy to see that 

Uox(j) U-l = -ox(j) 4 (7. a 

(iv) As in the classical theory we can label states according to their 

transformation properties with respect to U. In particular the two- 

dimensional space of states spanned by the degenerate eigenvectors 

of H, for E <2A, can be generated by eigenvectors of U which we will 

call Ieven> and lodd> . Clearly <even lox(j) leven> = <odd lgx(j) Iodd> = 0 
. 

since UcxU -1 = ax, but in general <even lox(j) Iodd> has no reason to 
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vanish. If it does not vanish it is useful to form the combinations 

- for which 

I*T> = 1 
a 

{ Ieven> f Iodd>/ 

U&T, = IF?> 

(7.3) 

(7.4) 

and for which 

&? lox(j)I = f <even lgx(j)lodd> (7.5) 

is nonvanishing. These states are the quantum analogues of the 

classical states Go(f) =f $f, and it can be shown that the “order 

parameter” or “magnetization” satisfies 

2\1/8 

(7.6) 

for ~5 Y,, where ydgf e/A and y,=2. The exponent l/8 in (7.6) is 

an important critical exponent of this model. 

(v) For E > 24 the groundstate of the system is unique and develops 

continuously from the state we have called Ieven>. 

(vi) For E <X 2A the lowest lying physical excitations of definite momen- 

tum are “kinks”, i.e., states which are clearly identifiable as 

moving “domain walls .” 

E kink ‘n) 

The “single kink” spectrum 

= *dX% 

is given by 

3 

(7.7) 

where kn is the dimensionless lattice momentum, k = Y n n (2N+l) * 

In the infinite volume limit, i. e., N -+m, kn becomes a continuous 

variable running over -7r< k < x. -a (As an aside it is worth noting 

that (7.7) explains what I mean by the lattice theory abandoning 

manifest Lorentz invariance but keeping practical Lorentz invari- 

ance. It follows from (7.7) that this simple theory, near the 
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critical point E= 2A, approximates a Lorentz invariant theory 

arbitrarily closely. To see how this works first define the dimen- 

sional momentum K =m Ak so that k runs from -nA to +A, and 

define a mass MO=h(2A-e). Next rewrite 

Mi+8AeA2 sin2 (7.8) 

Thus we see that approaching the critical point from below as 

yields a relativistic theory of ffkinksff, in that if MO is held finite 

say 1 GeV and A is taken arbitrarily large, say 10 100 GeV, then 

until we reach values of K on the order of 10 100 GeV our spectrum 

is essentially relativistic. ) 

(vii) For E > 2A the lowest lying physical excitations are ffparticle-likeff, 

in that they are identifiable as moving disturbances in a uniform 

groundstate as opposed to a moving interface between two 

“groundstatefl configurations. The l-particle spectrum, remark- 

ably enough, is given by the same formula 

E particle(kn) = A (~-2A)~+8Ae sin2 

(therefore, approaching the critical point from above defines a 

relativistic theory of particle excitations). 

(viii) The groundstate energy density, g,(y) can be calculated exactly 

and one can prove that d2 Fo(y)/ay2 has a singularity at the critical 

point y,=2. 

B. A Simple Derivation of Some of These Results. I will not even attempt 

to explain how these exact results are derived as that would be a seminar in 

itself. Anyhow, as I have said, even if you know how to solve this theory you 

don’t really get the feeling that you understand what is going on. I would like 
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to try and give simple arguments to show 

(i) for E << 2A the groundstate of H is doubled whereas for E >> 2A 

the groundstate is unique; 

(ii? the elementary excitations for E <<2A are “kink-like” in plane 

wave states, whereas for E >> 2A they are “particle-like” plane 

wave states. 

In order to carry out this discussion it will prove convenient to rewrite (6.6) 

as 

and to drop the term -% since it is just a multiple of the unit 

matrix. Having done this let us consider what happens when we look at H for 

c=O (i.e., look at H(e=O)). 

In this case we observe that H can be exactly diagonalized, since all of the 

. - terms o,(j) ox(j+l) commute with one another. It is therefore convenient to go 

to a new set of single-site states, namely 

41 0) I- (j)> = 43 
> + I W 

L t I W - I UP) I- (j)’ = J2 

so that the complete set of states of the form 

. . . I- (j)> I- (j+l)> . . . I- (j+p)> . . . 

or 

. . . I+ (j)> I- (j+l)> . . . I-(j+p)> . . . 

or 

. . . I-> I-> I-> I--> . . . 

will all be eigenstates of H(e=O). Observing that 

(7.9) 

cx(j) I- (j)> = + I- (j)> 
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gx(y) I + (j)> = - I + W (7.10) 

we caz evaluate the eigenenergy of each such configuration, since each term 

-Acx(j)ox(j+l) gives a factor of -A whenever the “jff and rrj+lfr spins point in the 

same direction and a factor of +A whenever they point in the opposite direction. 

If, for the sake of definiteness, we restrict ourselves to finite volume, so that 

our lattice has a finite number of sites (i. e. , L = 2N+l) then the two states 

and 

. . . I->I-> . . . I--> . . . def I=-, o 

. . . I->I->I-> . . . l+>...dsf I-->, 

are clearly the eigenstates of H(E=O) having the lowest possible energy, namely 

EO=-2NA. Since there are two distinct configurations having this energy we see 

that for E=O, the groundstate of this theory is degenerate. Moreover, since G(j) 

corresponds to A l/2 u,(j) in this model and the expectation value of A l/2 @,(j> in 

each of these states is nonvanishing-more precisely 

o< - lg,(j) I- >. = - o< -= lax(j) I- >. = A l/2 (7.11) 

we see that the order parameter in these states is A l/2 . Hence, we see that 

for e=O our theory has the same sort of groundstate degeneracy as the classical 

model with &Jf corresponding to &A l/2 , 

In addition to the groundstates of the H(e=O) Hamiltonian let us see if we can 

identify the low lying ‘kink states” or “magnetic domain configurations. If This 

is trivial since it is clear that configurations like 

. ..--+--b--+-++-z+ ccc I 

or 

cccc-----f--L I - -4 $--*a 
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which represent two adjacent blocks of oppositely aligned spins, clearly cor- 

respond to “antikink” and ffkinkff configurations of the classical theory. Since 

in such a configuration only one pair of adjacent spins are antiparallel the 

energy of any state like this is 

El kink = El antiki. = -2NA+2A= E0+2A , (7.12) 

so these states represent “mass=2Aff configurations. Higher states correspond- 

ing to more domains, e. g. , 

are “multiple kink-antikink” configurations which have higher Jfmassff. In fact, 

since each mismatched pair of spins contributes +A to the energy whereas a 

matched pair in the groundstate contributes -A we see that the general rule for 

calculating the energy of any such configuration is to count the number of inter- 

faces, Ni, and multiply this by +2A to get the difference in energy between 

multiple kink-antikink configurations and the groundstate. Note further that the 

energy depends only upon the number of interfaces and not their location. 

With these features of the H(e=O) case in mind let us develop a perturbation 

theory discussion of what happens for very small but nonzero rfP; In other 

words let us treat the term 
0 0 V=cE 

( > (8 
j 0 1 

as a perturbation on the term 

-A c @,(j> a,W) 
i 

(7.13) 

(7.14) 
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Looking at any of the terms in V we see that 

i E \t “1 
) 

(j)l- (j)> = $I- (j)> - :I- (j)> 

and - 

0 0 
E o 1 W- W =$ I- (j)> - $ It (j)> , ( ) 

hence in the I-->, I + > basis H can be rewritten as 

(7.15) 

(7.16) 

It follows that applying V to any eigenstate of H(e=O) gives us a linear combina- 

tion of states all of which come from flipping one spin in the original state. Let 

us analyze what happens to the various eigenstates of the H(e=O) Hamiltonian in 

first order perturbation theory. To begin with, consider as our initial state the 

state I- > of all spins to the right. Then VI- > is the state shown in Fig. 4 

and is orthogonal to the original state I->. This means there is no first order 

shift in the groundstate energy. Clearly the same is true for the state I- > 

and so I=* > and I - > stay degenerate to first order, at an energy EO=-2NA. 

Focusing on l-kink or 1-antikink states yields a different result. If we 

consider Fig. 5 we see that if we let V operate on a state of this form, the 

interface gets moved one step to the right or one step to the left or a new pair of - 

interfaces is created. The matrix elements linking the l-kink or l-interface 

state to a 3-interface state does nothing to shift the energy of this state to first 

order in E. However, the matrix elements which link a l-interface state to a 

different l-interface state do cause a first order shift in the energy since all of - 

these states are degenerate, at energy E0+2A. Recall that the rule for doing 

degenerate perturbation theory is to first diagonalize V as restricted to the 

degenerate states and then compute the first order shift for each state I$>, 

which will be an = < $, IV I $n>. The diagonalization of V in the l-kink or 
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“mass 2n” 

3072A4 

Fig. 4 



I 

-28- 

+ 1 . ..--+-xi.> 1 
-I- “2 kink + I antikink” 

Fig. 5 

3072A5 
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antikink sector is easily accomplished in the infinite volume limit, N--co, 

because, denoting by lej> the l-kink state whose interface lies between ‘j ’ 

and ‘j+l’ , - 

vi+j>= -$tl+j*l’+ l$j-l>) * 

Thus, if we form the states 

(7.17) 

Iz/I~> = C eikj lqbj> 
j 

(7.18) 

we see that 

vl+k>=-$(e -ik + e+ik) I$> = -E cos @) I+,> (7.19) 

. - 

It follows that the states lqk>, which correspond to “plane wave kink states” or 

kinks of definite momentum ’ k’, do get a first order shift in energy; to this order 
, 

we have 

H I$k’ = El ki& oi) =[ EO+ (2A-E cos (k)) 
I 

I#,> (7.20) 

Obviously the results for 1-antikink states are identical. (Note that it becomes 

necessary to measure all energies with respect to the groundstate energy 

EO=-2NA when N goes to infinity in order to obtain finite quantities. ) 

To summarize, for small enough E the two-fold degeneracy of the ground- 

state persists, and the lowest lying excitations of the system are single kink or 

antikink states of momentum ‘k’. Moreover (7.20) tells us that the k=O kink or 

antikink state has the lowest energy and the “mass” of this state is (2A-E); this 

happens to agree with the exact answer. 

To conclude our analysis let us consider the limit A=0 or E/A >> 1. It is 

clear that in this case the groundstate is the state having all spins down. Having 

any spin up costs an energy e . In this limit the groundstate is thus unique and 

the lowest energy particle-like excitations of the system correspond to the 

(2N+l)-degenerate states having all but 1 spin down. Applying a small A/e 
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perturbation analysis to this case we find that to first order in A/e the spectrum 

of “plane wave” states of “particle” type is E(k) = E. -t (E - 2A cos (k)). Once 

again this agrees with the exact solution in that for E >> 2A we see that the mass 4 

of the k=O state is e - 2A. Since we have established that this theory changes 

from a theory with a two-fold degenerate groundstate and plane wave kinks as 

the lowest lying excitations, to a theory with a unique ground&ate and particle- 

like plane wave excitations, as we go from e<2A to e>2A it follows that it must 

undergo a phase transition for some critical value of E . What the perturbation 

analysis cannot tell us is the value of e/2A at which this happens, nor-for 

example-the behavior of <o,(j)> as we approach this critical point. 

VIII. ANALYSIS OF TOY MODEL II: NONPERTURBATIVE METHODS 

In this section we turn to an approximate analysis of our “toy” model by 

variational techniques in an attempt to calculate the properties of the theory for 

all values of e/A. Since guessing a trial wave function for a theory as compli- 

cated as this one is a nontrivial feat we shall not do this “at one fell swoop,” but 

shall devise an iterative constructive procedure for finding a suitable infinite 

parameter trial state. In order to explain the motivation behind the procedure I 

will set forth allow me to remind you of certain general properties of variational 

calculations carried out for what I will call a “linear trial wave function. ” 

A. A General Theorem. Assume that we have a Hamiltonian, H, defined 

on a specific Hilbert space, 9%‘. Next, let I#,> stand for any set, in general not 

a complete set, of orthonormal states in Z’. We define a “linear trial state with 

respect to the set l$g to be a normalized linear combination of- the form 

I$ 
trial def > ZE can wn> (8 * 1) 

n 

where the {on] ‘s are any set of complex numbers such that 

<+ tria1 I Pia >=Cla!J2 = 1 
n 

(8.2) 
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The question we wish to answer once one has chosen a specific set of {ant’s is 

**for which choice of {a,\ Is is the expectation value 

E(al, . . .) zz <$ tria1 IH I ictrial> = c CY;CX~<$~ IH I $m> (3.3) 
n, m 

minimized ?** 

Due to the constraint equation, (8.2), we cannot proceed to solve this prob- 

lem by differentiating E(al, . . . , an,. . . ) with respect to the {ant’s and stt-aight- 

forwardly equating the results to zero. Rather we must introduce a Lagrange 

multiplier h and minimize the unconstrained expression 

<# 
trial IH l+trial, - h<zc, tria1 1 Pial, 

<z& IH iem> - hanrn I 

def E xo$~~(H~~-h71)~ m . 
, 

One then solves the resulting equations 

c Hgam=Aa, , 
m 

c a* H n nmZAam n 

(8 - 4) 

(8.5) 

(8.6) 

and 

(3.7) 

for A and ants. Clearly the solution to this problem is to observe that the on’s 

tr must be the coefficients of the normalized eigenvectors of the matrix Hnm- 

which we shall refer to as a truncated or effective Hamiltonian-and the param- 

eter h must be chosen to be the corresponding eigenvalue. Of course, 

states l$n> are a complete orthonormal set, then (8.27) just says that 

trial states which extremize the energy are the exact eigenstates of H. 

if the 

the linear 
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The lesson to be learned from this exercise that if we are faced with the 

problem of diagonalizing a Hamiltonian which we cannot handle by simple 

methods, by cleverly choosing a set of orthonormal states (not a complete set) 

we reduce the problem of finding the groundstate of our system to the problem 

of finding the groundstate of an effective Hamiltonian. If we are fortunate this 

effective or truncated Hamiltonian will be amenable to analysis by familiar 

methods. This notion should be firmly fixed in your minds since it forms the 

backbone of everything which follows. Our aim will be to develop an algorithm 

for cleverly choosing a class of states which is intuitively well suited to the 

problem of finding an accurate upper bound on the groundstate energy of H, and 

which at the same time leads to an H tr which can be studied by simple means. 

B. A Simple Minded Algorithm for Choosing lIc;1>& In order to be more 

concrete let us discuss one example of an algorithm for choosing an orthonormal 

set of l#n>fs. To begin, recall that the space of states corresponding to the 

Hamiltonian of (6.6) is spanned by the set of wavefunctions formed by taking 

arbitrary tensor products of states having either spin up, 1 t(j)>, or spin down, 

11 (j)>, at each point. Our procedure will be to find a new complete set of states 

which span the same space and then thin this new set out in some way. We will 

try to do this in such a way as to keep states which we have good reason to 

believe are most important in the expansion of the true groundstate of H. 

As a guide to making such a choice of lqn>% let us, as indicated in Fig. 6,. 

divide the lattice into disjoint boxes each of which contains two lattice sites. 

Clearly, one way to get a set of states which span our Hilbert space is to take 

the four states Ill>, ITT >, lfl >, and 111~ associated with each box and then 

to form from these states four different orthonormal vectors-say for example 

jitt >+ Ill>) (Ill>- Iff>) (Itl>+llb~ , and (lib-lfb) 

$2 ’ J-2 ’ J-i 43 * 
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It is then obvious that we can take a basis for the full Hilbert space, states 

formed by taking the product over boxes of one of these new vectors for each box. 

In general the subclass of states, 
4 

l$n>, used to form our linear trial wave func- 

tions will be defined by restricting ourselves to two of the four states in each box 

when forming product states. The key question will be how to decide on which 

two states in each box to throw away. 

One way to throw away states is on the basis of the following overly simple 

argument. Begin by deleting from the Hamiltonian all terms-hrx(j) a,(j+l) for 

which j and j-t1 do not lie within the same box. In this event the resulting 

Hamiltonian can be diagonalized by diagonalizing any one of the single box 

Hamil tonians 

= El {(i ‘$ tj,) - bxW a,(2) (8.8) 

The Hamiltonian H 
(box) 

acts on the four possible states Ill>, ITT>, Itl> and 

Ilf>. As an aid to diagonalizing this problem let us observe that H 
(box) 

is invari- 

ant under a rotation about the z-axis of T. More specifically the unitary trans- 

formation 

u@ox) = eiGicz(j) = -)- (1) c (2) 
Z Z (8.9) 

commutes with Hbox); since, 

Uoz(j) U-l = uz (3 ; Uox(j) U-l = -gxW (8.10) 

Because of this H(,+ can only mix states having the same eigenvalue of U, hence 

the state Ill > only mixes with Itf P and the state Ifi > only mixes with Ill>. 



This reduces the problem of diagonalizing H 
Pox) 

to the problem of diagonalizing 

two 2 x It matrices; namely 

< 11lH -cI boxlll> 41~oxI 
Ml = 

< TTl%ox Ill> ‘tTIHbox 1 

and 

M2 = 

Tt> 0 -A II 1 Tf> = -A ZE 
J L A 

(8. 11) 

(8. 12) 

Diagonalizing Ml and M2 is a trivial exercise and the four eigenfunctions and 

eigenvalues are given in Table I. 

Table I 

State Energy Energy Relative to Lowest State 

-i- (Ill > +altT>)*= Ill>) E - J E 2+A2 O 

J- l+a2 

$ITl> + llT>)= IT’>) E-A J e2+A2 - A 

A- (lit > - ITI>) e+A J e2+A2 t- A 
Ji 

1 (-aill> e ltf >) 
J- l+a2 

,+JZZ 2&C? 

12 *a=(\e +A - e)/A. 

Step (i) of our general procedure will be to choose this set of four eigenstates as 

the new orthonormal system which we will use to construct a basis for , , . Step 

(ii), the thinning out procedure, is simply accomplished if we argue--with some 

justification-that when we add back the terms linking different boxes the most 

important part of the true groundstate will be spanned by states formed by 
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restricting ourselves to the two lowest energy states in Table I for each box. 

Having made this statement, we need only construct the truncated or effective 

Hamiltonian for this choice of linear trial wave functions and see if we can 
& 

solve it. 

Let us begin our computation of H (tr) by labelling each box by an integer ‘p’ 

and computing the truncated form of the part, H1, of the Hamiltonian in (6.6) 

which does not contain terms -AUx(j) “,(j+l) where ‘j’ and ‘j+ll are in different 

boxes. Since our procedure for constructing the l$,>‘s was to keep for each ‘p’ 

the two lowest eigenstates of the H@Ox) (p) corresponding to that box it is clear 

that we can write H y) as 

This is perhaps better written as 

to make it look like the expression in (7.8). The next task which faces us is to 

compute the truncated version of H2 which is the sum over all terms -Acx(j) cx(j+l) 

which couple different boxes. (trunc) In order to compute H2 all we need to do is 

see how any one such terms acts on one of the l$n>f~ we are considering. Since 

any one of the I$,s’s is a state of the form 11 I$ > where the l~/~>~s can be 
boxes p 

either of the first two levels in Table I, the way in which a term of the type 

-Mx(j) ax(j+l) acts on a lqn> is to flip one spin in each of two adjacent boxes. 

Therefore, in order to compute the truncated version of this term, we need only 

compute the overlap of the state in the pth box obtained by flipping one spin in 

(8.14) 
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with the state 

1+1,,)> = NT>+ IT1 >) . 
45 

(8.15) 

ClearG, since Fx(j) is Hermitian and la1 is real the truncated form of gx(j) will 

be symmetric too. Actually since the term we wish to compute is -bx(j)ax(j+l) 

we should note that a,(j) will flip the right spin in a box whereas a,(j+l) will flip 

the left spin, so in principle we must compute the overlap for each of these cases 

separately. In fact the calculations will give identical results. 

The actual computation is quite trivial. Assuming ljl lies in the pth box we 

find 

uxtj) I +, @P = Qxtj) (llb+alTT>) 1 
= 1 [llT>+alTl>] 

a 
(8. 16) 

. - and so 

+,(P) l@xtj) 1 iii,@P = 0 
&z 

(8. 17) 

Similarly 

~xW-Wo@+W = 1 ~tl>+allT>] 

%I-- 

(8.18) 

l+a2 

and so 

~~l(~l)l~x(j+l)l~o(pl-l)> = 
(l+a) (8. 19) 

It follows from (8.14)-(8.19) that for ‘j’ in the pth box 

(8.20) 
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and 

(8.21) 

Thus, we have reduced the problem of finding the best upper bound which one 

can obtain by choosing trial states from the set of states spanned by forming all 

possible tensor products of the lowest two states in Table I, to the problem of 

diagonalizing a new Hamiltonian, H ttr). Interestingly enough H Or) has exactly 

the same form as the original Hamiltonian but different coefficients. To be 

precise 

where 

Cl = E-J- 

tl=Ja-A 

and 

AldYEg 
2(1+a ) 

(8.22) 

(8.23) 

(8.24) 

(8.25) 

At this point we face one of two possibilities. Either the values of cl and Al 

are such that we can treat the resulting effective Hamiltonian, H 1’ by perturba- 

tion theory for cl/Al> 1 or cl/Al< 1; or, we say that we still have too large a 

class of orthonormal wave functions and we carry out the same procedure as we 

just went through, but this time for the Hamiltonian H1. It is a straightforward 

exercise to convince oneself that each successive restriction of our class of trial 

wave functions leads us to a new effective Hamiltonian of the same form as the 

original Hamiltonian, but the coefficients of this effective Hamiltonian are given 

in terms of the ones obtained from the previous calculations. The general result 

is that after lnl successive truncations our variational problem reduces to the 
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problem of diagonalizing an effective lattice Hamiltonian 

V-26), 
-c, 

where 

~~+~=-jm -An , 

A 
An (lvQ2 

n+l=2 (l+az) ’ 

an=Jr -($) , 

2 
C n+l= en- @-ii” n ’ 

(8.27) 

and 

d n+l = ‘n+l “2dn 0 

where, referring back to Eq. (6.6) and Eq. (7.8) we see that db=-e/2. Hopefully, 

0J-j at some state of this process one of the Hn Is will prove to have a ratio of 

en/An which is solvable or can be handled in perturbation theory. In any event 

we shall borrow from Wilson and Kadanoff and call the process of generating a 

new effective Hamiltonian from the one which was obtained in a previous step a 

9enormalization group transformation. ‘* The recursion relations given in (8.26)- 

(8.27)) which define the parameters in Hr) obtained from successive iterations, 

will be referred to-for want of a better name-as renormalization group 

equations. 

C. Analyzing the Renormalization Group Equations. The preceding discus- 

sion reduced the problem of constructing a set of l$n>fs by means of a succes- 

sive thinning out process, to the equivalent problem of computing a series of 

renormalization group transformations on the coefficients of an effective Hamil- 

tonian. In order to extract all of the information contained in (8.26)-(8.27) the 
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recursion relations must be studied numerically. However, there are several 

points which can be understood without putting these equations on a computer. 

First&we note that both (e=O, A arbitrary) and (E arbitrary, A=O) are fixed 

points of the renormalization group transformation since in either case en=e and 

A =A for all lnr. n In fact, we have already seen that both of these cases can be 

solved exactly and it is easy to convince oneself that our algorithm for construc- 

ting the groundstate wave function constructs the exact eigenstate for these two 

cases. Second, we observe that a great deal of information can be extracted 

without completely solving the renormalization group equations if we know 

whether the ratio en/An increases or decreases with successive iterations. In 

order to see if this happens let us define 

(8.28) 

and going back to (8.26)- (8.27) we see that fyn+lf is a function of lynf alone. To 

be precise 

Y n+l= 
2(-i~-1)(1”2yn(~~-y~)d~f Fty) 

(l+-@-YJ2 
n (8.29) 

If we now wish to see if yn=en/An increases or decreases with each iteration we 

need only study the function 

R(y) dgf F&)-y (8.30) 

and see what it looks like for all lyl. R(y) is plotted in Fig. 7, and we obtain 

useful information from the general shape of the curve alone. For example, 

since a “fixed point’* of the transformation is a value of E and A which reproduces 

itself under the renormalization group transformation, we must have that 

F(y) =F(e/A) = 0, unless of course e/A=m and then F(m) > 0 cannot reduce this 

value. Hence Fig. ‘7 shows that there are three fixed points for our transformation; 
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namely, e/A=O, .e/A=m and e/A= 2.55348456. . . . Actually, F(y)=0 only 

requires that the ratio (E/A) is unchanged by the iteration and so if E n+lzhen 

and %+l=hAn, i.e., if the Hamiltonian reproduces itself up to an overall scale 

factor, we will also have a zero of F(y). As we have seen y=O and y==~ are true 

fixed points of (8.26) -(8.27), and more careful analysis shows that ~“2.55. . . 

is a point at which the Hamiltonian is reproduced up to a scale factor h (y,), 

which is another critical constant of the theory. 

There is additional qualitative information which can be extracted from F(y). 

In particular, F(y)=0 implies that the ratio (E/A) decreases for that iteration and 

so the new (cl/A’) or y’ lies to the left of the y we started with. Since, as shown 

in Fig. 7, F(y) is negative for y g, we see that if we start at any point in this 

range successive iterations of our truncation procedure will drive us to form 

for the effective Hamiltonian which we have studied in perturbation theory. On 

the other hand, since F(y)> 0 for y > y, we conclude that successive iterations 

drive us to y= a~ which implies A/E>> 1 which is another form of the Hamiltonian 

which we have studied in perturbation theory, Hence we conclude that all 

theories for which y < y, are theories with a degenerate groundstate, etc. ; 

whereas, all theories for which y >y, are theories with a unique groundstate. 

Clearly y, is the point at which the nature of the groundstate changes, and so 

y, is the critical point of this theory. Note, that the result y,=2.55348.. . is 

(exact) obtained from our simple procedure is not too bad since y, =2 is the exact 

answer. The fixed points y=O and y=-” are usually referred to the stable fixed 

points of the renormalization group transformation and the fixed point at y&y, 

is called an unstable fixed point. Notice, the fact that at y=y, the Hamiltonian 

continues to reproduce itself up to a scale factor says that at a critical point the 

physics going on at different length scales is essentially the same. 
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Certainly, there is more information to be gleaned from the recursion 

relations in (8.26)-(8.27) than one obtains from plotting F(y) alone. In particular, 

these relations allow us to compute en and An separately. If one examines the -c1 

result of iterating (8.24)-(8.27) one finds that for initial values, ‘O/A0 <y c’ t-he 

successive renormalization group transformations lead to lim en= 0 and 
n-00 

lim An=AW(eo/Ao)#O,whereas for (eo/Ao)>yc, lim tn=e~(eo/Ao)#O and 
n-m n-co 
lim An=O. The next question is how to use this information to calculate the 

n--m 
order parameter <c,(j)>. 

The answer to this question is easily divined once one realizes that as we 

carry out a succession, say N, renormalization group transformations we are 

effectively finding, by direct construction, those two states within a block of 

size (2) N -sites which have the lowest energy. Now, for y<y 
C’ 

in the limit N-m 

we have shown E N-O and AN- A, and so the two states we construct in this 

limit are degenerate. Since we construct these states by keeping one state which 

is even under U and one state which is odd, we need only refer to our discussion 

of exact results, in particular Eq. (7.5), to see that the quantity we want to 

compute is 

lim < $fven lax(j) l$fdd> d’f <ux(j)’ 
N--a, 

Going back to the discussion leading to (8.20) we see that because cx(j) [ 1 tr is a 

purely off-diagonal 2 x 2-matrix calculating < $ gen iax I+(Jd> is the same as 

computing 

c 1 ax(j) lst-trunc. = (8. 31) 

Hence in sucessive transformations we find that 

II 1 p,(j) 
Nth-trunc. 

(8.32) 
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This argument therefore tells us that if A E lim An then the order parameter 
O” N-co 

for a theory such that y. = eO/Ao< y,, is given by 

EO A 
r-z fl. Of AO 0 

(8. 33) 

Explicit numerical iteration of (8.26)-(8.27) shows that a very good fit to 

(8.34) 

with yc%2. 55348456.. . . Considering that we have been so crude in our 

calculations the agreement of this with the exact answer 

~exacttY) = (1 - ($)’ 125 (8.35) 

is not too bad. 

Nevertheless, the advertised virtue of this method is that one gets a good 

nuts and bolts feeling for what is going on and so one can see how to do better. 

In the next section we will show how a simple modification of our approach does 

produce a significant improvement in results. 

D. Nonperturbative Analysis: A More Sophisticated Algorithm. Now that 

we have seen how a variational procedure based upon successive truncation of a 

space of “linear trial wave functions” leads one to a renormalization group trans- 

formation, let us go on to analyze how one can modify our truncation algorithm 

to produce better results. In this case “better*’ will mean a better calculation 

of the groundstate energy and a better calculation of the general behavior of the 

order parameter <ax(j)>. Actually, we will find that we worsen the prediction 

of the critical temperature in the process. We are pretty sure that we know why 

this happens and I will try to explain the reason in more detail at a later point in 

our discussion. In any event, the improvement in critical exponent by a factor 

of 2 and the improvement in the qualitative behavior of the ground&ate energy 
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density with respect, y, is even more dramatic. We will see this when we plot 

-a2 &,/8y2 and observe that the calculation I am about to describe can see that 

8,(y) possesses a singularity in its second derivative at the critical point-a 
-c, 

result which cannot be obtained from a more naive calculation. 

As interesting as these results are, however, I do not wish to focus your 

attention too closely on them. The key point I wish to make in this discussion is 

that the variational technique based upon the use of linear trial wave functions 

can be systematically improved upon and that the procedure for implementing 

this methodically is not much more difficult than the original naive procedure. 

To begin, let us note that there are in fact two distinctly different pieces to 

our algorithm, both susceptible to change and improvement. First we committed 

ourselves to grouping lattice sites into boxes containing two sites each. We then 

constructed “box states11 and thinned out our complete set by throwing away two 

out of the four possible states per box. Clearly we could easily generalize this 

- approach both by grouping things into bigger boxes and by keeping more states. 

However,for now let us assume that this part of our procedure will be left 

unmodified so that successive truncations of our space of trial wave functions 

shall always lead to an effective Hamiltonian of the same form as the original 

one. Having committed ourselves to this procedure, let us turn to the question 

of improving upon our algorithm for throwing away states. Obviously, although 

our algorithm for throwing away states based upon a diagonalization of the 

appropriate two site Hamiltonian is intuitively appealing, it is by no means 

sacred. Moreover, it certainly neglects important physics. This notion is 

completely born out if one looks at the argument between the exact answer and 

the simple method for small e/A. 

Under these conditions the question becomes “what can we do to correct 

these defects?” The answer is “adopt a procedure which keeps these small 

effects. ” In order to develop such a procedure let us recall that once we noted 
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the invariance of the theory with respect to the transformation U we were led to 

classify states according to their U eigenvalues. Hence we divided the “boxff 

states into two classes; e.g., -h i 
ITT>, Ill > 

I 1 
and IlT>, IT1 > I . We then 

decided to adopt a procedure for choosing one state from each class and truncated 

H with respect to this choice. The first question to raise is “Why choose a 

member from each class? Why not choose two members from the same class?” 

If we did this we would immediately find that, since mx(j) cannot link members of 

the same class, at the first iteration the term A, would be zero and then H1 

could be exactly diagonalized. It would then be trivial to show this procedure 

would be constructing a poor class of variational wave functions since the re- 

maining box-box interactions would be rendered inoperative and therefore would 

not be available for lowering the energy. This argument tells us that we must 

choose one member of each class, but does not tell us which member to choose. 

It is apparent that the most general procedure we could adopt is to decide 

. - to form two states 

I$,> = cm ((3) 

and 

I$,> = cos ($) 

Ill> + sin (~)lTf> 

(8.36) 

llT> + sin ($)ITl> 

and compute the new truncated Hamiltonian in terms of the unknown angles 0, c$. 

This would lead to an effective Hamiltonian H1 of the form 

a,, 0, +) CP) + E1(EO, a,, 0, @) 

-A+E~> Ao, 0, ,,i”l 0’ @I (01 ;)@+l~ 

where 

Cl = EO - (co cos (28) + a0 sin (2e)) (8.38) 

el = eO cos (20) + Ao(sin (20) - sin (2@)) 

(8.37) 

(8.39) 
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A,= A0 cos (0-G) sin (e+$) (8.40) 

Clearly this procedure could be worked out without deciding upon 8 and 4 h 

in advance. In fact, on general grounds one would expect that a different choice 

of 8 and $I to be appropriate for different values of E and A. Since each 

renormalization group transformation produces new values of en and An, we 

probably should assume that Band 9 are arbitrary functions of E and A. In this 

way we make an essentially independent choice of 8 and Cp at each iteration. Once 

one allows this freedom in the choice of 8 and $ at each stage of the calculation, 

the question becomes one of adopting a physical criterion for fixing these two 

functions. To do this we will make use of a clever observation made by Bob 

Pearson at FNAL. He suggested we choose 0(~, A) and $(E, A) to be functions of 

en/An) alone, since the overall scale of the Hamiltonian could not matter, and 

then work out the renormalization group transformations in terms of e(e/A) and 

@(e/A). If we adopt this prescription we can write the result of the n+lst renor- 

malization group transformation as 

Hn+l = C bn*l(gl 01)@) + ‘n+l(en’ 4,(: 01)‘) 
P 

- An++en, A&(; ;) @) (“1 t,@+‘;l ’ (8.41) 

where 

and 

C n+l = ‘n - CE, ~0s t2Wn/An)) + An sin (28tEn/An))) 

(8.42) 

d n+l = 2dn+ Cn+l , 

E n+l = En ~0s (2e(En/An)) + An(sinW@JAn)) - sin(2@(cn/An))) (8.43) 

and 

A n+l = An cos @(En/n,) - qpn)) sin ( ecqa,, + $$pnH ’ (8.44) 
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To fix the unknown functions S(e/A) and @(e/A) we decide at some stage, N, to 

compute the groundstate energy of HN, and require that the arbitrary functions 

0 and $I be chosen to minimize this quantity, In order to give a more explicit 
- 

formulation of this idea let us examine Eqs. (8.42)-(8.44). We can easily con- 

vince ourselves that en and An stay bounded in magnitude at least under a wide 

class of choices of 0(E/A) and @(e/A)-but that the term proportional to dn+l 

increases by a power of 2 for each iteration. Hence, for N sufficiently large 

this term swamps the remainder of the Hamiltonian. This divergence in the 

coefficient of the unit matrix is just the renormalization group transformation’s 

way of telling us that translation invariance of the groundstate implies that its 

energy is proportional to the volume of the lattice times a finite number, go. 

This number, go, is called the groundstate energy density. Since en and An do 

not grow with this factor of 2 N , and since each point of the effective Nth-lattice 

is 2N-points in the original lattice, it is not hard to convince yourself that the 

energy density is the limit 

go = lim 
N ( ) +dN --+@3 2 

or, from (8.42)) 

(8.45) 

(8.46) 

A precise statement of our full procedure is to first parametrize the two 

unknown functions 8( e/A) and $I( e/A) in terms of a small number of unknown 

parameters. Next, carry out the recursion implied by (8.45) and (8.46)-say 

one hundred times-in order to compute the groundstate energy density, to one- 

part in (2) 100 (N=lOO) . This gives us go as a function of the unknown parameters, 

so we finally vary over these parameters to minimize CF (N=lOO) 
0 * By this pro- 

cedure the “renormalization groupY’ algorithm, as well as all quantities of 

interest, are constructed by a variational procedure. Hence, the only arbitrary 
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input is the choice of the way in which we group sites and the general choice of 

the number of states we decide to keep. 

E. A Discussion of Results. It will surprise no one that the procedure just 
4 

outlined must be carried out numerically, but this is done quite easily and Figs. 

8-10 summarize the results of a simple two parameter calculation done for the 

starting Hamiltonian 

(8.47) 

Because of a symmetry argument based upon invariance of Ho under any reflec- 

tion taking the lattice into itself we chose to fix $(e/A) to be a constant equal to 

7r/4. Therefore, only e(e/A) had to be determined. The choice of e(e/A) was 

constrained by the fact that for E=O and any A we know that choosing e(e/A=0)=7r/4 

leads to a construction of the exact wave function; and the same is true, if for 

- 

A=O, we make the choice e(e/A=oo)=O. These considerations led us to param- 

etrize @(e/A) as: 

since this function is 7r/4 at E/A=O and vanishes as E/A-W. The parameters p 

and u were the free parameters with respect to which we minimized the ground- 

state energy density, (8.46). In Fig. 8 we show a comparison of our calculation 

of the groundstate energy density to the exact answer. Values of esmaller than 

1 and greater than 3 are suppressed because for these regions agreement is 

much better than one-part in 103. Examination of these curves shows that our 

worst disagreement with the exact answer is on the order of 3%. This is a 

significant improvement over the naive calculation. In Fig. 9 we compare our 

computation of f (e/A) with the exact answer. As shown the critical value of E/A 

is now at (e/A) r 2.75 which is, as we noted at the outset, somewhat worse than 

the naive calculation. Interestingly the form of f(c/A) can be fit to a power law 
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of the form 

Note that the critical exponent of 0.21 is a significant improvement over the 

naive approximation answer of 0.4. I want to emphasize that these calculations 

are the simplest ones I could think of doing to demonstrate the method and can 

clearly be improved upon by improving the choice of @(e/A). Surprisingly, even 

five parameter variation forms for @(E/A) doesn’t improve the calculation of the 

critical point much, although the critical exponent becomes smaller ~0.17. 

There seems to be a good physical reason for this which is related to the fact 

that because we work on two sites the function @(e/A) becomes trivial for sy-m- 

metry reasons, and so the eigenstates of U corresponding to +l and -1 are not 

being treated equally. Intuitively, what one would guess is that in order to get 

the best possible groundstate energy density below the critical point the renor- 

malization group calculation wants to make (e/A) small as rapidly as possible, 

so that A approaches its fixed form as quickly as possible. If both qe/A) and 

@(e/A) could both vary this could be accomplished while at the same time allowing 

each individual level to attain a lower energy. Since, however, #(e/A) is forced 

to be r/4 as a consequence of the aforementioned symmetry property of the two 

site truncation process, S(e/A) has to behave somewhat incorrectly in order to 

produce the best groundstate energy. This artificial situation doesn’t arise if 

one works with blocks of three sites at a time, a procedure which has many other 

theoretical arguments to recommend it. A computation of this sort based on a 

3-site block is quite straightforward, and will be carried out in the near future 

to see if our understanding of what is really happening is as good as I am arguing 

it is. 
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Finally let us discuss the curves shown in Fig. 10. As shown the ground- 

state energy density has the property that d2 (groundstate energy density/i3e2 

exhibits a singularity at y,=2, the true critical point. This is really quite a 

sub%e property of the theory and as you can see our variational results also 

exhibit a singularity at the calculated critical point. Moreover there seems to 

be, given the crudeness of our procedure, remarkable similarity in the general 

shape of the curves. It is worth noting that the naive renormalization group 

procedure discussed first misses this singularity completely. 

IX. “SMOOTH-TALK”, OR “WHERE DO WE GO FROM HERE?” 

The preceding discussion completes our analysis of the “toy model. If I 

would like to spend the remainder of this talk summarizing what I hoped you 

learned from this discussion and relating it to other already published work which 

we have done at SLAC. 3 In a sense, these papers on strong coupling lattice 

theories, should have followed the discussion I have just presented-and so you 

might think of this talk as paper 0 in our series. 

As I indicated at the outset my real interest in the “toy model” I analyzed by 

the variational-or “renormalization group” -methods was not in the physics of 

the model but rather in the methods themselves. Hopefully, from this example 

you have been immediately led to generalize the technique to any field theory; 

nevertheless, at the risk of overstating the obvious, allow me to list those points 

which I feel summarize the important features of our discussion. 

First we argued that to begin analyzing nonperturbative effects in any field 

theory one must formulate the theory in a way which does not implicitly make 

use of the weak coupling expansion. We contended-without giving the proof- 

that one way to do this was to formulate the theory with a volume and momentum 

cutoff, a procedure which is completely equivalent to formulating the theory on 

a lattice. 
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Second, we argued one could study the resulting lattice problem by varia- 

tional methods. We then showed that a variational procedure which could be 

adopted was one based upon linear trial wave functions, and we showed that the 
h 

problem of finding a good basis for constructing such trial-wave functions was 

equivalent to a renormalization group calculation in which the renormalization 

group itself had to be determined by means of a variational procedure. In effect, 

the arbitrary input to a 

into blocks of sites and 

truncation. 

calculation was the way in which one grouped single sites 

the assumption of how many states one keeps at each 

Having derived the specific form of the renormalization group transforma- 

tions for the set of assumptions made in the second step, the next question is to 

analyze what happens to the form of the truncated or effective Hamiltonian as we 

thin out our family of linear trial wave functions. As we saw in the specific 

example, the key first point to understand in these transformations is what 

happens to the strength of the gradient (site-site recoupling) terms relative to 

the single-site terms in the Hamiltonian. 

Quite generally, it proves useful to study the function which gives the change 

in the ratio of the single-site couplings to the gradient after a finite number (one 

or a thousand) interactions, since, as we saw in our “toy model” one can tell a 

great deal about qualitative features of a theory from this information alone. 

Suppose, for the sake of argument, we assume that there is only one single-site 

coupling constant in a theory. Then, defining ‘yf to be the strength of the single- 

site coupling to the gradient term, we can plot the general form of the function 

R(y) = (change of y in finite number of iterations). A few examples of imaginable 

R(y)‘s are given in Figs. (lla)-(11~) so that we may make a few general remarks 

about what one would conclude from each picture. 
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In Fig. lla we see that R(y)? 0 for all values of 05 y( M. If a theory has 

this sort of R (y) we can conclude two things. First, the points y=O and y=* 

are the only fixed points of the theory. The Hamiltonian at y=O, i.e., zero 

couging constant, is a “free field theory, ‘I and can be presumably solved exactly, 

the y=* Hamiltonian is solved by solving the single-site Schrcedinger problem. 

Second, we observe that if we start at some finite value of y successive itera- 

tions drive us to larger value of y (i. e. , R(y) > 0) hence, eventually our problem 

can be studied by treating the gradient terms as a perturbation on the single- 

site terms. Hence, in any theory for which R(y) B 0 we can conclude that the low 

energy (or long-wavelength) physics is described by an effectively strong- 

coupling constant Hamiltonian. One other thing which follows from this discus- 

sion is that the mass gap in such a theory will be given by calculating the gap 

between the first two eigenstates of the effective single-site Schrcedinger prob- 

lem, and will, therefore, be a function of the effective single-site coupling tfgW’f. 
\ 

In general, since the scale of Ho is set by the cutoff A , this means that the 

lowest mass gap in the theory will be =Agco and so to have practical Lorentz 

invariance-which we will take to mean that the scale of physical masses should 

be negligible with respect to the maximum momentum-we are only interested in 

theories for which g,<<< 1, or in other words g,A M 1 GeV (for the sake of argu- 

ment) . Since the Hamiltonian at a fixed point reproduces itself up to a scale 

factor, if one finds a critical point (or fixed point) for which this scale factor, 

p, is less than unity, then by iterating the overall scale of HN as N -00 is Ap N . 

This tells us that the critical theory has no mass gap. This also implies that 

choosing y close enough to the critical point guarantees that for the first M iter- 

ations, H M M, will stay fixed up to a factor of p and then it will start changing 

rapidly to its limiting form. Therefore, heuristically we argue that in order to 

get a practically relativistic theory one needs to start from a value near this 

fixed point so as to get a scale for H M M =p A M 1 GeV. 
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It follows from this discussion that for a case like Fig. lla one need only 

compute the parameter p for the case y=O to decide whether or not a lVpractically 

relativistic” limit exists for the theory in question .%‘p < 1 then one can take the 

cutoff A arbitrarily large keeping the mass of the lowest states fixed by taking 

the original trbare” coupling towards zero as a function of A. This would there- 

fore be an example of a theory whose short distance behavior is “free” but 

whose long wavelength behavior is not. 

If we next look at R(y) for Fig. lib we come up with the opposite conclusion. 

If R(y) i 0 then each successive set of N-iterations will make it smaller. Hence 

the large wavelength or low energy physics of this theory is given by weak 

coupling perturbation theory, whereas the single-site or short distance behavior 

is governed by a strong coupling constant. 

Figure llc tells us that the two different cases can occur depending upon 

the starting value for y, i. e, , whether y. < y, or y> y,. This is of course the 

form of R(y) calculated for our toy model and so I can refer you back to our 

discussion of the way in which the exact case leads to an effectively relativistic 

theory in order to clarify the kind of information you can get from this picture. 

Finally, we have reached the point in our discussion where we can under- 

stand why the material in Ref. 3 is relevant. As we have seen for cases (lib) 

and (llc), after a large number of iterations, it becomes necessary to know the 

solution of the strong coupling lattice theory. The discussion we give (we, 

meaning Drell, Yankielowicz, and me) for the case of strong coupling fermion 

theories on a lattice was to show that if a renormalization group calculation of 

self-coupled fermion, or color-gauge theories leads us to an R(y) of the form 

shown in Figs. lib and llc, then our analysis of these models becomes important. 

For the case of color gauge theories in particular-where the folklore based upon 

continuum perturbation theory and asymptotic freedom leads us to conjecture that 
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Fig. lib is the relevant form of R(y)-the fact that the infinite or very large 

coupling analysis of the color gauge theory leads to a “zeroth order spectrum” 

of physical particles makes the need to study these theories more carefully even 

g-recter . To summarize, although much remains to be done along the lines 

presented in this talk, the analysis of Ref. 3 tells us that if we are lucky the 

large distance behavior of lattice color gauge theories of strong interactions 

could be very, very amusing. 

APPENDIX A 

A. On the Equivalence of Cutoff and Free Field Lattice Theories. 

Case I: Boson theory: As an example of the way in which a continuum 

field theory can be converted to an equivalent lattice-field theory let us study the 

two simple cases of (i) a free scalar field, and (ii) a free fermion field. In order 

to maintain a simple notation I shall work things out for the particular case of 

one space-one time dimensional theories, the generalization of this trick to 

higher dimensions is discussed in Ref. 3. 

To begin let us consider the free massive scalar field theory defined by the 

Lagrangian density 

=P($, $@, = 
1 $dg$W) (A. 1) 

and the canonical equal time commutation relations 

Cl1 @, t) , 4% t>J = -iti (x-y) 
where 

(A. 2) 
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In order to discuss the quantum mechanical theory we proceed canonically to 

construct the Hamiltonian 

H = [+mdx [II(x) i+@(x) - 9’} 
-co 

(A. 3) 

maintaining the commutation relations specified in Eq. (A. 2). 

As promised our first step will be to assume that the theory under con- 

sideration is defined in a finite volume, i. e., a box of length L. Hence, we 

think of the functions $(x) and II(x) as defined on the interval -L/25 x( L/2 and 

so we can expand these functions with respect to the complete set of functions, 
iknx 

e , where 

(A. 4) 

for arbitrary integer n. To be specific we write 

(A. 5) 
and 

+L/2 
H(kn)=LJ dxe 

-ik,x 

JL -L/2 
Wx) 

so that 

H= E 
n=-w 

W-k,) + 2 4) F,) cp t-k,) 1 
It follows from Eqs. (A. 5) and (A. 6) that 

$+kn) = -idk 1 k ’ 
n’ m 

64.6) 

(A. 7) 

(A-8) 
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Although we will not use this fact later it is worth noting that we can transform 

H to the form of a function of ‘kt times a number operator by defining uk = ’ k2+p2 

and writing 

(A* 9) 

and 

so that 

[ 1 GnYakm = 6kn,km 

so that H becomes 

(A. 10) 

(A. 11) 

(A. 12) 

Having collected the formulae needed to discuss a theory jn finite volume, 

we now impose a maximum momentum cutoff by assuming -k <k <k max- n- max’ 

The easiest way to define kmax is to let L= (2N+l)a where “a” has the dimen- 

sions of length and then rewrite Eq. (A. 4) as 

for -N$nIN (A. 13) 

In this way we can define the cutoff mass A=l/a and for N -00, km=-+ KA. 

Having adopted these definitions it is a trivial matter to show that the cutoff ver- 

sion of the Hamiltonian defined in Eq. (A. 7) is unitarily equivalent to a lattice 

Hamiltonian. To do this one need only define 
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and 

h 

where -NL jc N, and $(j) and II(j) are dimensionless. 

It is a simple exercise to show that 

(A. 14) 

[H(j), $(jt)] = -i6.. 
JJ’ 

so this transformation preserves the canonical commutation relations, and 

that 

(A. 15) 

where 

d ) 
knj2 i % (jl-j2) 

-- W,-j2) - f2pJ:1j n3 n e . 

Since Eq. (A. 15) defines a theory of a scalar field defined on (2N+l) lattice sites 

we have completed our task of establishing the desired correspondence. Note, 

the amusing feature of this formulation of the lattice theory is that in the limit 

(2N+1)-4 the only way in which this theory fails to be a relativistic theory is 

that the spectrum J-= k +,u cuts off a maximum momentum, kmax. This completes 

our discussion of the scalar free field. 

APPENDIX B 

Free Fermion Case. The continuum finite volume fermionic theory starts 

from a Hamiltonian 

H=[ 
+L/2 

dx ++tx, $ckT-t pm $(x) 
-L/2 

(B-1) 
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and canonical equal time anticommutation relations 

Proceeding as in the case of the free field we define 
-h iknx 

$(x) = c e 
-ik,x 

n &J 
e(kn) ; $64 

and 

P3.2) 

-iknx 

q+(x) = (b(x)+ = c L.-- 
n JL 

&$J (B. 3) 

where kn is given by Eq. (A. 4). It is then a simple exercise to show that 

Clearly this can be solved in the usual way by writing 

WI = u(k) b(k) + v(-W < (B.5) 

where u(k) and v(k) satisfy 

W + P) u(k) = EN W , 
03.6) 

(czk -t pm) v(-k) = -E(k) v(-k) 

withE( k+m. J-= 

Having established the finite volume formulation we now established a kmax 

cutoff as in the boson case and find that the free cutoff continuum model is 

unitarily equivalent to a lattice Hamiltonian 

* m C ii;‘(j) P+(j) 
j I 

03.7) 



where 

. kn 

$(j) = i2i+l n e 
( 1 -1 - 

c 
Aj 

N9 

def c [ikj ei(??) (ji-j2] . 1 
-6’(jl-j2) = (2N+l) 

This completes our analysis of the two free fields of interest. Obviously 

the same procedure leads to an equivalent lattice formulation of any interacting 

field theory (except for those involving gauge fields where some additional 

questions arise which will not be addressed in these lectures). Deriving the 

correct form of the Hamiltonian which is truly equivalent to say cutoff con- 

tinuum G4 theory is left as an exercise to the student. 
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