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ABSTRACT 

The spin dependence of zj~ photoproduction is analyzed in the 

context of a quark-gluon model. The z/ is treated as a non- 

relativistic bound state of a cc pair, with exchange of two colored 

vector gluons to the spinless target, Effects due to the binding of 

the cc pair are ignored, resulting in a simple, parameter-free 

model for $ photoproduction. A detailed calculation of the 

helicity amplitudes and density matrix elements to leading order 

in s is given, The scalar gluon exchange case is also analyzed, 

and the decay angular distribution for $ --. !!?2- is discussed in 

terms of the zj density matrix., 

(Submitted for publication. ) 

-- 
*Work supported in part by Energy Research and Development Administration. 
fPresent address: Physics Dept. and Theoretical Physics Institute, University 

of Alberta, Edmonton, Alberta, Canada T6G2Jl. 



-2- 

1. INTRODUCTION 

g”photoproduction exhibits the characteristics of diffraction or Pomeron ex- 

change, namely, an almost constant total cross section for asymptotic energies 

and an exponentially decreasing differential cross section. This kind of be- 

havior was also found to hold in photoproduction of p, w, and $. Experimen- 

tally, the latter processes conserve s-channel helicity and, indeed, it is com- 

monly thought that s-channel helicity conservation (SCHC) is an intrinsic char- 

ac teris tic of Pomer on exchange ., 

In previous papers 132 we have investigated whether SCHC also holds true 

for $ photoproduction by undertaking a systematic spin analysis of various 

models for $ photoproduction at asymptotic energies and near threshold., Two of 

the models are phenomenological parametrizations of the data for p photopro- 

duction, analytically continued in the vector meson mass to mV = m 
4)” 

Alterna- 

tively, we assumed the # to consist of a pair of constituents interacting with the 

nucleon via vector or scalar gluon exchange. The main result of this analysis is 

that at asymptotic energies all models predict SCHC, whereas at moderate en- 

ergies, substantial violation of SCHC is possible. In particular, ho-wever, in 

this subasymptotic region vector gluon exchange obeys SCHC almost exactly, in 

contrast to the predictions of all other models. 

This fact is especially significant in that the two vector gluon exchange 

model is perhaps the most attractive model we consider. When c.ombined with a 

relativistic bound-state interpretation of the $, it provides a well-defined,. physi- 

cally reasonable “Quantum Chromodynamics”-type mechanism for photoproduc- 

tion, Calculations can be carried out which are limited in pre- 

cision only by the technical difficulties involved in dealing with Feynman graphs. 

For these reasons, we devote the bulk of the present work to a detailed 
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examination of the two-gluon exchange picture. We include a complete discus- 

sion+of the calculation of the helicity amplitudes to leading order in s, as well 

as detailed results for the density matrix. For a comparison of the predictions 

of various photoproduction models we refer the reader to Refs. 1 and 2. 

The paper is organized as follows. In Section II we discuss the connection 

between the decay angular distribution for yN - $N (Ijl-e+e-) and the density 

matrix. We consider the case of the most general $e’e- coupling, and its 

reduction to a purely transverse coupling. The scalar and vector gluon ex- 

change models are introduced in Section III, and calculation of the resulting 

Feynman graphs is discussed. Section IV presents the results of the analysis 

for helicity amplitudes and density matrix elements. Conclusions appear in 

Section V. Finally, many of the technical details of the two-gluon exchange 

calculation are reserved-for the appendices. 
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11. ANGULAR DISTRIBUTION AND DENSITY MATRIX 

The spin density matrix of the created vector meson V in the process 

YN -+ VN determines the angular distribution of its decay products. Since 

# +- - - e e ,p’p are the most important single $-decay modes, these can be used 

to determine the helicity of the created q-meson in the same way as the x’.~T- 

mode in p-photoproduction contains information about the spin of the created p- 

meson. In this section we therefore analyze the decay angular distribution for 

V - ,Q+2-. 1 

The process we are describing is shown in Fig. 1 and its matrix element 

can be written as a product 

d+i-N, I T I yN1> = cQ+~-IMIV><VITI~>. (2.1) 

The first term describes the decay V -+ S>- whereas the second is the helicity 

amplitude for yN -+ VN. The decay angular distribution of the vector meson in 

its rest frame is obtained by squaring the matrix element and summing over the 

helicities 

dN ---- - w(e,$) = C ~w,(e,w-~vv~. dcosed@ Vv’ 
(2.2) 

Here pvv, is the spin density matrix for ?N - VN; it is connected with the photon 

density matrix and the helicity amplitudes through 

PVV’ = c <VlTl~‘~~,<VlTly’>*, (2.3) 
n’ 

The above Eq. (2,l) is useful since it permits separation of the decay V - 1’1- 

from the creation process yN - VN. Once the decay is specified it provides in- 

formation on the production process by use of the decay angular distribution. 

Assuming that $ --c e+e- - ,p+h proceeds through a photon, we have 

<nth’lMlV> = e2 0 gv 0 (ii2yPv1) l ePv) , (2.4) 
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where gv is the vector meson-photon coupling constant and E is the vector 

mesomwave function. The vector meson is, of course, assumed to be on its 

mass shell, Once the decay mechanism is specified it is straightforward to 

determine 

cr,,,(e,$) = C <VPIMIa><aIMIV> , 
o! 

(2.5) 

where 01 refers to both lepton helicities, One might ask what changes would be 

expected if the lepton pair were directly coupled to #0 This can easily be cal- 

culated by inserting 

<n+1- IMIV> = cA 0 D; A (4b h-e) 
o! VCY 

into Eq. (2,5) and by going through the same analysis with the result: 

lc112 
OVV’ =-y-- sin 28 e-i$ (1-26) 2 sin2 8 +46c0s2e 

b 

Sf!l!$!~e’+ (l-26) 

-(w0s2 e )+26sin2 8 y ei4(l-26) sin20 e2i@(l-26) - 

sin2 Be -2iG(l-2&) rS!$!Le +(i-26 ) p+c0s2 e )+26sin2t 

(2.6) 

(2.7) 

Note that ovvp for the photon coupling Eq. (2.4) is obtained 

by setting 6 2 0, corresponding to a transverse coupling. Let us concentrate 

on the density matrix pvv, and go back to Eq. (2.3). So far we have not speci- 

fied the form of the photon density matrix, It can be chosen in a particularly 

suitable form such that the photon polarization vector becomes explicit, This 

Is tandard decomposition’ is 

p(v) Epo+-$ P;*/Y; 
CY=l 

(2.8) 

so that the corresponding decay angular distribution reads 
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w(e,q) = wO(e,(p)+ $ Pa! 
a=1 y 

0 wate,+), 

with the W1(B ,@) given by’ 

(2.9) 

w”(e, $4 = $ (J.+pio) + + (I- 3pio) ~0s~ e 

* & Repi sin 28 cos Cp += py 1 sin2 e cos 2@ , (2.10) 

w 1 1 (e, qg = pll (~+COS 2 1 2 e) + poo sin e 

+ 1 2 ReplO sin28 cos$ + pi 1 sin2 e cos2$ , (2.11) 

w2(e, $) = - J2 ImpffO sin 28 sin $ - Imp:-1 sin2 e sin2$ , (2.12) 

3 w”(e,+j = - J2 ImpTo sin28 sin+ - Impl-1 sin20 sin2$ . (2.13) 
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III. GLUON EXCHANGE MODEL 

IB this section we assume the z/ to consist of a pair of heavy quarks 

(c-quarks) which interact via gluon exchange with the conventional SU(3)-quarks 

(q-quarks) of the nucleon as drawn in Fig. 2. Such a picture is natural in a 

quark-gluon theory of hadrons and their interactions, particularly in the case 

of $ photoproduction, where quarks cannot be interchanged between the $ and 

the nucleon. Furthermore, we assume that it is reasonable to retain only the 

lowest order, two gluon exchange graphs. This is particularly well-justified 

in the large -t region, where asymptotic freedom3 arguments suggest that the 

quark-gluon coupling constant may be small due to the large momentum carried 

by the gluons. At small t, lowest order perturbation theory may not be valid, 

as is indicated by the diffractive t-dependence of photoproduction. Neverthe- 

less, a two gluon exchange picture may still be tenable in this region if one 

invokes a quark-bag interaction to provide the exponential t dependence. This 

is the case in the Low-Nussinov model4 of the Pomeron. Therefore, we con- 

sider it worthwhile to investigate the consequences of the two gluon exchange 

picture for the spin dependence of + photoproduction. Having chosen a model 

for the Pomeron, we now consider the nature of the $. Motivated by the success 

of the charmonium model5 in describing the spectrum and decays of the pions, 

we assume that the $ is a nonrelativistic bound state of a CE pair. Due to the 

large charmed quark mass, the quarks are almost free and the e’s momentum 

is equipartitioned between them. Thus our model is defined by the diagrams 
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shown in Fig. 3. In what follows, we perform the loop integrations, and 

develop a technique to find the asymptotic form of the helicity amplitudes. 

We proceed in three steps: we first perform the loop integration for the case 

in which all particles are scalars (for clearness of presentation), subsequently 

the c-quarks are taken to be fermions whereas the gluons are still treated as 

scalars and, finally, the gluons are taken to be vectors. The nucleon is 

treated as a scalar throughout. The six Feynman diagrams in Fig. 3 form the 

smallest set of diagrams compatible with photon gauge invariance; the exchanged 

gluons are not gauge invariant. Since the external particles are color singlets, 

the calculation is performed according to the rules for QED. The infrared 

problem is escaped by giving the gluons a finite mass mG in the propagator 

denominator. The dependence of the results on the value of mG is discussed 

in detail in Section IV. 

A. All Scalars 

The essential difficulty in calculating the Feynman diagrams drawn in Fig. 3 

is the loop integration. It can be explicitly performed by use of Feynman para- 

metric integrals. In Appendix A we explain the method and give details of the 

calculation, whereas we simply state our results here: 

Tj=G.L 
t-m2 

51, 

j = (0, c, 4 , (3. I) 

I 
1 

L .z 
J 0 

(do)4 Ij(o) , Ij(a) E 6(1- . 
D2 

j 

(3.2) 
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The index j indicates -which diagram we are describing and G contains all coup- 

ling c&stants and i-factors appearing in the vertices and propagators, as well 

as factors due to the loop-integration: 

G ZE 

Similarly, the amplitudes for diagrams (e) and (f) read : 

T. 
I = 2G l LPyt) 

j = (0) 

. (3.3) 

(3*4) 

Lj = I’ (do)5 Ij(o) , 
0 

Ij(“) = (3.5) 

Dj contains the kinematical variables s and t and differs for each diagram apart 

from the fact that Le f involve a 5 -dimensional a! -integration, We identify 
2 

Da = Ds(4) , DC = DU(4) , De = D,(5) , 
(3.6) 

Db - DJ4) , Dd = D,(4) , Df = DU(5) , 

where Ds(4) and Du(4) have been defined in Eqs. (A. 10) and (A. 16); similarly, 

the explicit forms of Ds (5) and Du(5) are given in Eqs, (A, 18) and (A, 23), The 

labels (4) and (5) refer to the loop with four and five internal lines, respective- 

lY. Therefore D(4) appears in the amplitudes of diagrams j = (a, b, c ,d), where- 

as D(5) appears in the ones with j = (e ,f). Since diagrams (b,d, f) are obtained 

from diagrams (a,c ,e) by the exchange pI --p2 their form is obtained by the 

replacement s - u in Ta, T , and Te. Note that in this case of all-scalar C 
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particles diagrams (a) and (c) are also related by s H u crossing; this is no 

longer the case for spinning particles. 

Before going over to the spinning case we discuss the analytic structure of 

these diagrams ., Diagrams (a) and (d) possess a cut along the positive real axis 

of the complex s-plane whose branch point is at 

SB1 
f (mN+m )2 

$ 
= 16.3 GeV2. (3.7) 

There is no cut on the negative real axis for these two diagrams., The ampli- 

tudes corresponding to diagrams (b) and (c) have correspondingly a cut on the 

positive real axis in the complex u-plane, which, in the complex s-plane, gives 

a cut along the negative axis with its branch point at 

2 sB2 = (mN-2m*+ -t) = -t-4.937 Gev2 D (3.3) 

A similar analysis shows that diagrams (e) and (f) possess the same cuts with 

the same branch points. The amplitude Te therefore has two cuts, the conven- 

tional s-cut on the positive real axis as well as the u-cut on the negative real 

axis O Te can be split up into a sum of two terms, each contributing to only the 

right- or only the left-hand cut. The same applies for diagram (f)O 

B. Scalar Gluons 

In the preceding subsection we have set up the formalism for spinless par- 

ticles and now go a step further by taking the quark-spin into account; the gluons 

are still treated as scalars. The amplitudes of the first three diagrams in Fig, 

3 may be cast into the form 
.- 

Ta 
= Go-??-. 

t-m2 
[~2(~4Q-B~)~av11, 

II) 

(3.9) 

(30 10) 
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Te = 2G 0 ii2JZevl , (3911) 

and thgcorresponding ones for diagrams (b,d,f) are obtained by the replacement 

PI - -P2” The JXj represent the loop integrals with an internal fermion line and 

are evaluated in Appendix A. They have the form 

tij = 1’ (do,4 0 sj 0 Ij(a) j = ta,b,c,d) , (3.12) 

and their spin factors are defined by 

iE’a = by+ b, = bc+ti2), 

$ = { mc - $} , tid = irnc + $1) , 
(30 13) 

where f, and f, are defined in Eqs. (A, 30) and (A. 31), The loop term for dia- 

grams (e) and (f) is a 5-dimensional integral of the form given in Eq. (3.12) (j = 

e , f) with the spin factors 

where $I and 1, are defined in Eqs. (A, 34) and (A. 35). We are now in a position 

to write the sum of all diagrams with four internal lines in a compact form: 

Ta+Tb+Tc+Td = G 0 - ~ M.@,~)o Ij(“) l 
I 

ja j I 
(3.15) 

Mj (p, CV) contains all spin factors of diagram j , such as,for example, 

MaW4 = i2 k~h’~)$alvl > (3.16) 

and similarly for all other diagrams j = (a, b, c , d). The Mj (p , a! ) are functions of 

the invariant kinematical variables s, t and (masses)2 and depend linearly on the 

integration parameters .a!. Insertion of the explicit forms of flj into Eq, (3.12) 
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shows that it can be cast into the invariant expansion 

- 
T abed E Ta + Tb + Tc + T d 

= Go2 ~ Q. o [Wi(S~Wi(U)l 0 
t-m2 i=l l 

(30 17) 

11) 

Qi contains all the spin factors, whereas Wi is a sum of a-parameter integrals. 

We have defined 

(3.18) 

We have calculated the matrix elements for the possible helicity combinations 

and list our results in Appendix B. It is straightforward to determine the Wivs , 

with the result 

WI...4 (s) = [1tcW%2/~ ~~3/~2+~3+~4/11.1s(~) , (3.19) 

WI...4 (u) = ~ltW+ cu2+Lw3/a!2/aZ+cl13+cY4/lloIU(cr) s 

where the first argument in the bracket of the integrand corresponds to WI, the 

second one to W 2, and so on. 

We can perform the same steps for diagrams (e+f). Writing 

j1 f kl.al + Pa, + 14p3 (3.21) 

with the ai determined by Eq, (A, 34), the spin factors in Eqs. (3.14) are ex- 

panded and lead to the invariant expansion: 

13 
T ef 3 Te + Tf = 2G. c Qi[Wi(s) +W,(u)] 0 

i=5 
(3,22) 
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The “spin amplitudes” Qi have been chosen as follows: 

, 

Qll = -u,h5,mv, 9 

Q 12 = -~,bYlv, mc , 

Q13 = U,[$?lv, , (3023) 

and their forms, evaluated for different spin combinations, are given in Appen- 

dix B. The invariant amplitudes read 

(3.24) 
[. . O ] = [a2/a2/a a /a a /a a /a /a /1/(m~-Ds/2)l 13 12 13 23 13 , 

where again the first argument corresponds to W5, the second to W6, and so on. 

The last argument (rn: -Ds/2) corresponds to W13. The corresponding ampli- 

tudes for the u-channel coming from diagram (f), Wi(u), are defined as in Eq. 

(3.24) with the ai (defined by Eq. (3.21)) determined by f, in Eq. (A. 35), with 

Ds replaced by DUO 

Up to this point our presentation has not involved any approximations and 

the o-parameter integrals Wi could in principle be determined exactly, Since 

our investigation is mostly concerned with the behavior at large energies, we 

have chosen to introduce their high energy approximation,, By applying the tech- 

niques of E -integration or Mellin transformation we find the asymptotic forms 

for the invariant amplitudes Wi in Tabcd 
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S-+~ 

W,(s) -+ W,(u) -+ $ fl +Ef2 , 

W2(s)+W2(u) + $ fl -If2 , 

W3(s)+W3(u) ==+ 2$fl) 

(3.25) 

W,(s) + W,(u) + 2 F fl l 

fl and f2 are slowly varying t-dependent functions whose detailed forms are 

found in Eqs. (3.51-3.52). 

In the above formalism we have not yet taken into account the fact that we in- 

tend to describe photoproduction of a spin-l particle. The amplitudes in Eqs. 

(3.17-3.22) describe production of a pair of c-quarks where both are assumed to 

have equal 4-momentum (since binding effects are ignored in this approach). Due 

to parity relations between the amplitudes with different helicities, we may re- 

strict ourselves to the photon helicity : Ay = -t-l throughout, We define the 

helicity amplitudes for cc-production as Tc(Ach;;Ay) and similarly for e-photo- 

production T(h ~, Ay). Then 

T(l,l) = Tc(#;l) , 

T(O,l) = $ [TJ+ -+;I) + T&&++;l)I , (3026) 

T(-1,l) = Tc(-&&;l) o 

We are now able to give the asymptotic form of the amplitude Tabed for $- 

photoproduction which receives contributions from diagrams with four propa- 

gators in the loop only 

T(l,l) -===a . 8 . G 10 f2 , 
t-m2 

J, 

(3027) 
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(3.28) 

T(-l,l)e 4&G-t in O-0 
t-m2 ’ 

f 
1’ 

e 

(3.29) 

We carry out the same kind of analysis for diagrams (e) and (f), By use of the 

REDUCE computer program we determined the asymptotic s-dependence of the 

T ef-amplitudes; since integrals with an a3 in the integrand depend asymptoti- 

cally only on I s I we find : 
S---m 

T(l,l) < +, 

T(-l,l) - ; , (3.30) 

w8’ wg, and wll all contain a multiplicative a! 3; they are of nonleading 

order in s (see subsection D), and we neglect their contributions. However, we 

find that for T(0, 1) and T(-1, I), the contributions involving Q5, Q7, and Q13 

also behave like l/s asymptotically. Specifically, the leading asymptotic con- 

tribution to T(0, 1) and T(-1, 1) is given by 

- t(W,2@)+W12Wh + Q13 0 ~w13W+~,,@i1 0 (3.31) 

Taking the Qi and the Wi to leading order in s we find 

T(O,l) ‘+G 0 z -t 
J 

m2 [mE(2ht(ai) - 2htP2a4) + 3ht(l)} -$@)I , 

C 

(3.32) 

ht(l) 
T(-l,l) =+GQ g td-2[ht(a;) - ht(‘Y2a4) + 2 1 9 (3.33) 
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where the t-dependent functions ht are defined in (3.58), Therefore, these con- 

tributizns must be added to the contributions from Tabcd to obtain T(O,l) and 

T (-1,l) in leading order., We note that the T(l, 1) amplitude decreases asymp- 

totically at least one power in s faster than Tabcd, although the T(0, 1) and 

T(-1,l) amplitudes contribute to order l/s and so compete with TabcdO 

C. Spin-l Gluons 

We now extend our formalism to the case of spin-l gluons (and spin-i c- 

quarks),, However, before going into the details, we first assert gauge invari- 

ante, We cut diagrams (a+c+e) at the gluon lines and consider only the c-quark 

part, The sum of these diagrams does satisfy the divergence condition 

k 0 (Ta+Tc+Te) = 0 due to the Ward-Takahashi identity. 6 An explicit proof for 

the model under consideration may be constructed without difficulty. 

The calculation of the amplitudes here requires investigation of the spin fac- 

tors JLj (or Sj)O Evaluation of their structure for diagram (a) gives (see Appen- 

dix A) 

b, E [f,#,i, + 2Ds061+J83) + %),~‘~i,~“l , (3.34) 

where the pii are linear combinations of the external momenta as defined in Eqs, 

(A, 39), The expansion coefficients (ai, bi,ci) are linear functions of the integra- 

tion variables and are specified in Eqs. (A. 40). Since the amplitude for diagram 

(b) is obtained by the exchange pl++ -p2, which can be absorbed in the vi by re- 

defining their coefficients ai, we have : 6, = $,(v~)~ The vi are fixed as in Eq, 

(A. 39), but the functions ai are replaced by the definitions in Eq. (A0 44). 

The amplitudes of diagrams (c ) and (a) are connected by the exchange : 

pl-*, m 2 c -+ -mc and an overall minus sign in the amplitude leading to: SC 

5 -Sawi). The above modification is absorbed @ in the ai but in the newly de- 

fined variable tii as given in Eq, (A. 43). The functions ai are the same as for 
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diagram (a) and are defined in Eq. (A0 40). Diagram (d) is calculated analo- 

“gousp, ,Sd = I$,(wi), with the $i defined in Eq, (A,43) and its coefficients ai 

given by Eq, (A,, 44). 

The spin factors of diagrams (e) and (f) are composed of three contributions: 

8, f $e + be +$e , (3,35) 
1 2 3 

gel SE d 0 [3Di 
D D 

- $ rn:] + Ds [ (v2&k4 + (v,*e)$I] - $ [J6,~f2-mc@I~+~f4)] 

$e2 3 mc[%,hf2%, + $I7628#4l Y 

(3036) 

where fi is a linear combination of the external momenta as defined in Eq, (A. 47). 

The spin factor of diagram (f), 4 = 8, (vi), differs only in the functions ai,, ., 0 in 

vi (apart from the replacement D -+ 
S 

Du), which are given in Eq. (A, 49) for dia- 

gram (e) and in Eq. (A. 50) for diagram (f). 

In principle it is now possible to write an invariant expansion for each dia- 

gram as was done in Eqs, (3,1’7) and (3.22), However, in practice this is an 

endless undertaking, We therefore have chosen to determine the leading order 

approximation of the helicity amplitudes and could easily extend this analysis to 

any higher orders, By symbolic computing we have determined the first two 

terms of the spin factors dominating for asymptotic s-values. We write 

Tj = Ge& I 
1 

t-m; 0 
(daf Mj(p,~) Ij(a!) j = ta,b,c,d) 9 (3.37) 

where 

Ma&w) = ~,L(~~W;K)~~,~V~ , (3.38) 
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MC@,@ = ~2U3ct.14d- ~Wlvl o (3 0 39) 

The s%me definitions hold for Mb (Md) which differ from Ma (MC) only in the 

expansion coefficients of the vi(wi) apart from changing Ds into DUO The anal7 

ogous form applies for diagrams (e) and (f) 

I 
1 

T. = 2oG* 
3 

(‘X,5Mj@,a) Ij(a) , (3.40) 
0 

with 

Me@,a!) = i2($, +$e +$e )vI = Me +Me +Me m 
1 2 3 1 2 3 

(3.41) 

The leading order contributions of the matrix elements Mj (p, 01) have been eval- 

uated by a symbolic computing program for the spin combinations 

Ay =+l, AC =& he =& (3.42) 

All amplitudes Mj(p,cr) (j = a,b,c,d) may then be expressed in the form: 

MP+) = s o (I,*&,) 3 

Mj(-+) = J’ $ s O (77I’..775) 3 
C 

Mjt--) = (3.43) 

where 

The expansion coefficients < ,q , c are linear combinations of products of the in- 

tegration variables 01 and D z D(o) is familiar from the ‘all-scalar caseO and .- 

reduces the power in the denominators of I(cY). Our notation is as follows: 

Ma(&)*) is the matrix element Eq. (3.43) of diagram (a). The helicity of the 

c-quark (wave function G2) is indicated in the first argument, whereas the sec- 

ond argument refers to the helicity of the c-quark (wave function VI). We do 
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not consider it useful to write down all functions ([,q , [)(which differ for each 

diagra”m and each spin combination) but list in Appendix C those which are im- 

portant for later arguments. 

In the same way we have evaluated the asymptotic forms of the amplitude 

Me as given in Eq. (3,41) and found: 

M 
el 

-Ds(175""78)1 , 

Me t-4 = bzC1 
1 

- DsC2]. 

M 
e2 

(++) = s o t5100*~4) > 

Me (-+) = 
2 

M 
"2 

(--) = to (<1...54), 

M 
e3 

(++) = so Qd4) 3 

Me (-+) 
3 

(3.45) 

(3.46) 

(3047) 

where 

tq 0 l 
t4) (3048) 

The functions ti,qi, .D O ,etc., are linear combinations of products formed by the 

integration parameters and differ for each diagram and contribution. For ease 

of notation we have dropped the index referring to the diagram or specific 
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contribution. Each should therefore carry this index, as, for instance, ti = 

ci(el;ir’) or vi = qi(a;cY), and so on. Some of the functions ti,r i, and ci are 

listed in Appendix C. The same results hold for diagram (f), which, however, 

has different functions (5, r] , c). 

Before discussing further approximations we would like to stress that the 

amplitudes Ma0 0. Mf given in Eqs. (3,43) and (3.45) - (3.47) are leading order 

approximations in the spin factors for asymptotic s-values. The invariant amp- 

litudes have so far been treated exactly leading to integrals of the form 

J(5) = 
P 

6 
(do)” . [(a) 0 I(o) (n =4,5) 

whose asymptotic form will be considered in the following step. 

(3.49) 

D. Asymptotic Form of Feynman Parameter Integrals 

4 

-. - 

The integrals J(t) can in principle be,calculated exactly. However we have 

chosen to determine their leading asymptotic behavior. Mellin transform tech- 

niques can be used in order to determine the first, second, 0 o m correction 

terms D 7 One might question whether such an approximation is justified at ener- 

gies just above the threshold rise. In order to gain some insight we have cal- 

culated for some integrals their asymptotically leading contribution as well as 

their first correction terms and find in all cases that for s 2 30 CeV2 a leading 

order approximation gives the correct order of magnitude of the integrals al- 

though the correction terms are not yet entirely negligible, 

In what follows, we present the asymptotic behavior of the integrals arising 

in the case of scalar gluon exchange, The evaluation of diagrams (a-d) requires 

the asymptotic forms of the integrals WI . . 0 
4(s) in Eq. (3,19) and similarly of 

wI.,.4 (u) in Eq, (3 ,, 20), which are easily found by use of E -integration tech- 

nique s 0 8 The result is 
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‘Qn(-t) 

J(5) ‘s 

- / 

- . 
(+;I 

f,(k) for 5 = {l,a2, a41 

1 
t+ 5) 

f,(l) for t = b,l , 

(3,50) 

where the t-dependent functions f,(t) are 

fl =- f&l) = 2ft(cr2) = 2ft(Q4) = &do$6(1-Ba) = -$n~+$/z (3.51) 
6 @I l 

with 

I 4m2, 
6s 1-t , 

f2 = ft(Q3) = 
l-l 

0 
(dc$ y = 

1 

0 
dyiQnM2 

,6-t(l-y) 
S 

with 

6 E [t2(1-y)2 - 4t(ym2, + (l-y)n-$Ig. 

formation is 

o5 =a! -a 5 1’ 

zil =a! 4-a 5 1’ 

(3.52) 

The integrals arising in the invariant amplitudes of diagrams (e) and (f) are 

w5 0 o o 13(s) and w5, 0 o 13 (u) as defined in Eqs O (3 o 24) O Insertion of the 

explicit form for Dj(5) from Eqs. (A. 18) and (A, 23) shows that these integrals 

have two cuts; one is along the positive real axis and the other is along the neg- 

ative real axis, By use of the following transformation we were able to separate 

the two pinching singularities in the integrand and to reexpress the resulting in- 

tegrals as a sum of two terms where each contains only one cut. The trans- 

I I 

Wp5) 1 = 
a@, 3 t1’5) 

-0 2 (3.53) 
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Note that the integration range is limited to the shaded region in Fig. 4. Ac- 

cordialy the integrals arising in Eq. (3.24) can be written as 

J(t) = ; l(d+5 [ (.a o o ‘y5. o o ) + (o o o -‘y5. o . )] , (3.54) 

where (00.~5000 ) is a shorthand notation for the integrand after introducing the 

above transformation and the convention of writing 

is introduced. Each of the contributions in Eq. (3,54) has only one cut. The 

asymptotic behavior can therefore be determined by use of Mellin transforma- 

tion, Straightforward application of this method to integrals with 

t = {l& 2-cr4),cy4(Q2-~4)’ (“2-“4J21 

gives 

S-W-= 

J(t) d -2 ht(5) 

with 

h&t) = 5’ (da!)3t; =$ o 
0 

S 

(3.56) 

(3.57) 

(3.58) 

All other contributions with [ = (Y 3 0 (a o 0 ) were found to contribute asymptoti- 

cally at least one power less in s. 

We find it useful to make a few comparative remarks about the functions 

f,W and htW concerning their size, t-dependence, and mG-dependence, which 

will be of use for our discussion in Section V. 

(i) Ln order to illustrate the size and t-dependence of the functions ft (ht) we 

give in Fig, 5 (Fig. 6) their t-dependence with the masses fixed at mv = 

3.1 GeV and mG = 1.0 GeV. One notices that the size of ft and ht 
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.- 
diminishes if more integration parameters a! appear in 5 and that the t- 

dependence is flat. 

(ii) In Fig. 7 we show variation of these integrals with decreasing gluon mass, 

f&l) and ht(l) both increase rapidly due to the infrared singularity. 

(iii) There is no 9 -dependence in the integrals f,(t) whereas the integrals 

ht(t) decrease with increasing vector meson mass since the factor l/(t-rn:) 

is hidden; this becomes apparent in the limit m G -c 0 (Fig, 8), 

The integrals J(t) appearing in the case of spin-l gluons for diagrams (a-d) are 

of similar structure to those discussed above in Eq, (3.50). Integrals with no - 

c”I or 01~ follow the asymptotic behavior of Eq. (3,50) whereas integrals with 

(2; o (o o o ) or cyz 0 (0 0 0 ) behave asymptotically similarly to Eq. (3,50) with 

modified functions f t (t ) and ht([ ), of course, Integrals with a! I . a3 in the inte- 

grand do not appear, The size, mass- and t-dependence of these integrals is 

similar to the ones discussed above. However in this case of spin-l gluon ex- 

change there appear new integrals of the form 

1 
T(1) E 

s---m Pn2 (-i) 
(da)4’w => s D (3.59) 

0 S 

The D in the denominator appears with one power less here, which is due to the 

multiplicative D in the expansion (3 ,, 44). If the E -integration method is used in 

order to determine the asymptotic form, it is advantageous to use Spence func- 

tions and their asymptotic behavior. For those who prefer to apply the Mellin 

transformation we mention that the singularity in the integrand arises in the 

Similarly one can show that 
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IV. FEATURES OF THE SPIN ANALYSIS 

In&his section, we continue our detailed analysis of the set of Feynman dia- 

grams shown in Fig. 3, and present results of a numerical study of the helicity 

amplitudes and density matrix elements. Some numerical results for the density 

matrix have been given in Ref. 2 and have been compared with the predictions of 

a variety of models; here we wish to analyze the two gluon exchange picture in 

more detail, with emphasis on the gluon and vector meson mass dependence 

of the amplitudes. We first comment on the amplitudes describing vector 

gluon exchange between spin-4 quarks and a spinless nucleon. The spin 

part of the amplitudes Tao o 0 Tf is contained in the Mj (p, ol), Their structure is 

the same for all diagrams (a-d) as given in Eqs, (3,43), and in Eqs. (3,45) - 

(3.47) for diagrams (e) and (f). The difference for each diagram arises only 

through the a! -dependent functions (5,) r i, ci). 

We consider first the loop diagrams with 4 internal lines, j = (a, b,c ,d), In 

principle we should give the explicit forms of all functions [(a). 0 D s Due to lim- 

itation of space we list those which are relevant for our discussion in Appendix 

C. The fact that Da =Dd and Db = DC leads us to consider the sums (Ma+Md) 

and (Mb+Mc) in order to spot cancellations. Let us examine the details: 

1, A superficial look at Eqs. (3.43) might lead one to the incorrect conclusion 

that some of the amplitudes grow like s2Q Integration over the a-param- 

eters introduces at least a factor l/s, Since there are no cancellations the 
. 

amplitudes Mj(+t-) indeed grow like s’ (if Qn s terms are ignored), In the 

sum Tabcd’ the real part a Ln s vanishes in leading order, and the dom- 

inant contribution is purely imaginary. 

2. The leading contributions to Mj(-+) cancel in the sums since 

rl,w = -771(d) 9 01(b) = -771(c) 
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as a quick look at Appendix C shows. Therefore 

S---cc) 
- M(-+) => so 0 (4,2) 

3. In Mj(--), the CI-terms do not entirely cancel so that M(--) is asymptoti- 

cally of the same order in s as M(-+); however, numerical calculations show 

that for asymptotic s-values M(--) << M(-+) because of the size of the t- 

dependent functions ft (l )O 

4, Mj(+9) contains a term t5 = (8-3~~~) which is multiplied by D. The re- 

sulting integral behaves asymptotically as 

J([,) = /l(do)4(8-3cr3) F ‘==3 
s---m [Qn(-$12 

- . ft (4.3) 
0 S t-;, 

and substantially enhances Mj (i+) due to the Pn’s-term. Similar terms in 

M(-+) and M(--) are much less influential, 

5. We point to the explicit mc dependence in Mj(-+) which tends to suppress 

this amplitude for increasing values of mcO There is further mc-depen- 

dence hidden in the expansion coefficients [IO D O which, however, is present 

in all amplitudes and is of less importance for the spin characteristics. We 

will elaborate more on these questions in the numerical discussions. 

We now consider the amplitudes containing the loop over five internal lines. For 

computational convenience we have split the amplitudes into three parts: 

Me@,@ = Me + Me +Me , 
1 2 3 

(404) 
Mf(P,a) = Mf 

1 
+ Mf 

2 
+Mf t 

3 

and now discuss their properties. In Appendix C we give the explicit forms of 

the relevant functions ti, 77 i, ciO Inspection of Eqs. (3,45) - (3,47) leads us to 

the following conclusions : 

1. The contributions due to 5, in (T, + Tf ) do not cancel due to the cu5-inte- 
1 1 

gration and t,(e,) = -[,(fI). There is a nonvanishing contribution due to VI” 
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2. M 
el 

(i-+) (and M 
el 

(L-)) possess a multiplicative rng-dependence and thus 

grow for increasing quark masses, whereas M (-9) is less affected, 
el 

3, The dominant contribution to diagrams (e) and (f) comes from (T +Tf ) 
e2 2 

since t,(e,) = tl(f2) and the asymptotic behaviors of the Feynman param- 

eter integrals J(t) for diagrams (e) and (f) are identical. Again, the dom- 

inant contribution is purely imaginary, but has opposite phase to the dom- 

inant contribution from T abed’ 

4. One notices that M 
e2 

(++) has no explicit mc-dependence; we have numeri- 

tally verified that the integrals J(t) show a strong decrease as rn: in- 

creases, Therefore, to leading order diagrams (e) and (f) decrease as rn: 

grows 0 

5. The contribution (T +T 
e3 f3 

) seemingly leads to an s2-type increase. How- 

ever [I is proportional to a3 which leads, as we show in Appendix C, to a 

decrease J(< 1) N 1/s2; in addition there are cancellations. 

6. M 
e3 

(-f) seemingly rises like s’ in the asymptotic region. However n1(e3), 

given in Appendix C, shows that most contributions are proportional to CY~, 

which leads to the integral J(cr3) - 1/s20 The remaining term A0 depends 

on (a2 - 04). One can show that asymptotically the integrals over a2 and 

over a4 cancel since d,” is symmetrical under the exchange of c;r2 and cr4. 

The same applies for the integral with a20 CL~ as part of the integrand. We 
S---L~ 

conclude that M 
e3 

(-+) =& so., 

Our second comment concerns the mG-dependence of the density matrix element 

0 poo for vector gluon exchange., f.n our analysis we noticed that the amplitudes 

depend substantially on the gluon mass, which leads us to further investigate the 

mG-dependence of pigO Taking t = -0.2 (G~V/C)~, we show this dependence for 

p and $ photoproduction in Fig,, 9. The same results are plotted at t = -2. O(C~V/C)~ 
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in Fig. 10. In each case there is a sharp bump in pi0 at a particular gluon 

mass 0h The position and height of the bump change when mV and/or t are varied, 

At low t, the peaks for p and $ are of about the same height, as is the case for 

mV lying between the p and $ mass. At t = -2.0 (G~V/C)~ the p peak is much 

higher than the $ peak. At small t, as mV is decreased, the bump occurs at 

smaller values of m G0 This is illustrated in Fig. 11, where the position of the 

peak is plotted in the mG-mV plane for t = -0,2 (G~V/C)~, 

To reveal the origin of this dramatic behavior, we plot in Fig, 12 the amp- 

litudes T(1,l) and T(O,l) versus mG for $ photoproduction at t = -0,2 (G~V/C)~, 

This shows that Im T (1,l) has a zero at mG = 0,55 GeV, Therefore, IT(l,l)I 

is reduced at this point and pi0 M IT(0,1)12/lT(l,1)12 is enhanced., The van- 

ishing of Im T(l, 1) is due to a cancellation between Im T(l, 1) of diagrams (a-d) 

and Im T(l,l) of diagrams (e+f), which are plotted in Fig. 13. Since Im T(l, l)ef 

= -h Ttl ,l)abcp the resulting nonflip amplitude I Im T(l, 1) I is much smaller 

than either of its component amplitudes, 

To analyze this phenomenon further, we note that for both T(l, l)abcd and 

T(1, l)ef terms involving the invariant integrals ft(l) and ht(l) dominate (see 

Figs. 5,6); of course other terms contribute as well, but they are smaller, 

Therefore, we examine the behavior of the functions f,(l) and ht(l)* In Fig. 7 

we exhibit the m G-dependence of ft(l) and ht(l) for t = -0,2 (G~V/C)~~ This be- 

havior is mirrored in the nonflip amplitudes (Fig. 13) and the general result 

that W,l)ef = -T(l,l)abcd is a consequence of the sign and magnitude of these 

integrals. The detailed pattern of cancellation in Im T (1,l) is governed by 

these terms, and also, to a lesser extent, by the other terms in the invariant 

expansion of the amplitude. 



- 28 - 

When the gluon mass is of the same order of magnitude as the other vari- 

ables s; t , 4, rnk in the problem (i.e. , mG - 1 GeV) the behavior of ft(l) and 

ht(l) is complicated. In the limit mG - 3, ft and ht a Qn(mk) as might be 

guessed from Fig. 7, 

mG--O2 
ft M 2 Qn(m2,) + (finite terms) , 

mG-02 1 
ht M -tt 

tp$ 
Qn(mi) + (finite terms) 0 

(4.5) 

(4.6) 

It is easy to show that the contributions of 

cancel (apart from the finite terms) in the 
9 

these terms to the nonflip amplitude 

limit mG -+ c), so that there is no 

Qn(mi)&ype divergence in the overall amplitude. 

In Figs. 9 and 10 we saw that the position of the bump in pi0 depends on t. 

This suggests that, for certain values of mG, the t-dependence.of p:. might ex- 

hibit unexpected behavior 0 As an example of such behavior we show in Fig, 14 

the t-dependence of pi0 for p-photoproduction at mG = 0,045 GeV. Note that 

this value of mG is in the region of the peak at t = -0.2 (G~V/C)~ (Fig. 9). Fig. 

14 shows that the expected peak is quite narrow in t, and represents a signifi- 

cant deviation from the general behavior of pioG Again, the position of the peak 

depends on mG, so that the t-dependence of p” o. could, in principle, be used to 

de,termine mG. 

As the vector meson mass increases, peaks in the t-dependence of pi0 be- 

c ome broader 0 In Fig, 15 we show pi0 for + photoproduction with mG =1 Gev. 

There is a broad enhancement centered at t = -2.0 (G~V/C)~, after which pi0 

resumes its usual monotonic t-dependence, Again, this effect is rather sen- 

sitive to the value of m G, so that the results presented in Figs. 14 and 15 should 

be regarded as illustrative of the kind of behavior that can be expected in this 

model, 
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We conclude this section with some comments on the results described 

‘above7 Since $ photoproduction is not an elastic process, the indefinite sign of 

Im T(l, 1) does not necessarily imply a violation of unitarity. Note, however, 

that gluon gauge invariance is violated due to the use of a nonzero gluon mass. 

Since gauge invariance and unitarity are intimately connected it may be that 

violation of gluon gauge invariance manifests itself by flipping the sign of 

Im T(l, 1) when mG becomes of the order of the other masses in the problem. 

We resorted to a study of the massive case because of the difficulty of carrying 

out calculations in the infrared limit. 

The main result of our analysis, which appears to hold for all values of the 

gluon mass, is that helicity conservation is almost perfectly satisfied for $ 

photoproduction even near threshold. For n photoproduction, the results of the 

model defined in Fig. 3 probably require more modification due to the more 

relativistic nature of the bound state. Furthermore, quark interchange diagrams 

can also contribute in this case. For these reasons we have not presented any 

comparison of our results for p photoproduction with the data. On the other hand, 

the data’ are consistent with SCHC violation of 10% or less, in agreement with 

our qualitative results. 
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.- 
v. CONCLUSION 

By-combining the two-vector-gluon exchange model of the Pomeron with the 

nonrelativistic bound state picture for the $, we have obtained a simple, cal- 

culable model for $ photoproduction. It corresponds to the simplest set of QCD 

diagrams consistent with photon gauge invariance. We have proceeded on the 

assumption that this model should provide a reasonably accurate description of 

the spin dependence of JI photoproduction, and have investigated its consequences 

in considerable detail,, 

Asymptotically, this picture provides SCHC, as do all acceptable models of 

photopr oduc tion. It therefore becomes necessary to study the model in the 

threshold region in order to distinguish its predictions from those of other mod- 

els. Unfortunately, the necessity of evaluating a loop integral precludes the pos- 

sibility of obtaining analytic results in this region. However, by expanding the 

amplitudes in powers of s, we have obtained results for the density matrix ele- 

ments which we expect to be reliable fairly near threshold. Much of the paper is 

devoted to a detailed discussion of the techniques we have applied to the calcu- 

lation of the amplitudes. 

The main conclusion to be drawn from our analysis is that two vector gluon 

exchange conserves helicity to a very good approximation even near threshold. 

The amount of SCHC violation depends quite sensitively on the gluon effective 

mass, although it is never greater than 10% in pi0 for $ photoproduction. Other 

models which satisfy SCHC asymptotically predict a measurable helicity flip near 

threshold, 2 in contrast to the two vector gluon exchange model. When data on 

the spin dependence of z) photoproduction become available, it will be possible to 

test the predictions of the various models, and in particular to confirm or rule 

out the simple &CD picture studied here. 
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APPENDIX A 

Ths appendix gives details of the loop integration discussed in SectionIII. 

For clarity of presentation we first treat the Feynman diagrams in Fig., 4 for the 

case of all-scalar particles, Subsequently we generalize to spin-i c-quarks 

(keeping the gluon spin 0) and finally we consider the case of spin-i c-quarks in- 

teracting via spin-l gluons with the spinless nucleon. We first list a few inte- 

grals which will be of later use: 

03 

IO = 
d4Q = _ in2 1 

-CO [A*Q2]l (A-1)&2) Ah-2 ’ 

-CO 

-!-co 
I4 = Q4 d4P 

-CO [A*Q21h 

(A. 1) 

(A. 2) 

(A, 4) 

We begin with the case of all-scalar particles. The amplitude for diagram (a) 

then reads 

Ta 
= Go 1 

D La , &5) 

r+m 
La=(-+oJ 

7r2 -co 

, (A. 6) 

where the internal momenta are defined as in Fig. 4a. In order to perform the 

loop integration we use the Feynman parameter integral 

f,.: “fN = (N-l)! f (dcx)N 6 (1-.&!) 

[NC cYr*fr]N 
t 

1 

(A. 7) 
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which permits evaluation of the loop integration by writing 

+(a!, Q) G l (Irr o (qf-rnz) = A” (QD,B/A)~+ 
r=l 

(A. 8) 

Application of the transformation Q’ =Q-B/A and use of Eq. (A. 7) leads to the 

result 

(A, 9) 

Replacement of all (momenta)2-factors by the external masses and kinematical 

variables gives 

Ds = AC-B2 = +yw3 ids, (A, 10) 

where the negative definite function 

1 2 1 2 
dS 

= to a2(p1+a4) - mNo cz30 (pl+03)-mco a1 (a 1 +2a2+203)-rnio (cr2+(u4)~ (L 
1 r 

J 

(A. 11) 

For later use we define 

d; = ds(al=O) , d; E ds(cr3=O) , d,” = ds(01w3=O). (A. 12) 

At this point we also mention the relation 

(k-k”)2 - rn: = &t-m;) , (A, 13) 

which when inserted in 

mS 
= 4rnE throughout, 

ever, we skip this step 

Eq. (A. 5) indicates a t-pole at t = m2 
v- 

We have assumed 

Diagram (c) could be calculated in the same way. Bow- 

by noticing that diagram (c) is obtained from diagram (a) 

by the replacement pl ++ -pzO Thus 

TC 
= G.20 Lc 

t-m2 
e 

(A, 14) 
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with 

where 

/ 

1 
Lc = (do1)4 = , 

0 D2 
U 

DU z-;~lcz3+dU (Aa 16) 

and 

dU = t D 1, (& +CY )-1-‘. CY I + m~cy3(&!l-o!3) 1221 42131 

- m~o!l(01+202) - 
4 

mi((r2+04) IZ ar D i 1 1 

(A, 15) 

(A. 17) 

Note that di, di, d:, which are defined analogously to Eqs. @I0 12) for the s- 

channel, are identical with dz, dz, diO All quantities Ds , DU, ds , dU, etc. , 

should actually carry the index (4), Ds s Ds(4)0 0 o , since they. refer to dia- 

grams j = (a, b,c ,d) with four internal lines., We have omitted this index in order 

to simplify our notation. Going through the same procedure with the amplitude 

for diagram (e) is straightforward and leads to 

where 

~~ +, a3(a5-al) + ds , (A, 18) 

ds G i hl - mih2 - mzh3 - m2Ghq 

hl = CY~(CY~+O~~) + (u~(“~+‘Y~) - crlcr3 

(A. 19) 

h3 
= 0r~(or~+2or~.r-2~~)+~~(~~+2.2”~+2~3) 

5 

h4 = (cY2+cv4) ZQr 0 
J i 1 

(A. 2 0) 
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For later convenience we introduce the transformation 
.- - 

E 1 =a +a 1 5, a! 5 = a5 - a1 2 

and newly define : 

us = ;cy30r5 +a . 
S 

(A. 21) 

(A. 22) 

as is defined by ds with ol and a5 replaced according to the above transforma- 

tion. -1 -5 -0 Furthermore we will need the quantities ds , ds, ds which are specified as 

in Eq. (A, 12), Similarly we introduce 

with 

Du = - ; ‘y3(a5 - al) + dU (A. 23) 

dU = a hl - rni h2 - rn: h3 - rnk h4 , (A. 24) 

hl = 0~((~4+0~5) + o4(ol+Q12) - alo3 9 

h2 = 03{03 + +(9-a5)1 , 

h3 = Q(@l I- 2cr3 + 2Cr4) + 05(o!5 + 2ol + 2a2) , 

h4 = (A. 25) 

Note that, again, all quantities Ds O . O should actually carry the index (5): Ds(5), 

e.., since they refer to the diagrams with five internal lines. We have omitted 

this index for simplicity of notation. 

We now evaluate the loop integrals gj for spin-; c-quarks and spinless glu- 

ons; their form is 

d4Q( -p’ + mc> (A, 26) 
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, (AD 27) 

(A. 28) 

The loop integration can be performed as sketched above, with modifications due 

to the spin factors. In particular we have to remember the linear transforma- 

tion I =Q - B/A. By use of the integrals, Eqs. (AA. 1) - (A. 4), we find: 

JLa = J’ (da)4 (mc-fl} o Ia(o) o 
0 

(A, 29) 

Here we introduce the convention 

$1 G -p11”2 + $2(“2+o3) + (A. 30) 

$2 E -Ill(02+Or3) ’ ti2cr2 + $( a2+cr3+a4) 0 (A. 31) 

The same analysis for diagram (c) leads to 

(A, 32) 

The spin factor of diagram (e) is evaluated by dropping all terms linear in Q’ 
P 

since their contributions vanish in the loop integration, Using Eqs, (A. 1) - 

(A. 4) we obtain 

I 1 
(da ,5f B 

D 
= -$ + (m,+~,)d(~,+~,-L)~ 0 I,(s) (A, 33) 

0 

where again we have introduced the convention of writing 

Bfl = HQ,+Q,) + y (o!2+Q!3-Q!4) - tip3 (A. 34) 
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$2 = g(a3+cf4f~5) + f(cy -a 
2 3 4 -a! )+I93 l 

- 

(A. 35) 

Using the rule 

gb = %,(P, --+ -3) 9 

$j = gc@l H -9,) 9 

z, = getJ?1 - -P,) 9 (A. 36) 

one easily establishes the spin factors for diagrams (b), (d), and (f), as given in 

Eqs. (3.13) and (3.14). For simplicity of notation we sometimes use the sim- 

plifying convention that, instead of writing the index of each diagram in Ij(a!), 

we will rather use s or u in agreement with Ds or DU of the particular diagram, 

The generalization of the above formalism to amplitudes describing spin-4 c- 

quarks which interact via spin-l gluons with the spinless nucleon is straight- 

forward; we therefore only indicate modifications. 

In the integrands of Eqs, (A. 26) - (A. 28) for $. , the spin parts differ. We 
J 

first consider diagram (a), The curly bracket in g, of Eq. (A, 26) is replaced by 

(A, 37) 

We now follow the same procedure as above: replacement of all internal mo- 

menta by the external ones, replacement Q = Q’+B and subsequent rearrangement 

of terms as follows: 

= (flf2f3 + Qr20 ($,+$,) + ~‘f,~“) + (terms with odd powers of Q’) O (A. 38) 

We have defined 

TQ = tip1 + d,b, + Pcl) , 

f, = mc + $a2 + ti2b2 + PC,) , 



- 38 - 

J63 z t&a3 + ti2b3 + g’c,) , (A. 39) 

whereThe ai,OOo, etc. , depend linearly on the integration parameters CX!. In- 

serting the definition off,, given in Eq. (A. 30/31), into Eq, (A, 38) defines the 

expansion coefficients in terms of the integration parameters o: 

al =l+CY2, bI =l -o2 -cr3, cl =$czl, 

=O! “2 2’ b2 = -(a2 + 03) , c2 = -&(1-o!,), 

a3 2’ =a! b3 =2 - (cY~+cv~), c3 =+,I o (A. 40) 

Using the integration formulas in Eqs. (A, 1) - (A, 4) in order to perform the d4Q 

integration, one finds 

$a E fIf2f3 + 2 Ds061+J63) + k Ds~p%2,p (A. 41) 

We now consider the modifications in diagram (c) due to spin-l gluon exchange. 

The curly bracket in the integrand of Eq. (A, 27) is replaced by 

iti, - d,)be + mc)@2 -d,)} l (A. 42) 

In principle we now could go through all modifications as before. In the explicit 

evaluation of the helicity matrix elements, however, we found it more convenient 

to take advantage of the relation g, = -b,@,o -p2, mc -+ -mc). This therefore 

leads to $c = -$,(wi) with 

(-r& - filbl + PC,) , 

yB2 f - mC + (+,a, - r$b2 I- PC,) , 

(-ti2a3 - $b3 + PC,) 0 

All ai . . 0 are chosen as for diagram (a) and are specified in Eqs. (A. 40). 

The spin factors for diagrams (b) and (d) are determined by the replacement 

pl 4+ -p2 in those of diagrams (a) and (c)~ This does not modify the form of $a 



-(as fuirctions of the integration parameters 

al = -1 -I- (aa + 03) , bl = -(l+cr2) 

a2 = (~2+&3), b2=-a2 9 

“3 =-2+(or2+a3), b3=-a2, 

To summarize, all spin factors ,$a, 0. 0 , gd 
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as a function of the however, it does change the expansion coefficients a.. ,, D 
1 

a) in the fi according to: 

, c + 
1 1’ 

c2 = -t(l-cY,) , 

c3 =~cvl o (A. 44) 

are given by Eq, (3.34) as a function 

of the vi (wi). Differences in the spin factors arise in the expansion coefficients 

of these quantities. a. ., o 0 
1 

for diagrams (a) and (c) are given in Eq. (A,40), 

whereas the ones for diagrams (b) and (d) are given in Eq. (A.44), 

We now determine the spin factors of diagrams (e) and (f). The curly 

bracket in the integrand of JZe in Eq. (A. 28) is replaced by 

-I Ml + d,M, + m,)d(pI, + mCM3 + ti,i) 2 . (A. 45) 

which, by writing the internal momenta in terms of the external momenta and 

the loop momentum p ’ , may be cast into the form : 

-E. o .l= ~l+p”)t~c+%2+p’)B~mc+%3+~‘)~4+~‘) (A. 46) 

where 

fi =_ ~ 1 ai+k bi+k’ ci (i =l,e0.,4) 0 (A. 47) 

The curly bracket is expanded in Q” and the d4Q integration is performed using 

Eqs, (A. 1) - (A, 4), All terms with an odd number of b’ vanish upon integration, 

leading to 

(A. 48) de = s +s +8, 
el e2 3 

whose explicit forms are given in Eqs, (3.45) - (3.47), 

The same reasoning for diagram (f) leads to $f = se(vi) and the two ex- 

pressions differ only in the expansion coefficients vi as a function of the 
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integration parameters a. The coefficients in the vi are easily evaluated and 

tie finrfor diagram (e): 

al =2-C-x3 ) bl= 01~ + a5 , cl = $(cY~+@~-cY~-~) , 

= -a 
a2 3’ b2 = cr4+ cr5,, c2 = $((~~+a~-@~) , 

a3 
= -(y 

3 ’ b3 = a4+a5-1, c3 = ~(cY~+cu~-[Y~) , 

a4 = 2-a3, b4 = a4+cz5+1, c4 = %(o!2+a3-cY4-3) , (A. 49) 

and for diagram (f): 

al =a 3-2 , bl = or3+cx4+cr5-2 , cl =%((rz-‘y3-‘y4+3), 

=O! “2 3’ b2 =cx~-w~+cY~ , c2 =$(Q2-a3-Q4) , 

=O! “3 3’ b3 = o!3+cz4+o!5-1, c3 = &l!2-cY3-a4) , 

a4 =a 3-2 , b4 = CV~+CV~+CY~ -1, C4 = &(“2-“3-“4;l) s (A, 50) 
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APPENDIX B 

Rere we give details of the “spin amplitudes’* Q., defined in Eq, (3.18) and 
1 

(3.23). In order to clarify our notation, we define the momenta and wave- 

functions. 

The momentum 4-vectors in the CM-system are: 

k’” = (k, 0, 0, k), k” = (E’ k’ sin B 0, K cos 0) , , , (B- 1) 

plf = (El, 0, 0, -k), p; = (Es, -k’ sin 6, 0, -k’ cos 0) 0 (Bo 2) 

We have used the following spin l/2 wave functions: 

u = + 

V = 
+ 

/ N 

F+ cos ; 

F+ sin 4 

F cos; 

+ 4 

F sin; 

8 
-F cos 2 

-F+ sin ; 

F+ cos ; 
5,’ - 

u = 

, 

and the photon polarization vectors read: 

E*= - 

; 

0 

=Fl c1 -i 

0 

+ -w 

-F+ sin ; 

F+ cos ; 

F sin; 

-F cos; 
< d- 
- 

z -F cos 2 

-F sin; 

-F+ cos ; 

-F+ sin; 
-- C 

. 

, F’= , 

(B* 3) 

(B.4) 
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We comment about the definition of our spinors, Since the cc-state describes a 

particl: of spin-l, we have chosen the phase convention of the spinors in agree- 

ment with the phase of the spin-l helicity polarization of a particle moving in 

the direction i? (0 )O This demands that in constructing the c-spinor vl, the 

antiquark has to be considered as a 2-state in the sense of Jacob and Wick, 10 

which finally results in the change: 

Vh + (-l)lh D VA 0 

The spinors in Eq. (B. 3) have been obtained by a simple boost and rotation 8 and 

do not contain this change, The above phase convention, however, has been taken 

into account in the matrix elements, Eqs. (3.18) and (3.23). 

The calculation of the “spin amplitudes”: 

<hlh21Qi I Ay = +l> = Qi(hlh2) 

is straightforward and we therefore list here only a few examples 

Q,(++) = -& cos2 $k[(El+k)+2k*sin2i] 
S---W 

==+ -Jz@-m$ , 

Q,(-+) = sin 8 [E1(E’k-Elk)+E’k2(l -Ecos e)] + 

(B. 6) 

Q,(--) = 4% sin 2 ;k [(El+k) - 2kscos2;] 

and so on. 

+ 42 $(t - 4rnf +mi) , 

03.7) 
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APPENDIX C 

” HeI% we list the expansion coefficients t,q , c, *. *, in the amplitudes Mj (p, a! ) 

in Eqs. (3,38) and (30 39): 

Ma: $=+ 2. (1-o!l)(2-o!3)2 , 
$3 

& 
r71= - jyg (l-al)(2-@,J2 , 

.Jz 5, = - -g- (4y - Qy3 + 4(u3) , 

Mb: 6 = + 5 1 (1 -alJ(2-~3)2 , - 
@ (1 % = - 16 -011)(2-Q312 , 

t, 
=-I- $ (4cycr1a3 + a3cyT) , 

MC: 5, = + $- (1 -(y1)(2-@3)2 , 

771 = -I- g (l-o!l)(2-C%3)2 , 

t1 = + $ a1cY3(1-al) , 

tc. 1) 

(C. 2) 

(Co3) 

Md: 51 = + $ (1-al)(2-a3)2 3 

-oll)(2-Q312 9 

& 
5, = - -g- cy3(1-Q1) 0 (Co9 

The phase convention Eq, (B,5) for the v-spinor has been taken into account. The 

expansion coefficients (5,) 7j 5, g,) in Eq. (3,44) hide a Qn2(-s) dependence; their 

explicit forms are: 

Ma: 5, = 301~ - 8 , Mb: t5 = -3a3 + 8 , 

775 = -3cr3”8, 775 = 301~ - 8 2 

b5 = 9(3cXl - 1) = - , C5 &(3cz1 1) 9 (C.5,6) 
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MC: t5 = 3cr3 - 8 = , Md: 5, -3a3 + 8 , 

4 

175 = 3ru3 - 8 775 = , -3a3 + 8 , 

55 = 4(3cYl - 1) t5 = ) $(3y - 1) 0 (C.738) 

The expansion coefficients appearing in the amplitudes of the nonplanar diagrams 

(e) and (f) are: 

M el: ‘t, = J+ [ (2-or3)(1-or2-~3-aq-2Lwg)] , 

% = $ [(2-Q! )(a4 f o! 3 )] 5 ’ 

G 
& = 4 [l + { 1+2cY4+2a5){ 2+cr2- a3- cY4} ] , 

M e2: t1 =- 9(2 - ‘y312 , 

(Co 9) 

77 1 d [ (2-Q 4 3 )(3+cY r~-~3-~4)l 3 

c 1 =+9(2-c! 8 )(a! 3 2 +a! -a! )] 3 4 ’ 

M 1Tz 

e3 
: 5, =4 a3 [a; =I- (~$4~ + a3*Al +A01 9 

A0 E - 2(1-a!2-cx4-2”5) 2 , 

?‘11 = h 4 -$u, + a3 3oA 3 +a2 3 0 A2 + a3 0 Al + A01 , 

Ao- 4{@; - o!i)+ 2(cx5 - l)(a, - a4)l , 

2/i 4 5, = - -&a3 0 A4 +CY; l A3 + CY; 0 A2 +a3 0 Al+Aol , 

(Co 10) 

Ao- (4(~$ - a;) + (80~~ - 2w2 - a411 > (Co 11) 

1 [ (2 - or3)(l - cr2 - cr3 - a4 - 2cr5)] , 



5, = +$[1+{2-o! 2-a3+~4~(3-2~3-2~4-2a5~J , (G12) 

Mf2: t1 = -$(2 - a312 , 

'71. = +$[(2 -a/,)(1 - a2 - a3 + cf,)l , 

Cl = -$ [(Z - a3)(a2 - 013 - cr4)l 2 (C13) 

Mf3: % = 
-c a3[u3+a2 0 A2 +a3 a Al++-,] , 3 3 

A0 z -2(1- a2 - a4 - 2~x5)~ , 

ti 4 
?=-i-E *[a +a 3 

3.A +a2 
3 3 3 

0 A2+a3 0 A1 + A01 , 

A0 =_ 4((a; - IX;)+ 2(a5 - l)(a2 - ~~11) , 

d-2 4 3 
cl = ---$cY~* A4+cy3 l A3++ *Zfa3 0 Al+Aol , 

A0 z (4(01; - a;) + (8org - 6)(a2 - @4i> 0 (C.14) 

- 45 - 

9 = *~[(2-a3)(z-a3-cu4-a5)], 
- 



- 46 - 

REFERENCES 

i. BT‘ Humpert and A. C. D. Wright, Phys. Lett. g, 463 (1976). 

2. B. Humpert and A. C. D. Wright, “Spin and mass dependence of models 

for zl, photoproduction, I* Stanford Linear Accelerator Center preprint 

SLAC-PUB-1818 (1976), to be published in Phys. Rev. D. 

3. D. Gross and F. Wilczek, Phys. Rev. Lett. 30, 1343 (1973); 

H. Politzer, Phys. Rev. Lett. 30, 1346 (1973). 

4. F. E. Low, Phys. Rev. Dg, 163 (1975); S. Nussinov, Phys. Rev. Lett. 

34, 1286 (1975); Phys. Rev. D 14, 246 (1976). - 

5. T. Appelquist and H. D. Politzer, Phys. Rev. Lett. 34, 43 (1975). 

6. J. D. Bjorken and S. D. Drell, Relativistic Quantum Mechanics (McGraw- 

Hill Book Co. , New York, 1965). 

7. R. J. Eden et al., The Analytic S-Matrix (Cambridge University Press, 

New York, 1966), p. 151. 

8. Ibid., p. 133. 

9. J. Ballam et al., Phys. Rev. Dz, 3150 (1973); Phys. Rev. D 2, 545 (1972); 

Phys. Rev. Lett. 24, 960 (1970). 

10. M. Jacob and G. C. Wick, Ann. Phys. (N. Y.) 2, 404 (1959). 



-47 - 

FIGURE CAPTIONS 

I. 

20 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10, 

11. 

12. 

Le”pton decay of the photoproduced $-resonance, 

$-photoproduction in a picture of quarks interacting via gluons. 

Photoproduction of $ = (cc) as viewed in a two-gluon exchange model., 

Integration region for integral (4,54), 

Size and t-dependence of residue functions f,(E) appearing in the asymptotic 

form of the amplitudes of diagrams (a) - (d). 

Size and t-dependence of residue functions ht([) appearing in the asymptotic 

form of the amplitudes of diagrams (e) and (f). 

mG-dependence of residue functions ft(l) (Eq. (3.5 1)) and ht(l) (Eq. (3.58)). 

This behavior is representative of all integrals of the same type. 

mV-dependence of residue functions ft and ht given in Eqs. (3.5’1) and (3.58). 

Two-gluon exchange model with vector gluons. -- Density matrix element pi0 

for p- and $-photoproduction as a function of the gluon mass mG in the 

region where the nonflip amplitude vanishes (peak). The kinematical vari- 

ables are s = 30 GeV2, t = -0,2 (G~V/C)~, 

Two-gluon exchange model with vector gluons. Density matrix element pi0 

for p- and +-photoproduction as a function of the gluon mass mG in the 

region where the nonflip amplitude vanishes (peak), The kinematical vari- 

ables are s = 30 GeV2, t = -2,O (G~V/,C)~. 

Position of the peak (in Fig. 9) as a function of mv and mG for s = 30 GeV2 

and t = -0,2 (G~V/C)~. 
.- 

Two-gluon exchange model with vector gluons. Gluon mass dependence and d- 

relative size of the flip and nonflip amplitudes (in arbitrary units) for $- 

photopr oduc tion. The kinematical variables are s = 30 GeV2, t = -0, Z(G~V/C)~. 

13. Two-gluon exchange model with vector gluons. Gluon mass dependence of 
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the nonflip amplitude for @photoproduction. The amplitudes of diagrams 

(a;T- (d) and diagrams (e) and (f) are presented separately. The kine- 

matical variables are s = 30 GeV2, t = -0.2 (G~V/C)~. 

14. Two-gluon exchange model with vector gluons. t-dependence of ,cio for p- 

photoproduction at the peak,, The gluon mass was chosen to be mG=O. 04 GeV. 

15. Two-gluon exchange model with vector gluons. -- t-dependence of pi0 for z/+ 

photoproduction at the peak. The gluon mass was chosen to be mG = 

1.0 GeV. 
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