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ABSTRACT 

We apply the multiple scattering method to calculate the differential 

cross sections for elastic nd scattering in the low and medium energy 

regions, showing the importance of the proper treatment of the kinematics 

in the two body collision. Our results are compared with all existing 

experimental data in these energy regions. We show that the large 

angle elastic scattering at medium energies is highly sensitive to de- 

tails of the deuteron structure and of the calculation procedure, and 

provides an excellent ground to study the properties of the meson- 

deuteron and of the off-shell meson-nucleon interactions. 
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I. INTRODUCTION 

The aims in the study of pion nuclear systems are simultaneously those of 

understanding the nature of the few body dynamics, of investigating the nuclear 

structure, and of obtaining more information on the relevant two-particle inter- 

action than what can be derived from direct two-body experiments. The difficulties 

one has to face when dealing with all these aspects simultaneously are sometimes 

beyond control, and it has not been always possible to develop a critical feeling 

for the value and limitations of the methods of analysis and calculation. Because 

of its comparative simplicity in all these aspects, the study of the pion deuteron 

system is of fundamental importance in pion nuclear physics. Without a previous 

and good description of the r-d system, . little hopes may exist that the behavior 

of more complicated systems can be understood. Thus, every effort is justified 

towards a better understanding of pion deuteron processes. 

In spite of this comparative simplicity, the description of the n-d interaction 

in the low and intermediate energy regions is still far from satisfactory. From 

a theoretical-point of view, the n-d system is in a privileged position, if compared 

to other r-nuclei systems, as the Faddeev equations provide the basis for an 

exact formulation of three-body problems. Several attempts have been made l-6 

to solve the Faddeev equations for the r-d scattering, In particular, recent data7 

on pion absorption and elastic and breakup scattering at 4’7.5 MeV have been 

well fitted by these calculations. However, as soon as the energy goes above a 

limit which is still rather low, these calculations based on direct solution of 

Faddeev equations face limitations of practical nature, due to the large number 

of coupled angular momentum states involved, Fortunately at these higher 

energies the rather simple and model independent multiple scattering calculations 

are able to give a fairly good description of r-d scattering. 
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Several authors’ have applied the multiple scattering method to evaluate 

pion deuteron cross sections. In general these calculations include terms 

representing single and double scattering of the incident pion. It is assumed 

that binding corrections, complicated three-body mechanisms and other effects, 

all difficult to evaluate quantitatively without use of particular and arbitrary 

models, give comparatively small contributions. Then no detailed dynamical 

knowledge of the system is required, and the calculation is based almost entirely 

on directly observable properties of the intervening two-body systems. However, 

important technical details, such as fermi motion dependence of the amplitudes, 

structure of the deuteron, nucleon recoil, and so on, are not treated uniformly 

by the several authors. Also, each author considers only one, or a limited 

range of values of the energy, and comparing the results we observe that the 

performance of the calculations varies strongly with the energy. Besides that, 

the existing data are scarce, and of low accuracy, and must be used all as a 

whole if a meaningful analysis is to be made. 

The purpose of the present work is to investigate the applicability of the 

multiple scattering method to elastic pion deuteron scattering at low and medium 

energies, confronting the results of calculations with all available experimental 

data in this energy range. 

Our calculations include double scattering terms, allowing for nucleon 

recoil, and including both the delta function and the principal value parts origi- 

nated from the pole in the propagator. We have observed that the corrections 

to the differential cross section arising from the double scattering terms are 

never large, so that it is unnecessary to include fermi motion dependence in 

these terms. Fermi-motion effects are taken into account in the evaluation of 
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the single scattering terms, and shown to be important, particularly in large 

angle s tattering . 

The inclusion of fermi motion effects enhances the influence of the off-the- 

energy shell behavior of the two-body amplitudes and of the kinematical ambi- 

guities characteristic of the impulse approximation and multiple scattering 

calculations. We have concentrated effort in the discussion of these points, and 

in particular we compare the results obtained using different prescriptions for 

the value of the energy parameter to be used in the definition of the pion-nucleon 

amplitude. We show that the proper treatment of n-d scattering in the impulse 

approximation as a three-particle system eliminates the ambiguity in the defini- 

tion of the collision energy for the pion-nucleon system. This treatment is 

made in the framework of the multiple scattering series derived &om the 

Faddeev equations, and is shown to lead to values of the differential elastic r-d 

cross sections which give better fitting to the experimental data in the medium 

energy region than what is obtained following other usual kinematical prescriptions. 

In Section II we discuss the structure of the multiple scattering series, and 

mention some of the problems related to its possible relativistic extensions. 

In Section III we compare different prescriptions for the treatment of the 

kinematical and dynamical arbitrariness occurring in the explicit evaluation of 

terms of the multiple scattering series. 

Section IV presents the essential ingredients of the practical calculation, 

with care given to relativistic effects resulting from the comparatively low value 

of the pion mass. 

In Section V our calculations are confronted with the whole experimental 

data on T-d elastic scattering, with the purpose of investigating the conditions 

of applicability of the multiple scattering method, and of obtaining information 

on the influence of the technical aspects and details of the calculation. 
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The overall output of this analysis is summarized and discussed in Section 

VI, where we mention some possible causes of observed discrepancies, and 

indicate lines for further study and development. 

II. FADDEEV EQUATIONS AND THE MULTIPLE SCATTERING SERIES 

The exact three-body amplitude for r-d scattering given by Faddeev equa- 

tions can be expanded in terms of the two-particle collision operators, in the 

form of a multiple scattering series. In the explicit evaluation of the terms of 

the expansion, care must be taken when expressing the matrix elements of 

operators defined in the three-particle Hilbert space in terms of the usual two- 

body matrix elements. 

Let the three particles be labelled by the indices 1, 2, and 3 with momenta 

Tl, s2, T3 in the lab system of reference. Let us select a pair (2,3), and treat 

the particle 1 separately. We define the new momentum variables 

I;cl = (m3F2 - m2T3V(m2 + m3) 

and (1) 

$= 
C 
(m2+m)jY - 3 1 m&F2 + F3) Am, + m2 + m3) 1 

where x is the total momentum of the system, ‘i;; is the internal momentum in 

the (2,3) pair relative to its center-of-mass, and cl is the momentum of particle 

1 with respect to the center-of-mass of the whole system. Defining the reduced 

masses _ 

pl = m2m3/(m2 + “3) 

and 

Ml = ml(m2 -t m,)/(m, + m2 + m3) (2) 
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the kinetic energy of the three particles in the nonrelativistic case can be 

written in the form 

H = 0 (3) 

The pair of particles arbitrarily selected can be any of the three possible choices, 

and new (not independent) sets of variables can be defined for each case. Each 

of these choices is usually called a channel. 

Let us call v1 the potential acting between particles 2 and 3, v2 the potential 

acting between 1 and 3, and so on. The Hamiltonian of the system in the center- 

of-mass system (Z=O) is 

(4) 

where the index CY (a=l, 2,3) indicates the channel which has been selected. An 

important concept is that of the channel Hamiltonian 

ha! = @Q-5,,) + (&‘2Ma) + va (5) 

where there appears interaction only between the two particles forming the pair 

in channel o. The so-called channel resolvent is 

g,(z) = W-Q-1 (6) 

We are dealing with a three-particle system, and these operators are defined in 

the Hilbert space of three particles. Now, if our operators are channel opera- 

tors, that is, if they depend on the relative coordinates of only two particles, 

their matrix element between free particle states can be expressed in terms of 

operators defined in the two-body Hilbert space. We call 

k2 
icy=- O! +v 

21-la! o! 
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the two-body Hamiltonian in channel 01, and 

j&(z) = (zsJ1 03) 

the corresponding two-body resolvent. We can then reduce a three-body channel 

matrix element writing 

The shift in the value of the argument of the resolvent is very important for us 

here. 

Now let us write the Faddeev equations. The full three-body transition 

matrix T(z) is written as a sum 

T=Tl+T2+T3 

where T 1, T2 and T3 satisfy the coupled equations 

T1 = tl+tlgo(T2+T3) 

T2 = t2 +t2gO(Tl+T3) 

T3 = t3* t3gO(T1+T2) 

Here _ 

g,(z) = (z-H,)-’ 

is the resolvent for three free particles, and 

t,(z) = “a+vaga(z)vcr 

(10) 

(11) 

(12) 

(13) 
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are channel Q! transition operators acting in the three-particle Hilbert space, 

and satisfying the reduction relation 

(14) 

where now io is the transition operator in the two-body Hilbert space for the 

two particles forming a pair in channel Q. 

The Faddeev version of the multiple scattering series is obtained in an 

obvious way by iterating the coupled integral equations written above. For the 

elastic scattering of particle 1 by the (2,3) bound pair the transition operator 

T(z) can be expanded in the form of a multiple scattering series 

T(z) = t2(z)+t3(z)+t2(Z)gg(z)t3tz)+t3(z)gg(z)t2tz)+ - - - (15) 

where the interpretation of the terms is the usual one, and all operators are 

defined in the three-particle Hilbert space. 

Care must be exercised when evaluating explicitly the matrix elements of 

the terms above taken between states of three free particles, so that the reduc- 

tion to matrix elements of two-body operators be made with the appropriate shift 

corresponding to the energy of the particle which, in each term, does not par- 

ticipate in the process. 

Let E be the value of the total kinetic energy of the particle-deuteron system 

in the center-of-mass system, y the nucleon (particle 1) lab momentum, and 

p (p’) the initial (final) meson, particle 3, momentum in the lab system. For the 
* 

term with particle 2 as spectator, 

<3, -39 ,F9 It2(E) 13, -J?,F> = 6(32-c2) @‘-X)<Xi It2 I’;;> (16) 

where R (?fS) is the total initial (final) momentum of the three particles, z2 (T2) 

is the initial (final) momentum of the spectator with respect to the center-of-mass, 
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rl PI) is the initial (final) momentum of the meson relative to the center-of- 

mass of the interacting meson-nucleon system, M2 is given by 

M2 = mN(mN+ mJ/(2mN+ “2 

and i2 is the usual two-body collision operator. 

The argument of the two-body transition operator i2 then reads 

E-q;/2M2 = E - [k2 mN+m P +mNp / 2m J- -1” [ NNn) (m +m (2m +m N ,, I (18) 

In the evaluation of the double scattering terms, one introduces complete 

sets of three free particle states between the operators, and the reduction to the 

two-body operators takes place in a manner analogous to that described above. 

We must remark that pions are relativistic even at rather low energies, 

while the formalism developed above is completely nonrelativistic. However, 

the only result of consequence in our computation is Eq. (16), and the approxi- 

mation involved in its use is expected to be very reasonable, as the spectator 

particle, whose energy is subtracted from the total energy available, is always 

a nonrelativistic nucleon. 

There are generalizations of Faddeev equations to the relativistic case, 9 

which give rise to a multiple scattering series which is of the same structure 

as Eq. (15), but where the Hamiltonian HO appearing in the three-particle 

resolvent g,(z) is not of the same simple form as given in Eq. (3). The essen- 

tial problem comes from the fact that in the relativistic generalization of 

Faddeev equations obtained from Bethe Salpeter equation, the denominator in . 

the three free particle resolvent is not linear in the energy of the particles. 9 

Then the spectator particle cannot be removed out from the matrix element of 

the collision operator in three-body Hilbert space. Consequently we are not 
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able to write a simple expression to reduce the three-body to a two-body matrix 

element, but for the purpose of performing practical calculations we may adopt 

the nonrelativistic Faddeev prescription such as given by Eq. (16) to fix the 

value of the energy parameter to be used in the two-body transition operator. 

Starting from a relativistic Schroedinger equation we can write a Watson 

multiple scattering series such that the denominator occurring in the propagator 

is linear in the energy of the three particles. 10 An analogous series can be 

obtained from Feynman diagram rules, with prescriptions to relate the vertex 

functions to the elementary amplitudes and to the nuclear wavefunction. 11 

However these approaches do not solve relativistically the problem of defining 

the energy for the two-body collision operators in the terms of the series, and 

a recipe such as the one mentioned above must be adopted. 

III. KINEMATICAL AND DYNAMICAL AMBIGUITIES IN THE EVALUATION 

OF TWO-BODY AMPLITUDES. SOME SELECTED PRESCRIPTIONS. 

In the previous section we have discussed in some detail the kinematical 

structure of the terms of the multiple scattering series as derived from the 

Faddeev equations, considering pion deuteron scattering as a three-body problem. 

We have shown how, in the nonrelativistic case, a prescription is obtained for 

the value of the energy parameter to be used in the two-body matrix elements. 

There appears a shift relative to the total energy of the system, which is due 

to the amount of energy carried by the particles behaving as a spectator in each 

two-body collision. For our future reference we call that prescription A. 

According to the intuitive ideas supporting the impulse approximation cal- 

culations, the deuteron is viewed as a wavepacket of two nucleons, with a 
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momentum distribution determined by the deuteron wavefunction. The incident 

particle collides with one of the nucleons at a time, while the other nucleon 

remains as a spectator. These ideas have led to the most usually adopted pre- 

scription for the definition of the kinematics governing the two-body collision, 

which we call here prescription B. It assumes that the incident particle collides 

with an on-shell physical nucleon. If fermi motion effects are taken into account, 

for each value and each direction of the nucleon momentum inside the deuteron, 

a different value is used for the relative energy between the incident particle 

and the nucleon. 

Another interesting way to solve the ambiguity has been suggested by the 

experiments in which there is a breakup of the deuteron, and where an identi- 

fication has been made between the spectator and the struck nucleons. These 

experiments show that the spectator nucleon recoils with a momentum distribu- 

tion which is, in good approximation, the same as expected from the deuteron 

wavefunction. We are thus led to the assumption, here called prescription C, 

that the spectator nucleon behaves from beginning to end as an on-shell particle. 

The nucleon which participates in the collision must then be treated as an 

unphysical particle in the initial and final states. To fulfill energy conservation, 

the energy of the participant nucleon is equal to the deuteron mass md minus the 

energy mN+ P2/2mN carried by the spectator nucleon, where P is the fermi- 

motion momentum. Thus the participant nucleon behaves as having an effective 

mass m iB such that 

meti + P2/2meff = md - mN - P2/2mN (19) 

The value of meff depends on the momentum P. The relative energy in the 

center-of-mass frame is evaluated applying Lorentz transformation to the 



- 11 - 

laboratory system motion of an incident, physical, meson, and a particle of 

mass meff and momentum 3. 

In a certain sense, prescriptions B and C exchange the roles of the spec- 

tator and of the struck nucleons. At zero fermi momentum the two prescriptions 

nearly coincide, as then meff = md-mN M mN. 

We have thus described three ways of defining the value of the energy to be 

used in the evaluation of the off-shell matrix element of the two-body amplitude. 

Prescription B has been often used in multiple scattering calculations of 7rd 

processes, 8 while prescription C has only been used in the analysis of pion 

deuteron breakup scattering. 12 

While prescription B seems to be intuitively appealing, according to the 

ideas giving support to impulse approximation calculations, and prescription C 

finds support in the experimental observation of spectator spectra in breakup 

processes, prescription A has a safer theoretical basis. As we are dealing with 

the evaluation of off-energy-shell matrix elements, which are not intuitive 

quantities, we shou1.d rather rely on the more formal approach. The nucleons 

are not free physical particles inside the deuteron, and prescription A tells us 

how to take partially into account the effect in our calculation of the presence of 

two particles in the target nucleus. As shown in Section V, the kinematical 

prescription adopted can have strong influence in the results of calculation. 

In Fig. 1 are shown the values of the kinetic energy (excluded rest masses) 

in the center-of-mass system of the two colliding particles, as a function of the 

fermi motion momentum. The relative energy depends not only on the magnitude, 

but also on the direction of the fermi motion momentum, and the lines drawn 

represent the average value over all directions for a fixed magnitude P of the 

momentum. In prescription B, the value plotted for the energy does not depend 
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much on the value of the fermi momentum, and remains almost constant, while 

in cases A and C the variation is strong. We can thus expect that fermi motion 

effects may be stronger in cases A and C than in case B. These predictions 

have been confirmed by our calculations, covering the interval of energies from 

zero up to about 400 MeV. A main observation is that fermi motion effects are 

extremely important for the correct evaluation of large angle scattering, because 

the strong cancellations which occur in the evaluation of the cross sections are 

sensitive to the proper account of the variation of the values of integrand as a 

consequence of these effects. A factor of up to four in the differential cross 

section can appear in the backward angles as the fermi motion effect is switched 

on and off. On the other hand, we may expect that in the cases of prescriptions 

A and C the calculations are more sensitive to changes in the large momentum 

tail of the deuteron wavefunction than they are in case B. 

In the usual multiple scattering calculation the binding forces in the deu- 

teron are ignored, and the values of the relative momentum used in the evalua- 

tion of the two-body matrix elements are not the same in the initial and final 

states, and are not related to the energy of the whole 7rd system. Thus we deal 

essentially with off-the-energy shell matrix elements of two-body transition 

operators. In general, these matrix elements are not known, and the values to 

be used have to be guessed, following some chosen prescription, from the on- 

the-energy-shell values which are obtained from direct two-body experiments. 

For each partial wave we must evaluate an off-shell amplitude <k ‘IfI Ik> 

where k, k9 are the initial and final relative momenta of the colliding pair, and 

y is the energy parameter defined according to each of the prescriptions adopted. 

These three quantities are not related among themselves through the usual 

on-shell relations. Integration is made over all initial and final values of the 
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nucleon momentum and the values of k, k9, and y vary rather disconnectedly. 

We must define the matrix element as a function of these variables, 

A simple and direct way, which we have used in our computations, consists 

in writing the separation 

<k’ If&Y) lk’ = ----&b&Y) 

where ha(y) is defined as the value of 

(kk’) 1’2 -4~’ IfI Ik> 

(20) 

calculated for k and k9 on the energy shell defined by the value of y. As y is 

fixed in a unique way for each of the prescriptions defined, the computational 

procedure becomes completely specified. This form of off-the-energy shell 

extrapolation is suggested by writing the on-shell scattering amplitude for a 

given partial wave in the form 

<k IfI Ik> = (l/k) sin 6&y) exp i S,(y) (21) 

and letting k - (kk9) l/2 when the initial and values of k do not coincide. We have 

verified in our actual computations of xd cross section that, due to the integra- 

tions performed, which smooth the effect of the separate dependence, it 

makes almost no difference to write (kk9) l/2 or k in Eq. (20). 

Another possible method of specifying the off-the-energy shell extrapolation 

of the scattering amplitudes consists in using a separable potential model for 

each partial wave amplitude. 3,5,6, 12 
- 

As a practical example comparing the results of calculations made using the 

three above mentioned prescriptions for the value of the energy in the two-body 

collision, we show in Fig. 2 the curves for the purely nuclear (Coulomb inter- 

action switched off) forward differential cross section for elastic nd scattering 
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as a function of the meson incident energy. We also include in the figure the 

results of a calculation without account for fermi motion effects. In forward 

scattering, as in the value of the total cross section, fermi motion effects are 

comparatively much less important than in backward scattering. Near the P33 

resonance the influence of fermi motion in the forward cross section can be 

about 35 percent in the case of prescription C and 15 percent in prescription B. 

We see in Fig. 2 that the position of the peak due to the P33 resonance is 

nearly the same in all cases, with a shift of about 6 MeV towards higher values 

of the energy observed in the case of prescription A. This is an important, 

although rather obvious, result, as we expect a displacement to occur in the 

position of the peak as a consequence of the shift in the value of the energy 

caused by the reduction from three-body to two-body operators. This result 

is also true of the total cross section, as the elastic rd scattering is almost 

completely forward. It is interesting to remark that larger shifts are expected 

to occur in the scattering by heavier nuclei. 

We must call attention to the result, shown in the figure, that the values of 

the total and forward cross sections, evaluated with prescription A in the reso- 

nance region, are remarkably lower than the values obtained in the other two 

cases. 

We wish here to remember a remark made by Brayshaw, 2 that the peak 

observed in the cross section for 7rd scattering does not correspond to a reso- 

nance in-the usual sense (a zero in the real part of the 7rd amplitude). 

We must remark that the influence of fermi motion and of the treatment of 

the kinematical ambiguities on the forward and total cross sections tends to 

disappear at higher energies, as all curves then become superposed. As we 

shall see, this stability is in contrast to what happens in large angle scattering. 
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We must also remark that the values obtained for the forward differential 

cross section do not depend much on details of deuteron structure (e.g., the 

amount of D wave) and of the interaction mechanism, and it is completely 

dominated by the single scattering term of the multiple scattering series. 

IV. INGREDIENTS OF THE CALCULATION 

The relativistic kinematical variables we use to describe the nd scattering 

in the impulse approximation have been defined previously. 12,13 We have now 

extended the calculation to include the deuteron D wave component, and the 

contribution of the double scattering terms, including in these terms both the 

pole and the principal value contributions arising from the propagator. 

Let us write the elastic 7rd amplitude in the lab system separating the single 

T{r) and double scattering Tfi @I contributions in the form 

m - - Tfi(~,~) = Tfi (P ) P ‘) + TlD’~,~) (22) 

where i and f represent respectively the initial and final states of the system, 

and 5 @) is the initial (final) pion momentum. The differential cross section 

in the lab frame is given by 

do P’~E; 
-= x 1) 

( c d’ P(W~P’-E~~~*$) 3’ i,f 
lTfi I2 (23) 

where the sum extends over deuteron polarization states, EL is deuteron final 

energy, E 
- P’ 

is the total energy for a meson of momentum 2, and WL = m + E 
d P 

is the total energy of the system in the lab frame of reference. 

Let us write the operator representing the deuteron wavefunction in the two 

nucleon spin space in the form 

(24) 
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where the indices p and n refer to proton and neutron, T is the fermi momentum, 

and Go and $2 represent respectively the S and D wave parts of the deuteron 

wave function. 

We can then write for the matrix element representing the single scattering 

contribution 

In this expression 

C (proton - neutron) (26) 

where x3-$, 1-1 (or p9), and v (or v ‘) label respectively the proton and neutron 

(1) spin states, and C. 
WV 

is the Clebsch-Gordan coefficient coupling two spin one 

half particles of z spin components ,u and v to form a spin 1 state with z compo- 

nent given by the value of j. The quantities t 
Q 

and t 7111 stand respectively for 

the pion proton and pion neutron collision operators, and eji(fr) represents the 

matrix element of $(F) evaluated between deuteron polarization states of z spin 

components j and i. 

In the whole region of interest for our calculations, the double scattering 

terms give small contributions as compared to the single scattering terms. We 

thus find that neglecting fermi motion effects in the amplitudes and treating the 

deuteron as a pure S state in the double scattering contributions are very reason- - 

able approximations. This assumption simplifies substantially the calculation, 

and we can write 

(27) 
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where 

(28) 

is the (pure S-wave) deuteron form factor and 

DfitE?,2’) = C C ,w* ($1) 
crp pp’vv’ fp9v9 ipv x <p’,‘ijt,p-$%Ta I/d,y+, o> x 

x <V’,i+ ,pp I tTn I v,F, o> (29) 

The sums over the isospin indices o!, p take into account all possible inter- 

mediate charge states, and include the charge exchange contribution. To deal 

properly with the isospin variables, we must include isospin dependence in the 

definition of the collision operators, and isospin quantum numbers in the defi- 

nition of the states. As the deuteron is an isospin zero state the double charge 

exchange term comes out with opposite sign relative to the charge preserving 

double scattering contribution. 

To accelerate the convergence to zero of the integrand in Eq. (27) as p”+ ~0 

we have adopted the nonrelativistic form for the pion energy E 
P” 

in the propagator, 

so as to have a p” 2 behavior in the denominator, instead of a linear p”. This 

procedure may be considered as a prescription for the off-energy-shell behavior 

of the two-body amplitudes, and does not have a fundamental influence in our 

calculation, as the double scattering contributions to the differential cross sec- 

tions are very small. 

At this point we may remark that at very high energies, where the eikonal 

limit is reasonable, it is known that the principal value part of the double scat- 

tering integral is cancelled by higher order terms. 14 
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V. RESULTS OF CALCULATIONS AND CONFRONT WITH DATA 

In what follows, we present our results of multiple scattering calculations, 

comparing the different prescriptions for the kinematical variables used in the 

evaluation of the two-body amplitudes. The calculations include double scat- 

tering terms, allowing for nucleon recoil, and including both the delta function 

and the principal value parts originated from the pole in the propagator. Cor- 

rections to the differential cross section arising from the double scattering 

terms never amount to more than 10 percent in the whole range of energies 

where the multiple scattering calculation makes sense (let us say above 85 MeV). 

It is thus unnecessary to include fermi-motion dependence in the double scat- 

tering terms, which brings an important simplification in the numerical compu- 

tations. The comparatively small contribution obtained for the double scattering 

terms makes us confident that higher order terms of the series can be neglected. 

The calculations account for fermi-motion effects in the single scattering terms, 

and are made with Moravcsik wavefunction, with 7 percent d-wave component. 15 

For the pion-nucleon phase shifts we have used the parametrization of L. Roper 

al., et 16 except at 47.5 MeV, where CERN phase shifts were used. 

As explained in the introduction, the main purpose of the present work is to 

test calculations with the multiple scattering method against the available experi- 

mental information in the low and medium energy region. Unfortunately the data 

on 7rd elastic scattering in the low and medium energy regions are scarce, many 

rather old, with low statistics and large error bars. The only new data obtained 

in the recent years come from the experiment at 47.5 MeV, 7 and the expected 

results of the measurements at 347 MeV/c (234.4 MeV kinetic energy) and 

443 MeV/c (324.9 MeV kinetic energy) performed by a collaboration of the groups 

at the University of Virginia and at Los Alamos Scientific Laboratory. 17 There 
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are reported experimental results on the elastic 7rd differential cross section 

for incident pions at 61 MeV, l8 85 MeV, lg 140 MeV,20’21 182 MeV,22 

224 MeV, 23 256 MeV, 24 300 MeV, 25 and 330 MeV. 26 For large angle scat- 

tering, between 140 and 180 degrees in the laboratory system, there are results 

obtained by Schroder et al. 27 at 375.7, 412.4, 469.6 MeV and higher energies. 

The work of Gabathuler et al. 24 also includes measurements of the backward 

cross section at 160 degrees lab scattering angle for incident pions of 141, 163, 

185 and 208 MeV. 

Angular Distributions 

In Figs. 3 to 6 we present the results of our calculations of angular distri- 

butions for rd elastic scattering for pion lab kinetic energies ranging from 

47.5 MeV to 324.9 MeV. At all energies except the lowest ones, there is a 

large variation in magnitude in the differential cross section between the forward 

and the backward directions, and in order to show more clearly the behavior of 

the curves and of the data we have used separate scales for the forward and the 

backward angles. We have used a highly expanded scale for the differential 

cross sections at large angles so as to exhibit rather than to hide discrepancies, 

and thus avoid the inconveniences of a logarithmic scale. This is important, 

as it is in the large angle elastic scattering that can be seen more clearly the 

effects of the deuteron structure and of details in the treatment of the system. 

As shown in Fig. 3, 10 the experimental results obtained at 47.5 MeV are 

reasonably well fitted by a multiple scattering calculation with the most usual 

treatment of the two-body kinematics, namely, prescription B. Surprisingly 

fermi-motion effects do not contribute to improve the quality of this theoretical 

curve. The other two prescriptions perform badly at this energy, giving results 

which are much lower than the data. The curve for case C has not been drawn 
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because it is even worse than the curve obtained with prescription A. The 

results obtained at 61 MeV, shown in Fig. 3b, present nearly these same 

characteristics. 

At this point we wish to call attention to the danger of drawing conclusions 

from observations made in a restricted energy interval, in calculations of this 

kind . We can see that the situation becomes very different already at slightly 

higher energies. In fact, in Fig. 3c, for 85 MeV, the case which performed 

best at 47.5 MeV, namely prescription B, is now the worst. The solid line, 

which in all figures represent prescription A, has already taken a reasonable 

standing. The experimental errors are rather large, which makes the things 

apparently easier, but looking at Fig. 3c we feel that the theoretical calculation 

makes some sense at this energy. 

In Figs. 4a, b, presenting experimental and theoretical results at 142 and 

182 MeV, the solid curves, representing prescription A give a good fitting to the 

data, and make us confident that this is a proper way to perform these calcula- 

tions . The dotted and dashed curves (cases B and C respectively) are not so 

close to the experimental points, and invert their relative positions from 142 to 

182 MeV. The poor results obtained with prescription A at 47.5 MeV and 6 1 MeV 

should thus be taken as demonstrating that this energy is too low for a multiple 

scattering calculation involving only single and double scattering terms. Binding 

corrections, off-the-energy shell extrapolations, or complicated three-body 

mechanisms might play important roles at such low energies. 

In Figs. 5a,b and 6a,b for 224, 256, 234.4 and 324.9 MeV, again prescrip- 

tion A gives the best results, but here there appears regularly a rather strong 

discrepancy in a wide angular region above 70 degrees, with the experimental 

data laying much below the calculated points. At small angles up to about 
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70 degrees in lab system the calculated values are reasonable, but at large 

angles the calculations are wrong by a factor of about two. Here the theoretical 

results must be considered as nonsatisfactory, and there is an obvious need for 

improvement and interpretation. 

At the energies of the measurements of angular distribution in the backward 

directions by Schroeder et al., 27 namely at and above 375.7 MeV, our calcula- 

tions confirm the above mentioned trend, giving results which are below the 

experimental points by a factor lying between two and three. It seems that some 

change must be introduced, either in the description of the deuteron structure, 

or in the treatment of the collision mechanism. To our knowledge, no reason- 

able quantitative or qualitative interpretation has been given of these experi- 

mental results, which are already five years old. 

Energy Dependence of Backward Cross Section 

The 7rd elastic differential cross section falls rapidly as a function of the 

scattering angle. The backward cross section, in the energies here considered 

can be as much as a thousand times smaller than the forward differential cross 

section. 

For large values of the momentum transfer, x, due to the large structure 

of deuteron in configuration space, and consequently to its short range distribu- 

tion in momentum space, the product #(rp> $(?+ x/2) in Eq. (25) varies rapidly 

with liq. Thus the result of the integral leading to the amplitude for scattering 

by deuteron is very sensitive to the i? dependence of the other terms occurring 

in the integrand of the expression leading to the differential cross section, 

Eq. (23). This is seen in Fig. 7, where we plot all the experimental data for 

(do/da) at 160°, 7y 17-27 together with the results of our calculations. We show 

curves for the three cases of kinematical prescription, all calculated with account 



- 22 - 

for fermi motion in the single scattering term, and for nucleon recoil in the 

double s tattering contribution. 

We see from the figure that prescription A, based on Faddeev’s equation, 

gives a good account for the data in the region from 140 to 300 MeV. The other 

two prescriptions fail in this region, and are more reasonable at the lower 

energies (see the experimental points at 47.5, 6 1 and 85 MeV) . At the energies 

of Schrcederz7 experiment (375.7, 412.4 and 468.6 MeV) all calculations made 

give too low values when compared to the data. 

We tried to improve the fitting of the experimental results in the low energy 

extreme by using other sets of low energy pion-nucleon phase shifts, such as the 

CERN phase shifts, and allowed for some reasonable fluctuations in these 

numbers but the improvement obtained was much smaller than desired. We 

think that the good performance of prescriptions B and C in the lowest energies 

is purely accidental, and we call again attention to the danger of extracting 

conclusions from analysis of results obtained at only one value or in a narrow 

region of views of the incident energy. Of course it would not be reasonable to 

use arbitrarily chosen prescriptions for different sets of data. We should rather 

consider that it is not reasonable to expect that a simple multiple scattering 

calculation, without reliable corrections for binding effects and other complica- 

tions, can appropriately describe elastic d experiments at the very low energies. 

The approach based in the direct solution of the Faddeev equations (l), (Z), (3) 

is a more reliable and adequate method for energies below 100 MeV. 

At the energies of the experiment by Schrceder et al. (375.7 MeV and above) -- 

all calculated values are below the data. Again in this extreme region prescrip- 

tion A seems to be worse than the other two. It is not difficult to find possible 

reasons for this disagreement. As mentioned above, the differential cross 
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sections at high momentum transfers is highly sensitive to the form of the 

deuteron wavefunction. The very low value of the backward differential cross 

section at these energies, which are of the order of 0.03 to 0.01 mb, are from 

one to three thousand times smaller than the forward cross section. This 

enormous cancellation is due to the factor $(??) $($+ xj2) in the integrand, and 

can be modified by a change in the high momentum tail of the deuteron wave- 

function. For example, it has already been pointed out 28 that the difficulty 

found in the multiple scattering calculations to explain Schroeder’s results might 

be an indication of the presence of a A isobar component in the deuteron wave- 

function. We find that this is an interesting line for further investigation. 

VI. COMMENTS AND CONCLUSIONS 

We have applied the multiple series method to the d elastic scattering in 

the low and medium energy regions, concentrating some effort in the analysis 

of an effect which is of large practical importance in these calculations, namely 

that of the arbitrariness in the determination of the values of the kinematical 

variables fixing the two-body amplitudes. We have reviewed prescriptions 

previously used, and compared them with the prescription derived from the 

proper consideration of the fact that the two-body operators appearing in the 

multiple scattering series for nd scattering are initially defined in a three- 

particle Hilbert space. We can then account properly for the energy carried by the 

particle which acts as spectator in each term evaluated, and thus the fact that 

we are dealing with a three-body problem is not overlooked in each term of the 

calculation. 

We have performed calculations covering the whole interval of low and 

medium energies, from zero to about 400 MeV, and in comparing the results 

with the existing experimental data on nd elastic scattering. This is important, 
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as the results reported in the literature are sometimes contradictory, and we 

have shown that the observation of the performance of these multiple scattering 

calculations in a narrow interval of energies may lead us easily to wrong 

conclusions. 

Our calculations have shown, or rather confirmed, that fermi-motion effects 

are extremely important in large angle pion-deuteron scattering at low and 

medium energies. Lf prescription A, based on the proper consideration of the 

three-body kinematics, is used to fix the value of the energy which enters as the 

argument of the two-body collision operator, it is of course essential that the 

nucleon momentum be treated as a variable, according to Eq. (16). As mentioned 

in Section III, inspection of Fig. 1 leads us to expect that in the case of prescrip- 

tion B the fermi-motion effects are less important than in the two other cases. 

Still, results show that in this case account for fermi-motion effects can reduce 

the calculated backward (at 160 degrees of scattering angle in lab system) differ- 

ential cross section by a factor of about two in the energy region from 180 to 

260 MeV. Below and up to 100 MeV the fermi-motion effect is such as to 

increase the calculated value of the backward differential cross section by about 

50 percent. At 90 degrees lab scattering angle, the effect is not so strong, 

amounting up to a reduction of about 30 percent in the differential cross section, 

for an incident energy of 18 0 MeV. 

The differential elastic cross sections are well reproduced by a calculation 

using prescription A, in the interval of incident pion energies from 140 to about 

230 MeV. Above this energy strong discrepancies occur for scattering angles 

larger than 70 degrees. 

We may speculate on what may be the cause of the observed discrepancies. 

We notice that the strong reduction in the large angle experimental cross section, 
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as compared to the calculated values, occurs suddenly as the energy goes above 

230 MeV. At this energy some new dynamical phenomenon may have started to 

play a role. We may think for example that pion production and consequent 

reabsorption by the other nucleon may have started to contribute significantly. 

At these energies, which are above the threshold for pion production, this 

essentially three-body mechanism which is not included in terms of the multiple 

scattering series, could eventually be responsible for a change in the dynamics 

of the process. The diagram in Fig. 8 gives a simplified representation for this 

kind of mechanism, which accounts for part of the binding corrections to the single 

scattering term (other corrections would envolve production and absorption of 

two or more pions). If the intermediate pion is charged, there is charge exchange 

between the struck and the spectator nucleons. 

Another possible explanation for the observed discrepancy is that we may 

have entered a range of momentum transfer where the effects of our insufficient 

knowledge of the deuteron structure may have started to affect the calculations. 

A change in the large momentum tail in the deuteron wavefunction, such as that 

caused by the presence of a hard core in the neutron proton interaction, may 

substantially change the value of the integral over internal fermi momentum in 

the expression of the differential cross section, Eqs. (23) and (25). 

These effects due to changes in the deuteron structure or in meson-nucleon 

interaction might be expected to be small at first sight. However we must notice 

that the value calculated for the 7rd differential cross section at large angles is 

several orders of magnitude smaller than the forward cross section, due to 

strong cancellations occurring in the integration procedure. The results obtained 

after such cancellations have a delicate and strong dependence on the quantities 

in the integrand. As an example, we mention that the introduction of the d-wave 
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component in deuteron wavefunction causes an increase by a factor 2 in the 

calculated cross section at large angles in the energies of Schroeder experiment 

(375.7 MeV and over). 

We must also remark that we have given an arbitrary treatment to the off- 

energy shell behavior of the two-body amplitudes, as this behavior can only be 

fixed if some specific dynamical model is adopted for the pion nucleon interaction. 

Of course changes in the prescribed off-shell behavior of the amplitude can alter 

the theoretical results obtained. 

The double scattering terms do not give a strong contribution to the evaluated 

cross section at these energies and angles, so that we do not expect that a sub- 

stantial change could come from the third and higher order terms of the multiple 

scattering expansion. Also binding corrections have been shown 29 to give con- 

tributions to the forward scattering amplitudes which are only of the order of the 

double scattering terms. 

Whatever may be the cause for the failure of the present multiple scattering 

calculation at large angles above 230 MeV, we note that the extreme sensitivity 

of the backward nd elastic cross section at large angles provides an excellent 

ground to study the deuteron structure and properties of the meson-deuteron and 

meson-nucleon interaction. 

We find that more accurate experiments on differential cross sections for 

rd scattering should be performed as soon as possible. The region of energies 

around and above 200 MeV should be carefully studied, as important changes in 

the process seem to take place in this region. 

On the other hand, it is obvious that the theoretical effort must also be 

increased, both in the calculations with multiple scattering method and in direct 

solutions of Faddeev integral equations. A combination of the two methods, 
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joining the nice features of each, may be an interesting and rewarding program 

of investigation. 
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FIGURE CAPTIONS 

1. Values of the total kinetic energy (rest masses excluded) in the TN c. m. 

system, according to prescriptions A, B, and C described in the text, 

against fermi-motion momentum squared. The energy values are averaged 

over all directions for a given magnitude of fermi momentum. The diagram 

is drawn for incident pions of 200 MeV kinetic energy. 

2,. Forward differential cross section for nd elastic scattering, with Coulomb 

interaction switched off, comparing results obtained with kinematical pre- 

scriptions described in the text. The solid curve represents results 

obtained with a shift in the value of the energy parameter as determined 

by the reduction from three-particle to two-particle matrix elements 

(prescription A). The dotted curve is obtained with the struck nucleon on 

shell (prescription B), and the dashed curve shows the results obtained with 

on-shell spectator nucleon (prescription C). The dashed-dotted curve (D) 

is obtained eliminating fermi motion. The peak in the solid curve is dis- 

placed about 6 MeV towards higher energies as compared to the other cases. 

3. (a), (b), (c) Data on 7rd elastic scattering differential cross sections and 

theoretical curves representing results of multiple scattering calculations. 

The labels A(solid), B(dotted), C(dashed) refer to the kinds of kinematical 

prescription described in the text. Curves D(dot-dashed) at 47.5 and 61 

MeV are obtained without account for fermi motion. The experimental 

results are from Refs. 7 (47.5 MeV), 18 (61 MeV) and 19 (85 MeV). We 

think that the two lowest energies (47.5 and 6 1 MeV) are too small for the 

application of the multiple scattering method and that these calculations 

seem to make sense only for incident pion kinetic energies above 85 MeV. 
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4. (a), (b) Curves for the differential cross section for 7rd elastic scattering 

at 142 and 182 MeV, obtained in a multiple scattering calculation involving 

single and double scattering terms, and accounting for fermi-motion and 

nucleon recoil effects. The solid curves are calculated using the value of 

the energy parameter obtained from a proper treatment of the three-body 

kinematics, as described in the text (prescription A). The dotted curve (R) 

is obtained with the prescription which puts the struck nucleon on the mass 

shell, while for the dashed curve (C) the spectator nucleon is on shell. The 

experimental results are from Refs. 21 (142 MeV) and 22 (182 MeV). We 

have used an expanded scale for the large angles, so as to exhibit more 

clearly the observed discrepancies. 

5. Differential cross section at 224 and 256 MeV obtained in multiple scattering 

calculations using different prescriptions for the treatment of the kinematical 

variables. The solid curve (prescription A) gives the best results, but the 

large angle scattering data are not very well reproduced by the theoretical 

calculations. The experimental points are from Refs. 23 (224 MeV) and 

24 (256 MeV). 

6. (a), (b) Preliminary data at 234.4 and 324.9 MeV from Ref. 17, and 

theoretical curves for the differential cross section obtained in multiple 

scattering calculations using differential prescriptions for the treatment 

of the kinematical variables in the two-body collision. Again prescription A 

performs better than the other two cases, but the calculations are clearly 

nonsatisfactory at large angles. 

7. Energy dependence of the backward (160’ lab scattering angle) differential 

cross section for 7rd elastic scattering. The experimental data are from 

Refs. 7, 17-27. The curves represent the calculations made with three 
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different prescriptions for the treatment of the kinematics of the two-body 

collision, as described in the text. The values obtained for the backward 

differential cross section are very sensitive to details of the multiple scat- 

tering calculation, such as fermi-motion effects, deuteron structure, and 

off -shell behavior of amplitudes. The figure shows that prescription A 

(solid curve) gives reasonable results in the energy range from 140 to 

250 MeV. 

8. A possible dynamical mechanism, not included in the terms of the usual 

multiple scattering series, which may be responsible for discrepancies 

observed at large scattering angles for energies above the threshold for 

pion production. 
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